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Abstract Zero-sum CGs can be solved efficiently via convex opti-
mization, and in fact known algorithms for solving zero-
sum EFGs work by reducing the EFG to a CG. This ap-
proach to solving EFGs depends on the propertyperf

We describe a generalization of extensive-form games that
greatly increases representational power while stilivaltg
efficient computation in the zero-sum setting. A princijeel-f

ture of our generalization is that it places arbitrary come- fect recall the problem is NP-ha‘\‘rd without th'? assump-
timization problems at decision nodes, in place of the finite tion (Koller & Megiddo 1992). ) Perfect recall” CEFGs
action sets typically considered. The possibly-infinitécac would not be useful due to the intractable number of pos-
sets mean we must “forget” the exact action taken (feasible  sible actions at each node. We develop a generalization of
solution to the optimization problem), remembering indtea perfect recall for CEFGsufficient recall that allows some
only some statistic sufficient for playing the rest of the gam “forgetting” of past actions. A principal contribution diis

optimally. Our new model provides an exponentially smaller -~ work is showing that zero-sum sufficient-recall CEFGs can

representation for some games; in particular, we show how to be transformed to CGs, and hence solved efficiently.
compactly represent (and solve) extensive-form games with '

outcome uncertainty and a generalization of Markov deisio _ The ability to embed linear programs inside CEFGs uni-
processes to multi-stage adversarial planning games. fies this class with MDPs: an MDP is a single-player, single-
node CEFG. The problem of solving an MDP where one
. player selects a policy and another player chooses the cost
Introduction function was addressed in (McMahan, Gordon, & Blum
Extensive-form games (EFGs) are commonly used to rea- 2003). This problem can be modeled as a two-player, single-
son about multiagent interaction, and Markov Decision node CEFG. More general versions of this problem, where
Processes (MDPs) are commonly used to model single- the players have some limited opportunities to observe thei
agent planning in domains where actions have stochastic opponent’s past actions, can also be solved as CEFGs. We
outcomes. Hundreds of papers have been published onuse a small example of such a multi-stage adversarial path
these topics. This paper introdudgsnvex Extensive-Form  planning problem to illustrate the CEFG model. Our work
GamegqCEFGS), a powerful generalization of both models differs from other work on multi-agent MDPs (Petrik & Zil-
that maintains computational tractability. Like an EFG, a berstein 2007, for example), in that we focus on the ad-
CEFG is a game with partial information played on a tree, versarial (zero-sum) case, and while we only consider two
however, in CEFGs: 1) An arbitrary subset of the players agents, one or both agents may have arbitrary convex action
simultaneously select an action at each node; 2) The set of sets at each stage of the game, rather than only selecting a
actions available to each player is a convex subsé&"gf policy in an MDP.

rather than a discrete set; 3) Payoffs are made at internal  Ag another example of the expressive power of CEFGs,
nodes as well as at leaves, and are given by a bilinear func- \ye demonstrate how they can efficiently model outcome un-

tion of the players’ actions; and, 4) Two nodes that are both certainty in EFGs. In games with outcome uncertainty, a
in the same information set may have different numbers of (joint) action results in a probability distribution oveu-f

successor nodes. These differences allow us to embed arbi-yre states, rather than a deterministic single state dafin s

trary convex optimization problems at nodes of the CEFG, gard EFGs. Standard EFGs can model outcome uncertainty
for example allowing us to model MDPs where an opponent through the explicit use of random nodes, but as we shall
controls the cost function. - see this can lead to a prohibitive explosion in the size of the
We first consider the class of bilinear-payoff convex game tree. While we feel this example is both conceptually
games (CGs), a natural generalization of matrix games. straightforward and a significant research result in its own

* mcmahan@google.com. Current affiliation: Google, Inc., right, CEFGs have many other promising applications, in-

CIC building, 4720 Forbes Ave, Pittsburgh, PA 15213. cluding providing a method for introducing a limited amount
t ggordon@cs.cmu.edu of partial observability into stochastic games or MDPs whil

Copyright(©) 2007, Association for the Advancement of Artificial  still allowing for tractable solutions. See (McMahan 2006)
Intelligence (www.aaai.org). All rights reserved. for discussion of other applications.
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(a) The graptg for the CGg; (b) An EFG representation @f (c) The t-MAPP game as a CEFG
Figure 1: Representation of example games.

Bilinear-payoff convex games Bilinear-payoff convex planning is to find a policyr that minimizes the expected
games (CGs) are a natural generalization of matrix games, start-to-goal cost with respect to a fixed cost veetor

though they have received surprisingly little attention in It is well known that the set of stochastic policies for
the literature since their introduction by Dresher & Karlin  such an MDP can be represented via state-action visita-
(1953). EFGs and (as we will show) CEFGs are special tion frequency vectors, and further that the set of these
cases of convex games, as are other adversarial problemsvectors is convex (for example, McMahan 2006). Here
such as computing an optimal oblivious routing. For a gen- we demonstrate the result for a small example. The path-
eral introduction to CGs and their application, see (McMa- planning problem on the directed acyclic graph shown in

han 2006). Figure 1(a) can be interpreted as a deterministic MDP with
A two-player CG is defined by convex setsandY and S = {a,b,c,...,f,g} andA = {1,2,...,10}, wherea is
a payoff matrix)/, for each player. The first player (say the start statef andg are the goals, and the actions avail-
selects an actiom € X, the second (say) simultaneously able at a state are the directed edges out of that state. A
choosey € Y, and each playerreceives a payoff ' M,y. state-action visitation vector for a polieyis a vector from
In the zero-sum casd/, = — M, = M gives the amount R indexed by the edges, which gives the probalsilihat
paysy, and an extension of the minimax theorem holds: a given edge is traversed under policyThus the determin-
istic policy that chooses patla, b, d, f) corresponds to the
min max 2’ My = maxmin =’ My. vectorz = (1,0,1,0,0,0,1,0,0,0) because it uses edges
reX ey yey rex 1,3, and7 only. The vectok assigns costs to edges, so the
This equilibrium is achieved for somé € X, y* € Y. The expected cost of this policy is exactly- c. The convex set

convexity of X andY implies that no explicit randomization ~ of vectorsz that correspond to valid stochastic policies can
is necessary; rather, a player can implicitly randomize ove be defined via linear flow constraints. We have
the corners of the action set by playing an interior point. r _ ;
. +a2=1 leavea with prob 1
Zero-sum EFGs can be represented as a CG and solved via ! 2 ( P )

the ellipsoid algorithm (Koller & Megiddo 1992); in fact, w7 +agtas+r0=1  (reachagoalwith prob 1)

all zero-sum CGs can be solved in this mannerXlfand for the start and goal states, and each internal state hag a flo
Y are polyhedra (i.e., defined by a finite number of linear constraint (e.g.43 + 24 = x; for b) that the probability we
equality and inequality constraints), then in fact an eljuil  enter the state equals the probability we leave. Combining
rium (z*,y*) can be found via linear programing (Koller,  these equality constraints with the constraint 0 defines
Megiddo, & von Stengel 1994). the convex sefg of valid edge (or state-action) visitation

frequencies. We can recapture the stochastic paljcgor-
responding to a vectar by normalizing at each state; for
example, the probabilityr, takes edge 7 frond is M”jws.
This convex representation of the set of stochastic palicie
for MDPs shows that planning in an MDP is a convex game:
playerx has strategy seXg, y has the (trivial) action set
Y = {c},andM = I (the identity matrix).

Markov decision processes and CGs In this section we
review some results on MDPs, and introduce an illustrative
game that involves MDP planning. An MDR is defined

by a (finite) set of stateS, a finite set of actions, and tran-
sition dynamics defined by probabiliti&s (s’ | s, a) for all

s,s’ € Sanda € A. We consider undiscounted MDPs with N il ve CG wherén
a fixed start state and a set of goal states. A cost vector ow, we construct an illustrative CG wheyeas a more

assigns a cosi(s, a) to each state-action pair. For any finite interesting set of actions: she choose_s how to place at most
setQ, let A(Q) be the|Q|-dimensional probability simplex B obstacles on edges of the graph, with each edge getting at
(that is, the set of distributions ové)). A stochastic policy most one obstacle. The coston _edgece +1ifitcontains

is a functionr : S — A(A) that maps each state to a prob- an obst_acle, and. otherwise € gives the be_tse costs of the
ability distribution over actions. The goal in standard MDp €dges, independent of the obstacles). Define the convex set

Ye={yly=c+2 2>0,2<1,1-2<B}. (1)

1Our convex games are non-cooperative, and are unrelatedto — "~
the super-modular coalitional games often called convewegain 2If the graph was not acyclic, this would generalize to the ex-
the cooperative game theory literature. pected number of visits to the edge.



The set of possible deterministic obstacle placementgeorr
spond to integer choices ofin Y. It can be shown that the
corresponding are exactly the corners of the set, and so an
interior point ofYz can be interpreted as a probability distri-
bution over deterministic obstacle placements. We can now
define a convex game whetehooses fronXg, y from Y,
andM = I. Sincey is a cost vector on edges ands a fre-
quency vector on edges, the dot prodticfy exactly calcu-
lates the expected value of the corresponding strategy/cos
vector pair. We call this game; it is an adversarial-cost
MDP, as introduced in (McMahan, Gordon, & Blum 2003).

We could have modeled this game as an exponentially-big
(in the size of the graph) matrix game where the advergary
has combinatorially many pure strategies (determinigiic o
stacle placements), and the planrdras one pure strategy

y exhausted. Unlike the EFG representation, the CEFG can
“forget” the exact path taken by and the exact obstacle
configuration chosen by.

Sequential games like this can be used to model a power-
ful class of multi-stage adversarial path planning protdem
We have a large graph, ardtarts at a fixed node and must
travel to a goal. However, the goal is not yet known, and
may in fact be chosen randomly or by the adversary. So,
in the first stage, playestravels to an intermediate node in
the graph. Playey partially controls the costs, just as in
the g' game. After the first stage, the adversary or nature
chooses the location of the goal, some information about the
goal is revealed tg, and some information abou’s loca-
tion may be revealed tp. Another movement stage occurs,
in whichx picks a policy to another intermediate node, and

for each start-goal path in the graph (exponentially many in Selects another cost vector. The game continues in stages un
the size of the graph). The most concise EFG representation til the goal is revealed and reachedbyCEFGs can model
corresponds to the transformation of this matrix game to an MAPP problems with many kinds of uncertainty, including
EFG, as shown in Figure 1(b): firstselects a path, and outcome uncertainty, stochastic and adversarial confrol o
theny selects a placement of obstacles without knowledge costs, stochastic and adversarial control of the goalstate

of = (the dashed lines indicate thd$ decision nodes are in
a single information set).

We now consider an extension to this game to help mo-
tivate CEFGs. FixB = 2 for concreteness, and suppose
that after playings};, the players will then play another con-
vex gameg?. The exact second-stage gapje played de-
pends on how many obstacles {0, 1,2} playery placed
in the first stage, and which goal statec {f, g} playerx
reached, but the exact path takenxbgnd the exact place-
ment of obstacles by are irrelevant. For examplg, might
be a subgraph of a larger graph that continues beyosad
g, and sog? . is another path planning game on a different
piece of the graph, where starts from state andy has
B — b obstacles available. Breaking the game into stages
like this will allow y to potentially observe’s location (and
pick obstacles accordingly), or letpotentially observe’s
remaining budget. We call this game t-MAPP, because it

can be viewed as a tiny instance of a multi-stage adversarial

path planning (MAPP) problem. Itis no longer clear that the

t-MAPP game can be modeled as a convex game, as we now

have significant temporal structure.

Consider representing t-MAPP as an EFG: the first stage
of the gameg!, is modeled by Figure 1(b); for each of the
exponentially many leaves of this game, we now attach a
copy of the appropriatgib (also represented as an EFG)
for that leaf. Butgib could be an arbitrary convex game,
S0 it is quite possible that each copy is itself exponentiall

and partial observability (McMahan 2006).

Generalizing Extensive-Form Games

In this section, we introduce CEFGs for the two-player,
zero-sum case. Complete proofs as well as additional exam-
ples, commentary, and references can be found in (McMa-
han 2006, Ch. 4). Comments specific to the example
t-MAPP are set in brackefs.].

A CEFG is played on a directed, finite game tree
T (V,E) rooted at s*. Define £(s)
((sh,8%),(s%,8%),...,(s"71,s¥ = 5)), the sequence of
edges on the path te. The game is played by a set
N = {0,1,2} of players, where the O player is an op-
tional random player. We again let = 1 be the min
player andy = 2 be the max player. Each player is ac-
tive (selects an action) on an arbitrary subset of the inter-
nal (non-leaf) noded,V,, C V; these are playep's deci-
sion nodes. Letd(s) = {p | s € V,}, the set of active
players ats. We require|.A(s)| > 1 for all internal nodes
s € V, and|A(s)| = 0 for leaves. [For t-MAPP, the set
V ={9%9gh—0- -+ 9h—2 4} Nodeg® € V; because at this
nodey selects her budget, byt ¢ V;. Both players are
active at all the nodeg! ]

As in EFGs, the decision nod&$ for each player are par-
titioned into information sets € U,. When play reaches a
nodes in information setu, then playep observes that the
game has reached but not the specific € u; that is, all

large when represented as an EFG. So, clearly, ttMAPP is s, s’ € u are indistinguishable tp. For nodess wherep is
intractable when represented as a standard EFG. In the nextnot active ¢ ¢ V,,), we define (for notational convenience)
section, we introduce CEFGs, which will give us a natu- a special “non-information set},.. In particular,0, ¢ U,

ral polynomial-sized representation of t-MAPP, of the form  and playerp never observes when she is {n. For any
given in Figure 1(c): at nod¢’ playery picksb € {0, 1,2}, nodes € V,, let ¢,(s) be the (unique) € U, such that
the number of obstacles she will place in stage one. Atthe s ¢ v, and letg,(s) = ¢, for s ¢ V,. To simplify no-
stage one nodeg’, y picks a cost vectoy that respects  tation, whenu is not otherwise specified it can be read as
the budgeb, while x simultaneously picks a path (with-

out knowledge ob or y). The transition to the next stage 3Allowing strict subsets of players to be active at each node
game then depends only on the relevant portion of the out- requires some notational gymnastics; however, it is necess
come: which state reached, and how much of the budget maintain a direct transformation from EFGs to CEFGs.



¢p(s). For any nodes and player, let obs,(s) be the se-
quence of playep information sets on the path to obs,(s)
has an entry for each state’ with ¢,(s") # ¢, on the
unique path tcs. [In t-MAPP, each of the first four nodes
is in its own information set foy. Forx, ¢.(g°) = Ox, and
uy = {9gt_o, 9t_1, 9t—o} € Uxis aninformation set because
x does not observe how many obstaglekecided to placg.

A few notes on notation: Each information setve men-
tion is associated with a player (sg)y, so for exampler,, is
an action taken by atu. A bar indicates a tuple over play-
ers, e.g.z is a joint action. Entries in a tuple over players
are indexed with a subscripte N, 2 = {zo,z1,22}. A
bar over a capital symbol denotes a set of such tupiess
a set of joint actions.

All nodes in an information set for p share the same
set X,, of actions available tg; this is natural because

probability thats’ is the next node afteris given by:

Pr(s' | 5,7) = H f;s/ (zp).

pEN

)

Thus, we require that these functions are chosen in such a
way thatPr(s’ | s,Z) is always a well-defined probability
distribution. The random player has one information set per
node andX, = {1} for all u € Uy. Thus, the random
player is defined by constaﬁ%functions,fgs/. [Int-MAPP,

the transition from stage 2 to stage 3 depends only on which
goalx reaches, and sgs f-functions all return 1. Fox, we
define

i £ =
where f/ is the f-function forg; to g ; for b € {0,1,2},

X7 + X9 and xrs + 10

cannot differentiate among these nodes. For this presenta-and similarly forf9. Sincex € Xg we haver; + xg + z9 +

tion, we assume the action s&t, € R"+ is a bounded
polyhedron (defined by a finite number of linear equalities
and inequalities). At, each playep € A(s) selects an
actionz, € X,. We denote byC(X,) the finite set of
corners (extreme points) of,,. The setC(X,) may be
exponentially large even i, has a compact representa-
tion. We view the sef(X,) as the primitive actions of the
game (actions that are actually taken in the world), with the
interior points interpreted as probability distributiooger
C(Xy). We defineXy, = {1}, and letX, = @),y Xu
(where) is the Cartesian set product), so that a joint action
z = (xo,x1,22) € X, is a tuple over all the players, even
though the players ¢ A(s) do not actually make a decision
and have no immediate knowledge thawas reached[In
t-MAPP, the action set foy at ¢° is A({0, 1, 2}). Eachg!
node is in a different information set foi(she knows what

she picked), and has action §§tfrom Equation (1). Fok,

all the g' nodes are in the same information set, and the set
of actions is simply the seXg of possible stochastic paths.

Payoffs are made at internal nodes, not just at leaves as for
EFGs. The payoff from to y at nodes whenx playsz and
y playsy is given by the bilinear forme” M *y, specified by
the matrix)/°. SinceX,,, = {1}, we use this same notation
to indicate payoffs where only one player selects an action,
and at leaves where no actions are selecféd.t-MAPP,
there are no payoffs gt' (M is the zero matrix), but at each
nodeg' we haveM = I, and so payoffs are the dot product
between the cost vectgrand edge-frequency vector]

We may have an exponential set of possible actions
C(X,), but we cannot afford that many nodedinlet alone
children of one node. Thus, each internal nede V' has
a small (i.e., feasible to work with) set of successors, de-
noted sucgs). The successor that occurs next in the game
is chosen via a probability distribution that is a functidn o
the joint actionz. For eachp € A(s) ands’ € sucgs),

the game specifies a linear functiérfgs/ : Xy — R; to
avoid special cases defilfgs/ (xp) = 1forp & A(s). The

“The linearity of thef -functions is necessary for the transfor-
mation from CEFGs to CGs for efficient solution.

x10 = 1 andx; > 0, and so the products in Equation (2)
produce a probability distributioh.

Two CEFGsG andG’ are f-equivalentif they are identi-
cal except for theirf functions, and if for all(s, s”), for all
z € X5, Prg(s' | 8,%) = Prev (' | s,Z). ClearlyG andG’
are essentially the same game. We assume throughout that
f55'(x) € [0, 1], without loss of generality (proof omitted).
It is easy to show that for an§ that does not satisfy this
property, there is ajfi-equivalentG’ that does.

The payoff to each player is simply the sum over the pay-
offs at each node visited in the game. cAmplete history
h of a CEFG is the sequence of nodes and joint (primitive)
actions that occurred in a play of the game; a history is com-
posed of tuplegs, (z,y)) wheres is the state and andy
are the actions selected kyandy respectively. The value of
a historyh is given by

=T M*y.
(s:(z,y))€h

V(h)

Playerx tries to minimizeV/, while playery tries to maxi-
mize it. Let’H be the set of all complete histories. A partial
player history,, is the (information set, action) sequence
for playerp so far in the game, ending with any player
information set. Letd,, be the set of all such histories fpr

A convex game can be immediately represented as a
single-node CEFG, and in fact each node in a CEFG can
be viewed as a convex game where the players’ joint ac-
tion determines not only the immediate bilinear payoff, but
also a probability distribution over outcomes; informatio
sets, however, imply that unlike in CGs, a player in a CEFG
may not know his opponent’s action set. Since MDPs are a
special case of CGs, they can be modeled as a single-node
CEFG.

Theory of CEFGs

In this section, we develop the concept of sufficient recall
and show that for CEFGs with sufficient recall, a class of
behavior strategies always contains an optimal policystFir
we establish some terminology regarding policy classes and
probabilities.



Policy classes and probability The most general type of
policy is a function from private randomness ande H,
to X,. When we refer to a general poliey it is from this
class. We writes_,, for a joint policy for all players except
p, thatis,i_, = (K1,K2,...,Kp—1,Kpt+1,---,Kn), and let
(kp, R—p) be the joint policy where players other thaplay
according tas_, and playep follows x,,. We also consider
the class ofmplicit behavior reactive policiedBRPs). We
sayreactivebecause IBRPs are not history dependent: an
IBRP 3 selects its actiof(u) as a function of only the cur-
rent information set.. By implicit behavior we meang
specifies an interior point ok, and then interprets that
point as a probability distribution ovet(X,). Thus,j is

a function fromu € U, to X,,.

Any joint policy induces a distribution ofi; the proba-
bilities we work with will be with respect to this distriboin.

To emphasize which joint policy is associated with a given
probability or expectation, we include the policy as a cendi
tion, for examplePr(s | k). Whens appears as an event,
it is the subset of histories i in which s occurs. Simi-
larly, the event, is the subset of histories where some «

is reached, ands, «,) is the set of histories where player
selects actiorr,, € X, from s. Once we fixz, V is a ran-
dom variable, and we defings) = E[V | k], the expected
payoff fromx to y under joint policyx.

A policy &, for playerp is payoff equivalento another
policy «;,, if for all %, for the other player¥)(x,, £—,) =
V(ky,, k—p). In the rest of this section we define sufficient
recall, and then show that for any polieyin a sufficient
recall CEFG, there is a payoff equivalent IBRP. Sequence
weights play a fundamental roll in this effort.

Sequence weights Sequence weights for CEFGs are anal-
ogous to sequence weights in EFGs (Koller & Megiddo
1992; Koller, Megiddo, & von Stengel 1994) but do not by
themselves contain enough information to represent a pol-
icy. (In the next section, we will augment the sequence
weights with enough information to represent IBRPs.) In-
tuitively, the sequence weighty, (s | &) is the probabil-

ity player p reaches; by following «,, given that all other
players (and their randomness) “conspire” to fopct® s.
More formally, define RElx,) C V to be the set of nodes
potentially reachable (relevant) when is played, that is,
REL(kp) = {s | 3k_p s.t.Pr(s | (kp,k—p)) > 0}. Define
the sequence weight for given k, by w(s | x,) = 0 if

s € REL(k,), and otherwise

I[I > Pt tr)f (@),
(t,t")eE(s) zeC(Xu)
Recall that we hav@r((s,1) | s) = 1 and f3*'(1) = 1
whenp ¢ A(s), so the product is effectively over only those
edges resulting from players choices. The next lemma

shows that the conditional probabilities in the definitioa a
well defined.

Lemma 1. For anyp using policys, and any two joint poli-
cies for the other players_,, andx’_,, foranys € V,, where

Pr(s | (kp, R—p)) > 0andPr(s | (kp,&",)) > 0, we have

Pr((s,zp) | s, (kp, F—p)) = Pr((s,2p) | s, (K’Z”R/—p))'

w(s | kp) =

In other words, give is reached, the probability that,
playsz, is independent of the opponents’ joint policy. In-
tuitively this is the case because, gsplays the game, its
decisions can only depend on its own past actions and the
information sets it observes, and conditioned on reaching
these both must be independent of the other players’ poli-
cies. Thus, as promised, where REL(x,), we can write
Pr((s,xp) | s, 6p) for Pr((s, 2) | s, (kp, Fp)).

A fundamental results is that if we know the sequence
weights for each player, we can easily compute the proba-
bility that any state is reached:

Lemma 2. For anys € V and any joint policyg,

Pr(s | &) = [Jwn(s | ).

For the next lemma, we defin&[z | s,k
> rec(x.,) Pr((s,2) | 5,Kp) z Whens € REL(xp).

Lemma 3. If x, and«;, are two policies for playep such
that

Elzy, | s, kp] = Elzy | Sv“;o]

forall s € REW(x,) " REW(x},), then RELx,) = REL(x;,),
and furthers,, andx;, are payoff equivalent.

We will use this lemma to show that IBRPs are as power-
ful as general policies in sufficient recall CEFGs.

Sufficient Recall A CEFG hassufficient recallffor player
p if it has both: 1)observation memoryFor allu € U,
and alls,s’ € u, obs,(s) obs,(s'); and, 2)sufficient
action memory For any two policiess, and «;, and any
joint policy _,, for the other players, for any € U, with
Pr(u | (kp,k—p)) > 0 andPr(u | (x;,,%-,)) > 0, and any
s € u, thenPr(s | u, (kp, K—p)) = Pr(s | u, (K}, k—p))-
Observation memory implies that playgs information
sets form a forest, and so knowing the current information
set uniquely specifies the history of information sets (obse
vations) that have previously occurred; hence playbas
no incentive to remember the information sets visited. Suf-
ficient action memory implies that given the observation of
u, knowledge of the policy that has been followed so far
provides no information about the actuale u. Thus,p
has no incentive to remember the policy followed so far. In-
formally, if the game has sufficient recall for playgrthen
playerp should be able to play optimally by selecting an ac-
tion purely as a (random) function of the current informatio
set. In order to prove this, we will need an alternative char-
acterization of sufficient recall, which will allow us to p®
some important structural properties of sequence weights.
Sufficient recall arises naturally in many CEFGs; two gen-
eral cases appear in this paper. The first case includes games
where the action impacts the immediate payoff (say, the ex-
act path chosen in an MDP), but only some finite informa-
tion (say, the goal state reached) matters to the rest of the
game. The second case occurs when the action chosen in-
duces a probability distribution over outcomes, but onby th
actual outcome chosen by nature from this distribution mat-
ters to the rest of the game; we will see this is the case for
EFGs with outcome uncertainty modelled as CEFGs.



Inan EFG, all nodes in an information selhave the same
out-degreel, and each outgoing edge fosae w is labeled
with one ofd outcome (or choice) labels. The action set
of the EFG is the set of these labels. We can view the out-
come labels as partitioning all of the edges out.ahto d
equivalence classes. We now define a generallzatlon of this
partition for CEFGs via an equivalence relatreg on pairs
of edges out of.. For any two edgesés, s') and (¢, ') out
of u, (s,s") ~p (t,¢') if and only if there exists a constant

a > 0 such that for alk € X, fSS (x) = aft” (z). Let
O, be the set of equivalence classesc aiefmecfbywp [In
t-MAPP, all stage 2 nodes farare in the single information
setu.l. Recall that thef-functions are independent bfand
so we have the partition of the six edges outfinto two
sets, those leading tb(labeledo in Figure 1(c)), and those
leading tog (labeledoy).]
We have the following key Lemma:

Lemma 4. For any CEFGG, there exists arf-equivalent
CEFG G’ such that if(s,s’) ~, (¢,t) in G, then for all

z € Xy, in G' we havefs® (z) = it (x).

CEFGs that satisfy the condition of Lemma (4) are called
f-canonical, and for the remainder of this paper, we assume
(without loss of generality) all CEFGs considered gre
canonical. The transformation to grcanonical representa-
tion is essential—our solution technique is not even defined
on CEFGs that do not have this property. Under this assump-
tion, we write f,? for the f function shared by all edges out
of » in outcome partition € O,,.

The playemp sequence,(s) is the list of playep (infor-
mation sets, outcome) tuples on the unique path iodoes
not include tuples for states whegg(s) = ¢,. A CEFG
hassequence recallor playerp, if for all v € U, and all
s,8 € u, op(s) = o,(s'). [Itis straightforward to verify
that the game t-MAPP satisfies sequence recall: the key is
the identicalf-functions out of they! nodes foix.]

Lemma 5. In a f-canonical CEFG with sequence recall,
for any policyx,, for playerp, and anys, s’ € u, thenw(s |
kp) = w(s' | kp), and whenw(s | kp) > 0, forall z € X,
PI‘((S, I) | S, ’%P) = PI‘((S/,I) | 8/7 HP)'

The intuition for the proof is that because the sequence
to eachs € w is the same, there is no way for the policy
kp to differentiate the nodesands’ (even using knowledge
of past actions and observations), and hence, it must play
identically at both.

Lemma (5) reveals significant tree-like structure of se-
guence weights in CEFGs with sequence recall: we can
now think of sequence weights being associated with each
player's information set tree, rather than with the overall
game tree. We extend some notation to account for this:
we writew(u | k) for the unique valuev(s | x,) shared by
all s € u. Each non-root information set, for playerp has
a unigue (information set, outcome) parent, which we iden-
tify by uprqu uz2) = (u1,01). If uwis aroot information set,

we write upreg(u) = (). Any states occurring after some

playerp information set (that is, with a non-empty,(s))
has a unique (information set, outcome) predecessor, gamel
the last tuple ino, (s). We write upredss) = (uq,01) to

identify such a parent. Any state occurring before any
playerp information set hasv(s | k,) = 1. All imme-
diate successor states ofreached via an edge in a fixed
outcome partitioro must have the same sequence weight;
we write w(u, 0 | kp) for this value. In summary, for any
nodes € uy where(u,01) = upreq7 us), We write any of
the following equivalently:

wy(s | kp) = wp(uz | kp) = wp(ur, o1 | Kp).
Theorem 6. A f-canonical CEFG has sufficient recall for
playerp if and only if it has sequence recall for playgr

Showing sequence recall implies sufficient recall is fairly
straightforward; the other direction is more difficult. élies
on an alternative characterization of sufficient action mem
ory, and then the construction of a suitable contradiction.
Based on this theorem, we can apply the results and notation
for sequence recall games to sufficient recall games; thiis wi
be critical for the construction of an equivalent convex gam
in the next section.

Now we can give this section’s principal result: IBRPs are
as powerful as arbitrary policies in sufficient recall CEFGs
The theoretical work done earlier in this section makes this
result straightforward.

Theorem 7. For sufficient-recall CEFGs, for any polioy,
for playerp, there exists a payoff equivalent implicit behav-
ior reactive policy.

Proof. Let s, be an arbitrary policy fop. A consequence of
Lemma (5) is that for alb, s’ € u, whens, s’ € REL(k,),
Elzy | s, k]
Call this valuex, for eachu where it is defined, and pick
x,, arbitrarily in X, for the remainingy € U,. Then, we
define an implicit behavior policg, by 8. (u) = z,. By
Lemma (3)5,, andx,, are payoff equivalent. O

From CEFGs to CGs

Theorem 7 shows that when playing sufficient recall CEFGs,
it suffices to consider only IBRPs. Now, we show that for
each player the set of IBRPs can be represented as a convex
set)V, and the value of the game is bilinear in this represen-
tation. Thus, we can solve zero-sum sufficient-recall CEFGs
using linear programming on the convex game defined by
the set3/V and corresponding bilinear objective function.

To differentiate players andy, we useu and X, to de-
note playerx's information and action sets, and similarly
v andY, fory. The random player only affects the game
through her sequence weights, which we writeigés).

An IBRP for playerx can be viewed as a vector from the

convex set ~
X =) X
ueUy
The setX is a Cartesian product of convex sets, and so it
is also a convex set. Defiri¢ analogously fory, and let
B € X andfB, € Y be two IBRPs. Lets = ¢x(s) and
v = ¢y(s), z = B«(u), andy = B, (v), and define
V(s) = Pr(s | (B, B,)) =" My
= wo(s)w(s | B)w(s | By) =" My

= Elzp | 8, 15p)-



using Lemma (2). Then the expected total payoff froto

y is
SEREL(Bx,8y)

Unfortunately,V(s) is not bilinear ing, and8,. We now

V= V(s).

Modeling Outcome Uncertainty in EFGs

We now show that the class of extensive-form games with
outcome uncertainty (which we terperturbed game@san

be compactly represented as CEFGs, while their EFG rep-
resentations are exponentially larger. This lets us génera

ize extensive-form games in much the same way that MDPs

develop an alternative convex representation for IBRPs in generalize deterministic path planning. The analogy is not

whichV(s) is bilinear. Our use of sequence weights as vari-

perfect, because perturbed games are still representable a

ables is analogous to the technique in (Koller, Megiddo, & EFGs (but at the cost of an exponential blowup in size),
von Stengel 1994), but our approach must also represent theyyhjle a general MDP cannot be modeled by any determinis-

implicit behavior taken at eack,,, as this is not defined by
the sequence weights alone.

We represent an IBRP faras an element of a si¥, (and
analogously foly with a setW,). Our construction oV,
relies on the sets

Xt ={(ar,a) | v € Xy,a >0} CR™T!

for eachu € Uy,. The setX is thecone extensioof X,
and it is also convex ; in fact, ik, is a polyhedron, then so

is X¢. Define
Xe= ) X
ue Uy

We will haveW, C X¢. We work with a vectow, € X by
writing wy = (25, wy) | v € Uy), where(zé,w,) € X¢,
and soz{ € R™ andw,, € R are defined for all: € Uy by
wx. The setV, is defined by the following constraints:

(x;:u wu) € Xli

Wy = 1

Vu € U, with upred,(u) = 0
w, — f)?‘/’O/ ({L‘ﬁ,) Yy € (J)< W|th upreq)(u) = (u/’ O/).

The setV, is convex asX ¢ is convex and the constraints are
linear (recall thef-functions are linear).

We associate each, € W, with a behavior policy via
the functiong defined byy(wy) = 8., whereg,, € X isthe
IBRP defined by

B, (1) = {(1/wu)x;

arbitrary

whenw, > 0
otherwise

It can be shown that, = w(u | f.,), and so thew,
variables are in fact sequence weights. The functida
not quite a bijection, becaugk, can be set arbitrarily at in-

tic planning problem.

Fix a standard (unperturbed) ER& and letO,, be the
set of outcomes (labels) at an informationsgs00,, is in
a 1-1 correspondence with the childrensofor all s € w.
In G, O, is exactly the set of actions available to the player
atu: the player chooses some actio O,,, and the game
state transitions deterministically to the appropriateces-
sor node associated with the choice

A perturbed EFG introduces a level of indirection be-
tween a player’s action selection and the outcome of the ac-
tion by decoupling the set of actions available from the set
of outcomeg),,. A perturbed EFGG, A) is specified as a
standard EFG7 together with a perturbation moddl The
perturbation model specifies a finite sgt = {p1,po,...}
of probabilistic (meta-)actions for each player at eachrinf
mation set. Each actign specifies a distribution over possi-
ble outcomes, sp; € A(O,,). Hence the analogy to MDPs,
where an action at a state is defined by the distribution over
successor states it induces. The perturbed gamel) is
played as follows: whep € A, is selected by the player
active atu, the actual outcome € O, is sampled according
to the distributiorp, and the game transitions to the unique
successor of the currente « that corresponds to outcome
o, as if the player had selectedin the unperturbed game.
It is standard to assume that the playet abserves which
outcomev actually occurred; other players in the game only
observe this if they observed the player’s action at the
unperturbed game.

A perturbed EFG(G,A) can be represented as an
extensive-form gamé&' 4. For each information set in G,
for eachs € u, we introduce a new random node for each
p € A, in order to model the outcome uncertainty associ-
ated with meta-actiop. Thus,s is given successor random
nodesin 1-1 correspondence witl), and each of these ran-
dom nodes has successors in 1-1 correspondenceQyith

formation sets that are never reached; however, it is easy to (and hence the successorssah G). Applying this trans-

show that optimizing over the s&v, is equivalent to opti-
mizing overX . With these tools, we can prove that payoffs
are bilinear in theV, representation:

Theorem 8. In a two-player, zero-sum, sufficient recall
CEFGs, represent’s IBRPs asW,, and playery's IBRPs
asW,. Then, for anyw, € W, andw, € W,, the payoff
V(g9(wx), g(wy)) is a bilinear function ofv, andwy.

An immediate corollary is that zero-sum sufficient-recall
CEFGs can be solved in polynomial time using the linear
programming solution for the convex game with strategy
setsW, and W, and the payoff matrix implied by Theo-
rem (8).

formation at a single information setblows up the size of
the game representation by a factok®( 4, |). Introducing

a perturbation model at each information set will increase
the size of the game tree exponentially: whife, A) can be
represented in spac@(|G| + W), the EFG representation
G 4 can take spac®(|G| - |A.|*), whered is the depth of
the original game tree.

An example of this transformation at a single nedes
shown in parts (a) and (b) of Figure 2. Part (b) of the figure
shows the introduction of random nodgsandr, that im-
plement the perturbation model. The game tree of (b) thus
remembers both which action outcome the player wanted to
happen ¢ versusb) as well as which action outcome actu-



(a) The Original EFGZ (b) The Perturbed EFG 4 (c) The Perturbed CEFG

Figure 2: Representing a perturbed game as an EFG and as a TBEGtates; is in a singleton information set for simplicity.
We haveO,, = {4, B}, where the triangles labeled with these outcomes correkfotie rest of the game tree, which could
be very large. The perturbation modeldg = {a, b} where the meta-actiomachieves outcomd with probabilityl — ¢ and
outcomeB with probabilitye for some small value, and similarly forb.

ally happened: hence there are two copies of the subttees
and B, doubling the size of the EFG.

We now show how to transform an EFG with a perturba-
tion model into a compact sufficient-recall CEFG. To rep-
resent arunperturbedeEFG as a CEFG, we keep the same
game tree, and replace the finite action@gtwith the con-
vex action setX,, = A(O,,) at each information set. To
represent theerturbedgame(G, A) we keep the game tree
of G, but the set of available actions,, at v will be the
convex hull of the probability distributions idl,,. Each
x € X, then corresponds to a valid probability distribution
over(Q, achievable by playing a mixture of the actioAs.

It is straightforward to verify that this CEFG satisfies suffi
cient recall and has a representation of <i¥gG| + |A|).
A schematic for this representation is shown in part (c) of

CEFGs can compactly represent some games whose EFG
representation is exponentially large, thus allowing for
polynomial-time solution of games that before were in-
tractable. Two general example domains were presented:
an extension of MDPs to an adversarial setting with tempo-
ral structure and sequential observation, and the extensio
of EFGs to allow for actions with stochastic outcomes. It re-
mains a promising line of future research to investigateioth
applications of this expressive framework.
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Figure 2. The key is that the game tree remains the same as References

G, and the space of possible outcome distributions is stored
independently via the sefs,,.

The concise representation perturbed EFGs gives a sim-
ple polynomial-time algorithm for finding approximate
trembling-hand equilibria (also called perfect equil@)rior
extensive-form games: namely, one simply solves the CEFG
version of the original EFG where on each action the player
gets a random action with probabilityinstead of the one
chosen. Solving for perfect equilibria (or some other form
of sequential equilibria) can be critical in practice, batyo
very recently have algorithms for finding such equilibria
been investigated (Miltersen & Sorensen 2006).

We have modeled outcome uncertainty efficiently using
CEFGs, but have not fully tapped the class’s representation
power. In particular, we have not used the ability to model
both players simultaneously playing at a single node, and we
have not used the ability to model different numbers of out-
comes at different states in the same information set. Both o
these abilities enable exponentially smaller represemisit
for some EFGs.

Conclusion and Future Directions

We have introduced CEFGs and shown that they can be
solved efficiently in the zero-sum sufficient-recall case.
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