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Abstract— Precise and accurate models of the world are critical | [ - |
to autonomous robot operation. Just as robot navigation tyjcally o
requires an accurate map of the world, robot manipulation f
typically requires accurate models of the objects to be grased. / f % / \
However, the statistical inference tools that enable robotapping
have not yet had the same impact in geometric object modellm
We describe an inference algorithm for learning statistichkmodels Figure 1. Contour extraction. Left: Raw image (poor white balancehie
of objects from image data. We describe a representation thta camera results in poor colour rendering). Middle: Contoextracted using
allows us to compute a distribution over the complete geomst of pyramid segmentation. ‘nght‘: Contours‘extracted usirensity thresholding.
different objects, and describe how a library of object georatry ~ Our goal is to recognize different objects from the samescliom the
models can be learned. Finally, we describe how learned olje S°MPlete or partial outline of each object.

models can both be used to recognize new instances of objectﬁ:. I laorithm should all . h
and to infer the geometry of occluded parts of objects. Inally, our algorithm should allow us to estimate the getne
of any occluded parts of the object from a partial view — we
I. INTRODUCTION would like to have a robot that can recognize and pick up

Precise and accurate models of the world are critical ft00l without first building a complete and accurate model
autonomous robot operation. Just as robot navigationaypic ©f the tool. In robot navigation, the map is usually assumed
requires an accurate map of the world, robot manipulatiép P& complete before any autonomous motion planning is
typically requires accurate models of the objects to bepgras attempted. In a populated, dynamic environment, the assump
However, the statistical inference tools that enable rob@n of a complete description of the environment is clearly
mapping have not yet had the same impact in geometHHttle as new objects will appear regularly that will requi
object modelling. One of the principal difficulties in learg robot actions. Our_ representation must therefore be able to
object models is finding a good representation; frequetitly, "€cognize objects _|t may not have seen before, and be_ able to
object representation that is most useful for one task is ke reasonable inferences about the parts of the object tha
particularly useful for another. For instance, there ejsirse areé occluded. - o
feature-based object models such as SIFT features [12] thaf NiS Paper presents a unified probabilistic approach to mod-
allow for very reliable object recognition and tracking bu@lling object geometry, in particular focusing on the peshlof
are completely inappropriate for motion planning in thas thincomplete data. We draw upon a representation [10] forabbje
complete geometry of the object is not recovered. Techsiqudeometry which is invariant to changes in position, scatel a
such as shape contexts [1] or spherical harmonics [9] all@fi€ntation, and show how to learn object models directly
general classes of objects to be learned over time, but agdiRM sensor data. This representation is robust to sensse no
the geometry of individual objects is not always preserved.@nd also allows us to capture the variation between shapes

For autonomous robot operation, we would like to be abi@ the same object class in a meaningful way. By learning
to infer the complete geometry of objects in a manner that s Probabilistic, generative model of the complete geometry
robust to variances in shape from object to object, and isgspb©f @n object, we can also make predictions about sections of
to perceptual occlusions. First, our algorithm should riear the object geometry that are not visible. We demon;trare thi
description of the complete geometry of the object. In ord@PProach on some example images of everyday objects. The
to allow a robot to carry out control tasks such as navigatiofSults presented in this paper are restricted to monocideo
manipulation, grasping, etc. it is not sufficient to deserdn Images; we have generalized this approach to three d|mv_mS|o
object as a set of features; we will need the ability to descrifrom data suc_h as_stereo or laser range data but do not include
the complete boundary of the object for computing potentif}ese results in this paper.
collisions, grasp closures, etc. Secondly, our algorithiud
allow us to infer the object's geometry from a series of
independent measurements. Just as in robot mapping, wéet us represent a shapeas a set of, pointszy, zo, ...z,
would like to integrate a series of measurements in time, iim some Euclidean space. We will restrict ourselves to two-
order to learn the object model. This problem differs from thdimensional points (representing shapes in a plane) suth th
mapping problem in that we (usually) will not have to solve; = (z;,y;), although extensions to three dimensions are
for the object description and sensor position simultasiou feasible. We will assume these points are ordered (satban
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be defined as a vector), and represent a closed contour (such
as the letter “O”, as opposed to the letter “V”). In generag t ! Y P
shape model can be made factoinvariant to point ordering
if we know correspondences between the boundary points of A
any two shapes we wish to compare. Even in the case of e 5
closed contours, however, care must still be taken to choose ~
the correct starting point. In order to make our model iresatri o
to changes in position and scale, we can normalize the shape P
so as to have unit length with centroid at the origin; that is, :
zZ = {Z//l =(zi—Z,y: —Y)} 1) Figudre 2. . Distances on a hyper-sphereis a linear approximation to the
Z geodesic distancg.
T = m (2) distribution covariance. Finally, we will show how to infer

the full object shape using measurements of partial object

where|z'| is the L*-norm ofz’. We call 7 the pre-shapeof z.  geometry.
Sincer is a unit vector, the space of all possible pre-shapesi) The Shape Distribution Meanet us assume that our
of n points is a unit hyper-spher&Z" 3, called pre-shape data set consists of a set of measureménts, m,, ...} of the
space’. same object, where each measuremantis a complete (but

Any pre-shape is a point on the hypersphere, and all rotgisy) description of the object geometry, a vector of léngt
tions of the shape lie on an orbi@)(7), of this hypersphere. p. We can normalize each measurement to be an independent
If we wish to compare shapes using some distance metpie-shape and use these pre-shapes to compute the mean, that
between them, the spherical geometry of the shape spagahe maximum likelihood object shape. If each measurémen
requires a geodesic distance rather than Euclidean déstang, is normalized to a pre-shape, then the mean is
Additionally, in order to ensure this distance is invariamt . )
rotation, we define the distance between two shapesdr, p*=arg inf > [dy(7i,p)] )

as the smallest distance between their orbits: =15

. ) The pre-shapg* is called theFréchet mea# of the samples
mf[iil(d)’w 19 €0(n) v e0rn)] (3) T1,...,T, With respect to the distance measur’: Note
d(¢,) = cos™ (¢-¢) (4) that the mean shape isot trivially the arithmetic mean of

We calld, the Procrustean metri§10] whered(¢, ) is the all pre—shapesdp is non-Euclidean, and we _W|sh to preserve
geodesic distance betweenand . Since the inverse cosine!l€ constraint that the mean shape has unit length.
function is monotonically decreasing over its domain, it is Unfortunﬁaltely, the non-linearity of the Procrustes distan
sufficient to maximizes-«, which is equivalent to minimizing " the cos™*(-) term leads to an intractable solution for
the sum of squared distances between corresponding polfifs Fréchet mean minimization. Thus, we approximate the
on ¢ and ¢ (since ¢ and ¢ are unit vectors). For every 960desic distangebetween two pre-shape vectofse O(71)
rotation of ¢ there exists a rotation ap which will find the @nd¢ € O(72), as the projection distance,
global minimum geodesic distance. Thus, to find the minimum r=sinp = /1 — cos? p. 8)
distance, we need only rotate one pre-shape while holdimg th
other one fixed. We call the rotated which achieves this Figure 2 depicts this approximation to the geodesic digtanc
optimum @, (r2)) the orthogonal Procrustes fibf = onto graphically®. o _

1, and the anglev* is called theProcrustes fit angle Using this linear projection distancein the mean shape

Representing the points of andr, in complex coordinates, Minimization yields an expression for the mean shape

dp [Tl ’ TQ]

which naturally encode rotation in the plane by scalar cempl * . H, 2
L . AN =arg inf 1—|7; 9
multiplication, the Procrustes distance minimization dan a g||,u||:1 - ( [ wl%) ©
solved:
=arg sup Y (rfTp) " (rf h) (10)
dp[r1, 2] = cos ™! |3 7| (5) lull=1"
o =arg(3' 1), (6) = arg, sup p O mrw (11)
pll=1 i
where 5! is the Hermitian, or complex conjugate transpose ~ arg sup u7 S (12)
of the complex vector,. =1
I1l. SHAPE INFERENCE thus, pu* is the complex eigenvector corresponding to the

Given a set of measurements of an object, we would like @rgest eigenvalue of [5].
|nfe_r a dlstrlbutlon. of pOSSIble ObJeCt geometry. We Wllls.flr ’More precisely,u* is the Fréchet mean of the random variaglerawn
derive an expression for the mean shape, and then derive 58 a distribution having uniform weight on each of the steap, .. . , 7.

3The straight-line Euclidean distance,is another possible approximation
IFollowing [13], the star subscript is added to remind us B3 is  to the geodesic distance, but it will not enable us to easilyesthe mean
embedded irR??, not the usuaR?P—2, shape minimization in closed form.
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Figure 3. Full-contour shape representation. Left to right: ordjiimage, an
example extracted contour and the mean of the learned steg® Ehe top
of the tool is slightly rounded off due both to the small numbgpoints (50)
sampled from the contour to form the preshape, as well asetaitioothing
effect of computing the mean shape of the tool as it opens ms@x

Figure 3 shows an example of the mean shape learned for
the tool class. On the left is an example raw image, in the
middle is an extracted measurement contour, and on the right
is the learned mean of the tool distribution.

2) The Shape Distribution Covarianc®Vith our measure- Figure 5. Shape model for a wire-cutter tool-the effects of the finsee

. et principle components (eigenvectors) on the mean shapelefopnean shape
ments{m,, my, ...}, we can now fit a probabilistic model of in figure 3, top right: a sample shape from the first eiggreshiaottom left:

shape. In many applications, pre-shape data will be tigha)s'sample from the second eigenshape, bottom right: a samytethe third
localized around a mean shape, in such cases, the tang@stshape. In each sampled shape, the mean shape iscbf@rzmparison.
space to the preshape hypersphere located at the mean shape

will be a good approximation to the preshape space, as in

figure 4. By linearizing our distribution in this manner, we IV. SHAPE COMPLETION

take advantage of standard multivariate statistical aimly o

techniques, representing our shape distribution as a @auss We now turn to the problem of estimating the complete

In cases where the data is very spread out, one can us@eégmetry of an object from an observation of part of its
complex Bingham distributiofs]. contour. We phrase this as a maximum likelihood estimation

problem, estimating the missing points of a shape with retspe
to the Gaussian tangent space shape distribution.
Let us represent a shape as:

7= {Zl] (14)

Z2

: 4 wherez; = m contains the points of our partial observation
A of the shape, and, contains then — p unknown points that
complete the shape. Given a shape distribufibon n points
Figure 4. Tangent space distribution with meanu and covariance matriX, and givenz; containing
p measurement®(< n) of our shape, our task is to compute
In order to transform our set of pre-shapes into an appr@re lastn — p points which maximize the joint likelihood,
priate tangent space, we first compute a mean shap®s p_(z). In contrast to previous sections, we will now work
above*. We then fit the observed pre-shapesit@and project real, vectorized coordinates £ = (1,1, .., Tn,yn)T)

each fitted pre-shape into the tangent space. dthe tangent rather than in the complex coordinates which were useful for

space coordinates for pre-shapeare given by encoding rotation.
v; = (I — pp)ed® 7, (13) In orge_r for us to transform our completed vecter,=
o . _ . (z1,22)", into a pre-shape, we must first normalize translation
where j* = —1 and 6} is the optimal Procrustes-matchingang scale. However, this cannot be done without knowing

rotation angle ofr; onto ». We can also now apply a dimen-the jastn — p points. Furthermore, the Procrustes minimizing
sionality reduction technique such as PCA to the tangemtespaotation fromz's pre-shape ta. depends on the missing points,
datavy, - -, v, t0 get a compact representation of estimategy any projection into the tangent space (and corresponding
shape distribution (Figure 4). likelihood) will depend in a highly non-linear way on the
Figure 5 shows samples drawn from the learned generatjygation of the missing points. We can, however, compute the
model of the tool class along each eigenvector, in comparisgyissing pointsz, given an orientation and scale. This leads to
to the mean shape. The first eigenshape largely captures hgyjerative algorithm that holds the orientation and stiats,
the shape deforms as the tool opens and closes, and the Se%%ﬂﬁ’pute&Q and then computes a new orientation and scale
and third eigenshapes largely capture how the shape defogRz: the news,. The translation term can then be computed
due to perspective geometry. from the completed contou.

“We useyp to refer to theu+ computed from the optimization in 7 for the We der_IVEZQ given a a fixed orientatiol and scalex !n
remainder of the paper. the following manner. For a complete contajwe normalize



Figure 6. An example of occluded objects, where the right tool oocetuthe
left tool. Left to right: The original image, the measuredmur, the contour
segments that must be completed.

for orientation and scale using
1
7z = —Ryz (15)
«

where Ry is the rotation matrix of). To centerz’, we then
subtract off the centroid:

1
w=2z —-C7 (16)
n
where C is the2n x 2n checkerboard matrix,
1 0 1 0
0 1 0 1
C=1: Do (17)
10 1 0
o1 --- 0 1

Thusw is the centered pre-shape. Now et be the tangent

space projection matrix:
M=1—puu” (18)

Then the Mahalanobis distance with respecttxdrom Mw
to the origin in the tangent space is:
d, = (Mw)'S'Mw (19)
Minimizing d,, is equivalent to maximizingP, (-), so we
continue by setting‘g‘% equal to zero, and letting

1 1

Wy = My(I, — —=C1)—R; (20)
n @]
1 .1

Wy = My(I, — —Cy)—R2 (21)
n «

where the subscripts “1” and “2” indicate the left and right

sub-matrices of\/, I, andC' that match the dimensions ef

and z,. This yields the following system of linear equation§

which can be solved for the missing data;

(lel + WQZQ)TE_IWQ =0 (22)

As described above, equation 22 holds for a specific ori-
entation and scale. We can then use the estimate,of
to re-optimize¢ and « and iterate. Alternatively, we canshape meang,, .

a von Mises distribution (the circular analog of a Gaussian)
from which to sample orientations. Similarly, we can sample
scales from a Gaussian with meag—the ratio of scales of
the partial shapes; andy; as in

21 — 5 Ciz |

(67} (23)

11 = 2Cpm|
Any sampling method for shape completion will have a
scale biascompleted shapes with smaller scales project to
a point closer to the origin in tangent space, and thus have
higher likelihood. One way to fix this problem is to solve for

zo by performing a constrained optimization dg where the
scale of the centered, completed shape vector is congfraine
to have unit length:

2 — Lo = 1. (24)
n

This constrained optimization problem can be attacked
with the method of Lagrange multipliers, and reduces to the
problem of finding the zeros of (@ —p)th order polynomial in
one variable, for which numerical techniques are well-know
In preliminary experiments this scale bias has not appeared
to provide any obvious errors in shape completion, although
more rigorous testing and analysis are needed.

(a) Partial contour to be comb) Completion using fork
pleted model

(c) Completion using spoofd) Completion using
model model
igure 7. Shape classification of partial contours. In the secondj tnd
ourth image, the mean shape of the shape class is showneroblthe left,
and the approximate maximum likelihood completion to thetiglacontour
is shown on the right.

tool

V. SHAPE CLASSIFICATION

Given k previously learned shape classé@s, ..., Cy with
.., pr and covariance matrices, ..., Y,

simply sample a number of candidate orientations and scalgfd given a measurement of an unknown object shape,
complete the shape of each sample, and take the completi@ can now compute a distribution over shape classes for

with highest likelihood (lowest,,).

a measured objec P(C;lm) : i = 1...k}. The shape

To design such a sampling algorithm, we must choosecssification problem is to find the posterior mode of this

distribution from which to sample orientations and scaléise

idea is to match the partial shapg, to the partial mean shape,

11, by computing the pre-shapes»of andu; and finding the
Procrustes fitting rotatiorg*, from the pre-shape af; onto

the pre-shape qi;. This angle can then be used as a mean for

distribution, C,

C =arg max P(C;|lm) (25)

= argmcz:XP(m|CZ—)P(Ci). (26)



Assuming a uniform prior orC;, we have the standardclassC; :i =1...k, find correspondences betweemnd the
maximum likelihood (ML) estimator mean shape; of modelC; and normalizer to have the same
A oA number of points ag;, with the points around’s contour
C=Cur= argr%%xp(mwi)' (27) corresponding as closely as possible to the points around
. the contour ofu,;. Next, re-normalize this feature-matched
A. Point Correspondences N . .
- i _ ) ) ~so that it lies in pre-shape space (i.e. center at the origin,
The difficulty in proceeding with this ML problem lies injength one), and call this re-normalized pre-shaperinally,
corresponding the measuremant with each object model, compute the orthogonal Procrustes fit ©f onto y;, giving

points in modelC;. One potential drawback to contour-based

shape analysis (compared to other representations such as z = MR-/, (28)
point cloud) is that we require correspondences between @l e againR,- is the rotation matrix of*. The probability

points of any two shapes we wish to compare using thg his pointz in tangent space is then given with the standard
Procrustean metri€. While this caveat is clearly the Major gaussian likelihood

source of power to our model, it can also be a major difficulty 1 1
in real-world problems where correspondences can be dffficu P(m|C;) ~ P(z|C;) = 7exp(__zT2;1z).
to identify. (2m)2 (%] 2

The correspondence problem also requires determining (29)
whetherm is a complete, or partially occluded measurement;, Partial Shape Class Likelihood

These problems are complicated even further winanis The most obvious approach to partial shape class likelihood

€S0 simply complete the missing portion of the partial ghap

. ) . ) > Classify the completed shape as above (Figure 7). To make
that segmentation will be_ made easier by using stereo visign concrete, let — {z,, 7} be the completed shape, where
or range data, and can in many cases be handled in a HEis the partial shape corresponding to measuremenand
processing stage. A full treatment of data correspondesce { is unknown. Then
beyond the scope of this paper; constraining ourselveseo fr '

case wheram is a measurement of a single object, we will

address the following two cases: P(Cy|zy) = P(Ci,21) x /p(ci’ 71,2)dz; (30)
1) m is a complete measurement of a single object. P(z1)
2) m is a simply, partially occluded measurement of a Rather than marginalize over the hidden data, we
single object. can approximate with estimat®,, the output of our shape
By simplyoccluded we mean thah consists of one, contigu- classification algorithm, yielding:
ous segment of a full (closed) contour. P(Ci|z1) ~ 1+ Py, 2|Cy) (31)

For the 2-D contour case, one method for finding point
correspondences is to identify local features of interastach Wheren is a normalizing constant (and can be ignored during
contour (for example, based on curvature or local changesciassification), and”(z1,22|C;) is the complete shape class
shape) and match the higher-level features to similar setsliselihood of the completed shape.
features on other contours, interpolating correspondefare ~ There are several variables of the shape completion algo-
the points between features. rithm which may influence the accuracy of the completed
For our experiments, we implemented a feature correspésiiape, e.g. feature correspondences, sample rotations and
dence algorithm for closed contours based on a hierarchié@mple scales. As there is some randomness associated with
probabilistic model incorporating local feature matchelik these variables, they should ideally be marginalized curnfr
hoods together with the global feature shape match liketiko the partial shape class likelihood. Additionally, we mayniva
this was done primarily to demonstrate that a purely gedmetfo include a prior on the number of points to be completed as
feature correspondence algorithm was tenable. However,tfis number must be estimated with a partial shape feature
practice algorithms incorporating more robust featurest{s correspondence algorithm. Such a prior would indicate the
as SIFT features) are more desirable than purely geométric@mmon-sense principle that shape completions with fewer
gorithms. The details of this feature correspondence @lgor Unknown points are to be preferred over shape completions
are omitted due to space constraints. with a large number of unknown points.

B. Complete Shape Class Likelihood VI. EXPERIMENTAL RESULTS

Given that a measurement represents a complete contour, Videos of a controlled desktop environment were processed
the problem of finding the maximum likelihood estimate ofith routines from the Intel Open Source Video Project
each shape clas€)y, is relatively straight-forward. First, (OpenCV). Contours were extracted from the raw image

calculate the pre-shape associated withm. Then, for each frames using intensity thresholding and pyramid segmiemtat
edges (as in figure 1). Shape models of three object classes—

SWe also require that the number of points on each shape beathe.s  forks, spoons, and wire-cutter tools—were then generated f



Figure 8. Partial contour shape classification. Top row: the exéciontour is correctly classified as a spoon. Left to righgiwal image, extracted contour,
shape completion using tool, fork, and spoon models. Bottom extracted contour is misclassified as a spoon; howg@aatjal contour is uninformative,
even for humans. Left to right: original image, extracteditoar, shape completion using tool, fork, and spoon models.

a manually-chosen subset of the extracted contours. As-illlas Procrustean shape analysis [10], and in particular we hav
tration of the tool shape model is shown in figure 5. derived an expression for the maximum likelihood object
Complete contour shape classification was then tested ogeometry given only a partial observation of the object. We
subset of the training data and, as expected, the clasgificathave shown some preliminary results on everyday objects, bu
rate was 100% (Figure 3). Next, eight partial contours @hreve plan to extend these results to more complex scenes and
of tools, three of forks, and two of spoons) were extractageometric inference problems.
from video frames of occluded objects. Partial contoursewer The description of our algorithm given in this paper is
segmented by hand (where needed), completed with respeatestricted to inferring geometry from two-dimensional gea.
each shape model, and classified (Figure 8). This process Wwsvever, the technique extends to higher dimensions, and we
repeated while varying/, the number of principle componentsplan to demonstrate the same approach to object modelling
kept in each shape model, from one to ten. Pér< 5, on three-dimensional object data, such as from a laser range

the classification rate was/8, while for N = 5 and above, finder or stereo camera.

the classification rate was/8. Incorporating a prior on the

completion size (as in the previous section) increased the
classification rate ta@/8 for N > 7. The one partial shape [1]
which was consistently misclassified was the end of a fork
handle, impossible even for a human to classify correctlyemo [2]
than one-third of the time (figure 7, lower row). -

VII. [4]

There is a great deal of work on statistical shape model®]
ing, beginning with the work on landmark data by Kendall[ﬁ]
[10] and Bookstein [4] in the 1980’s. In recent years, more
complex statistical shape models have arisen, for exampl€]
in the active contours literature [3]. Procrustes analyses
dates statistical shape theory by two decades; algoritloms f[g]
finding Procrustean mean shapes [6], [2] were developed long
before the topology of shape spaces were weII-understocM
[11]. In terms of shape classification, shape contexts [H] an
spin images [8] provide robust frameworks for estimatingO
correspondences between shape features for recognitibn an
modelling problems. An interesting take on shape compietio
using probable object symmetries has been done in [14]. [12]

RELATED WORK

VIIl. CONCLUSION [13]

We have presented an approach to geometric object m&k#
elling that unified the problems of modelling geometry, rec-
ognizing object shapes and inferring occluded portionshef t
object model. The algorithm depends on a technique known
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