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Abstract— Precise and accurate models of the world are critical
to autonomous robot operation. Just as robot navigation typically
requires an accurate map of the world, robot manipulation
typically requires accurate models of the objects to be grasped.
However, the statistical inference tools that enable robotmapping
have not yet had the same impact in geometric object modelling.
We describe an inference algorithm for learning statistical models
of objects from image data. We describe a representation that
allows us to compute a distribution over the complete geometry of
different objects, and describe how a library of object geometry
models can be learned. Finally, we describe how learned object
models can both be used to recognize new instances of objects
and to infer the geometry of occluded parts of objects.

I. I NTRODUCTION

Precise and accurate models of the world are critical to
autonomous robot operation. Just as robot navigation typically
requires an accurate map of the world, robot manipulation
typically requires accurate models of the objects to be grasped.
However, the statistical inference tools that enable robot
mapping have not yet had the same impact in geometric
object modelling. One of the principal difficulties in learning
object models is finding a good representation; frequently,the
object representation that is most useful for one task is not
particularly useful for another. For instance, there existsparse
feature-based object models such as SIFT features [12] that
allow for very reliable object recognition and tracking but
are completely inappropriate for motion planning in that the
complete geometry of the object is not recovered. Techniques
such as shape contexts [1] or spherical harmonics [9] allow
general classes of objects to be learned over time, but again,
the geometry of individual objects is not always preserved.

For autonomous robot operation, we would like to be able
to infer the complete geometry of objects in a manner that is
robust to variances in shape from object to object, and is robust
to perceptual occlusions. First, our algorithm should learn a
description of the complete geometry of the object. In order
to allow a robot to carry out control tasks such as navigation,
manipulation, grasping, etc. it is not sufficient to describe an
object as a set of features; we will need the ability to describe
the complete boundary of the object for computing potential
collisions, grasp closures, etc. Secondly, our algorithm should
allow us to infer the object’s geometry from a series of
independent measurements. Just as in robot mapping, we
would like to integrate a series of measurements in time, in
order to learn the object model. This problem differs from the
mapping problem in that we (usually) will not have to solve
for the object description and sensor position simultaneously.

Figure 1. Contour extraction. Left: Raw image (poor white balance inthe
camera results in poor colour rendering). Middle: Contoursextracted using
pyramid segmentation. Right: Contours extracted using intensity thresholding.
Our goal is to recognize different objects from the same class from the
complete or partial outline of each object.

Finally, our algorithm should allow us to estimate the geometry
of any occluded parts of the object from a partial view — we
would like to have a robot that can recognize and pick up
a tool without first building a complete and accurate model
of the tool. In robot navigation, the map is usually assumed
to be complete before any autonomous motion planning is
attempted. In a populated, dynamic environment, the assump-
tion of a complete description of the environment is clearly
brittle as new objects will appear regularly that will require
robot actions. Our representation must therefore be able to
recognize objects it may not have seen before, and be able to
make reasonable inferences about the parts of the object that
are occluded.

This paper presents a unified probabilistic approach to mod-
elling object geometry, in particular focusing on the problem of
incomplete data. We draw upon a representation [10] for object
geometry which is invariant to changes in position, scale, and
orientation, and show how to learn object models directly
from sensor data. This representation is robust to sensor noise
and also allows us to capture the variation between shapes
in the same object class in a meaningful way. By learning
a probabilistic, generative model of the complete geometry
of an object, we can also make predictions about sections of
the object geometry that are not visible. We demonstrate this
approach on some example images of everyday objects. The
results presented in this paper are restricted to monocularvideo
images; we have generalized this approach to three dimensions
from data such as stereo or laser range data but do not include
these results in this paper.

II. SHAPE SPACE

Let us represent a shapez as a set ofn pointsz1, z2, . . . zn

in some Euclidean space. We will restrict ourselves to two-
dimensional points (representing shapes in a plane) such that
zi = (xi, yi), although extensions to three dimensions are
feasible. We will assume these points are ordered (so thatz can



be defined as a vector), and represent a closed contour (such
as the letter “O”, as opposed to the letter “V”). In general, the
shape model can be madede factoinvariant to point ordering
if we know correspondences between the boundary points of
any two shapes we wish to compare. Even in the case of
closed contours, however, care must still be taken to choose
the correct starting point. In order to make our model invariant
to changes in position and scale, we can normalize the shape
so as to have unit length with centroid at the origin; that is,

z
′ = {z′i = (xi − x̄, yi − ȳ)} (1)

τ =
z
′

|z′|
(2)

where|z′| is theL2-norm ofz′. We callτ thepre-shapeof z.
Sinceτ is a unit vector, the space of all possible pre-shapes
of n points is a unit hyper-sphere,S

2n−3
∗ , called pre-shape

space1.
Any pre-shape is a point on the hypersphere, and all rota-

tions of the shape lie on an orbit,O(τ), of this hypersphere.
If we wish to compare shapes using some distance metric
between them, the spherical geometry of the shape space
requires a geodesic distance rather than Euclidean distance.
Additionally, in order to ensure this distance is invariantto
rotation, we define the distance between two shapesτ1 andτ2
as the smallest distance between their orbits:

dp[τ1, τ2] = inf[d(φ, ψ) : φ ∈ O(τ1), ψ ∈ O(τ2)] (3)

d(φ, ψ) = cos−1(φ · ψ) (4)

We calldp theProcrustean metric[10] whered(φ, ψ) is the
geodesic distance betweenφ andψ. Since the inverse cosine
function is monotonically decreasing over its domain, it is
sufficient to maximizeφ·ψ, which is equivalent to minimizing
the sum of squared distances between corresponding points
on φ and ψ (since φ and ψ are unit vectors). For every
rotation ofφ there exists a rotation ofψ which will find the
global minimum geodesic distance. Thus, to find the minimum
distance, we need only rotate one pre-shape while holding the
other one fixed. We call the rotatedψ which achieves this
optimum (θα∗(τ2)) the orthogonal Procrustes fitof τ2 onto
τ1, and the angleα∗ is called theProcrustes fit angle.

Representing the points ofτ1 andτ2 in complex coordinates,
which naturally encode rotation in the plane by scalar complex
multiplication, the Procrustes distance minimization canbe
solved:

dp[τ1, τ2] = cos−1 |τH
2
τ1| (5)

α∗ = arg(τH
2
τ1), (6)

whereτH
2

is the Hermitian, or complex conjugate transpose
of the complex vectorτ2.

III. SHAPE INFERENCE

Given a set of measurements of an object, we would like to
infer a distribution of possible object geometry. We will first
derive an expression for the mean shape, and then derive the

1Following [13], the star subscript is added to remind us thatS
2p−3

∗
is

embedded inR2p, not the usualR2p−2.

Figure 2. Distances on a hyper-sphere.r is a linear approximation to the
geodesic distanceρ.
distribution covariance. Finally, we will show how to infer
the full object shape using measurements of partial object
geometry.

1) The Shape Distribution Mean:Let us assume that our
data set consists of a set of measurements{m1,m2, . . .} of the
same object, where each measurementmi is a complete (but
noisy) description of the object geometry, a vector of length
p. We can normalize each measurement to be an independent
pre-shape and use these pre-shapes to compute the mean, that
is, the maximum likelihood object shape. If each measurement
mi is normalized to a pre-shapeτi, then the mean is

µ∗ = arg inf
‖µ‖=1

∑

i

[dp(τi, µ)]2 (7)

The pre-shapeµ∗ is called theFréchet mean2 of the samples
τ1, . . . , τn with respect to the distance measure ‘dp’. Note
that the mean shape isnot trivially the arithmetic mean of
all pre-shapes;dp is non-Euclidean, and we wish to preserve
the constraint that the mean shape has unit length.

Unfortunately, the non-linearity of the Procrustes distance
in the cos−1(·) term leads to an intractable solution for
the Fréchet mean minimization. Thus, we approximate the
geodesic distanceρ between two pre-shape vectors,φ ∈ O(τ1)
andψ ∈ O(τ2), as the projection distance,r,

r = sin ρ =
√

1 − cos2 ρ. (8)

Figure 2 depicts this approximation to the geodesic distance
graphically3.

Using this linear projection distancer in the mean shape
minimization yields an expression for the mean shapeµ∗

µ∗ = arg inf
‖µ‖=1

∑

i

(1 − |τH
i µ|2) (9)

= arg sup
‖µ‖=1

∑

i

(τH
i µ)H(τH

i µ) (10)

= arg sup
‖µ‖=1

µH(
∑

i

τiτ
H
i )µ (11)

= arg sup
‖µ‖=1

µHSµ, (12)

thus, µ∗ is the complex eigenvector corresponding to the
largest eigenvalue ofS [5].

2More precisely,µ∗ is the Fréchet mean of the random variableξ drawn
from a distribution having uniform weight on each of the samplesτ1, . . . , τn.

3The straight-line Euclidean distance,s, is another possible approximation
to the geodesic distance, but it will not enable us to easily solve the mean
shape minimization in closed form.
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Figure 3. Full-contour shape representation. Left to right: original image, an
example extracted contour and the mean of the learned shape class. The top
of the tool is slightly rounded off due both to the small number of points (50)
sampled from the contour to form the preshape, as well as to the smoothing
effect of computing the mean shape of the tool as it opens and closes.

Figure 3 shows an example of the mean shape learned for
the tool class. On the left is an example raw image, in the
middle is an extracted measurement contour, and on the right
is the learned mean of the tool distribution.

2) The Shape Distribution Covariance:With our measure-
ments{m1,m2, . . .}, we can now fit a probabilistic model of
shape. In many applications, pre-shape data will be tightly
localized around a mean shape, in such cases, the tangent
space to the preshape hypersphere located at the mean shape
will be a good approximation to the preshape space, as in
figure 4. By linearizing our distribution in this manner, we
take advantage of standard multivariate statistical analysis
techniques, representing our shape distribution as a Gaussian.
In cases where the data is very spread out, one can use a
complex Bingham distribution[5].

Figure 4. Tangent space distribution

In order to transform our set of pre-shapes into an appro-
priate tangent space, we first compute a mean shape,µ as
above4. We then fit the observed pre-shapes toµ, and project
each fitted pre-shape into the tangent space atµ. The tangent
space coordinates for pre-shapeτi are given by

vi = (I − µµH)ejθ∗

i τi, (13)

where j2 = −1 and θ∗i is the optimal Procrustes-matching
rotation angle ofτi ontoµ. We can also now apply a dimen-
sionality reduction technique such as PCA to the tangent space
datav1, · · · , vn to get a compact representation of estimated
shape distribution (Figure 4).

Figure 5 shows samples drawn from the learned generative
model of the tool class along each eigenvector, in comparison
to the mean shape. The first eigenshape largely captures how
the shape deforms as the tool opens and closes, and the second
and third eigenshapes largely capture how the shape deforms
due to perspective geometry.

4We useµ to refer to theµ∗ computed from the optimization in 7 for the
remainder of the paper.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 5. Shape model for a wire-cutter tool–the effects of the first three
principle components (eigenvectors) on the mean shape. Topleft: mean shape
as in figure 3, top right: a sample shape from the first eigenshape, bottom left:
a sample from the second eigenshape, bottom right: a sample from the third
eigenshape. In each sampled shape, the mean shape is overlaid for comparison.

IV. SHAPE COMPLETION

We now turn to the problem of estimating the complete
geometry of an object from an observation of part of its
contour. We phrase this as a maximum likelihood estimation
problem, estimating the missing points of a shape with respect
to the Gaussian tangent space shape distribution.

Let us represent a shape as:

z =

[

z1

z2

]

(14)

wherez1 = m contains thep points of our partial observation
of the shape, andz2 contains then− p unknown points that
complete the shape. Given a shape distributionD on n points
with meanµ and covariance matrixΣ, and givenz1 containing
p measurements (p < n) of our shape, our task is to compute
the lastn − p points which maximize the joint likelihood,
P

D
(z). In contrast to previous sections, we will now work

in real, vectorized coordinates (z = (x1, y1, ..., xn, yn)T )
rather than in the complex coordinates which were useful for
encoding rotation.

In order for us to transform our completed vector,z =
(z1, z2)

T , into a pre-shape, we must first normalize translation
and scale. However, this cannot be done without knowing
the lastn− p points. Furthermore, the Procrustes minimizing
rotation fromz’s pre-shape toµ depends on the missing points,
so any projection into the tangent space (and corresponding
likelihood) will depend in a highly non-linear way on the
location of the missing points. We can, however, compute the
missing pointsz2 given an orientation and scale. This leads to
an iterative algorithm that holds the orientation and scalefixed,
computesz2 and then computes a new orientation and scale
given the newz2. The translation term can then be computed
from the completed contourz.

We derivez2 given a a fixed orientationθ and scaleα in
the following manner. For a complete contourz, we normalize
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Figure 6. An example of occluded objects, where the right tool occludes the
left tool. Left to right: The original image, the measured contour, the contour
segments that must be completed.

for orientation and scale using

z
′ =

1

α
Rθz (15)

whereRθ is the rotation matrix ofθ. To centerz′, we then
subtract off the centroid:

w = z
′ −

1

n
Cz

′ (16)

where C is the2n× 2n checkerboard matrix,

C =















1 0 · · · 1 0
0 1 · · · 0 1
...

...
. . .

...
...

1 0 · · · 1 0
0 1 · · · 0 1















. (17)

Thusw is the centered pre-shape. Now letM be the tangent
space projection matrix:

M = I − µµT (18)

Then the Mahalanobis distance with respect toD from Mw

to the origin in the tangent space is:

d
Σ

= (Mw)T Σ−1Mw (19)

Minimizing d
Σ

is equivalent to maximizingP
D

(·), so we
continue by setting

∂d
Σ

∂z2

equal to zero, and letting

W1 = M1(I1 −
1

n
C1)

1

α
R1

θ (20)

W2 = M2(I2 −
1

n
C2)

1

α
R2

θ (21)

where the subscripts “1” and “2” indicate the left and right
sub-matrices ofM , I, andC that match the dimensions ofz1

and z2. This yields the following system of linear equations
which can be solved for the missing data,z2:

(W1z1 +W2z2)
T Σ−1W2 = 0 (22)

As described above, equation 22 holds for a specific ori-
entation and scale. We can then use the estimate ofz2

to re-optimize θ and α and iterate. Alternatively, we can
simply sample a number of candidate orientations and scales,
complete the shape of each sample, and take the completion
with highest likelihood (lowestd

Σ
).

To design such a sampling algorithm, we must choose a
distribution from which to sample orientations and scales.One
idea is to match the partial shape,z1, to the partial mean shape,
µ1, by computing the pre-shapes ofz1 andµ1 and finding the
Procrustes fitting rotation,θ∗, from the pre-shape ofz1 onto
the pre-shape ofµ1. This angle can then be used as a mean for

a von Mises distribution (the circular analog of a Gaussian)
from which to sample orientations. Similarly, we can sample
scales from a Gaussian with meanα0–the ratio of scales of
the partial shapesz1 andµ1 as in

α0 =
‖z1 −

1

p
C1z1‖

‖µ1 −
1

p
C1µ1‖

. (23)

Any sampling method for shape completion will have a
scale bias–completed shapes with smaller scales project to
a point closer to the origin in tangent space, and thus have
higher likelihood. One way to fix this problem is to solve for
z2 by performing a constrained optimization ondΣ where the
scale of the centered, completed shape vector is constrained
to have unit length:

‖x′ −
1

n
Cx′‖ = 1. (24)

This constrained optimization problem can be attacked
with the method of Lagrange multipliers, and reduces to the
problem of finding the zeros of a(n−p)th order polynomial in
one variable, for which numerical techniques are well-known.
In preliminary experiments this scale bias has not appeared
to provide any obvious errors in shape completion, although
more rigorous testing and analysis are needed.
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(a) Partial contour to be com-
pleted
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(b) Completion using fork
model
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(c) Completion using spoon
model
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(d) Completion using tool
model

Figure 7. Shape classification of partial contours. In the second, third and
fourth image, the mean shape of the shape class is shown in blue on the left,
and the approximate maximum likelihood completion to the partial contour
is shown on the right.

V. SHAPE CLASSIFICATION

Given k previously learned shape classesC1, . . . , Ck with
shape meansµ1, . . . , µk and covariance matricesΣ1, . . . ,Σk,
and given a measurementm of an unknown object shape,
we can now compute a distribution over shape classes for
a measured object:{P (Ci|m) : i = 1 . . . k}. The shape
classification problem is to find the posterior mode of this
distribution,Ĉ,

Ĉ = arg max
Ci

P (Ci|m) (25)

= arg max
Ci

P (m|Ci)P (Ci). (26)



Assuming a uniform prior onCi, we have the standard
maximum likelihood (ML) estimator

Ĉ = ĈML = arg max
Ci

P (m|Ci). (27)

A. Point Correspondences

The difficulty in proceeding with this ML problem lies in
corresponding the measurementm with each object model,
that is, identifiying which points inm correspond to which
points in modelCi. One potential drawback to contour-based
shape analysis (compared to other representations such as
point cloud) is that we require correspondences between all
points of any two shapes we wish to compare using the
Procrustean metric5. While this caveat is clearly the major
source of power to our model, it can also be a major difficulty
in real-world problems where correspondences can be difficult
to identify.

The correspondence problem also requires determining
whetherm is a complete, or partially occluded measurement.
These problems are complicated even further whenm is
allowed to be a measurement of more than one object (Figure
6). In this case, we have a segmentation problem as well as a
correspondence problem. However, it is reasonable to assume
that segmentation will be made easier by using stereo vision
or range data, and can in many cases be handled in a pre-
processing stage. A full treatment of data correspondence is
beyond the scope of this paper; constraining ourselves to the
case wherem is a measurement of a single object, we will
address the following two cases:

1) m is a complete measurement of a single object.
2) m is a simply, partially occluded measurement of a

single object.
By simplyoccluded we mean thatm consists of one, contigu-
ous segment of a full (closed) contour.

For the 2-D contour case, one method for finding point
correspondences is to identify local features of interest on each
contour (for example, based on curvature or local changes in
shape) and match the higher-level features to similar sets of
features on other contours, interpolating correspondences for
the points between features.

For our experiments, we implemented a feature correspon-
dence algorithm for closed contours based on a hierarchical
probabilistic model incorporating local feature match likeli-
hoods together with the global feature shape match likelihood–
this was done primarily to demonstrate that a purely geometric
feature correspondence algorithm was tenable. However, in
practice algorithms incorporating more robust features (such
as SIFT features) are more desirable than purely geometric al-
gorithms. The details of this feature correspondence algorithm
are omitted due to space constraints.

B. Complete Shape Class Likelihood

Given that a measurementm represents a complete contour,
the problem of finding the maximum likelihood estimate of
each shape class,̂CML, is relatively straight-forward. First,
calculate the pre-shapeτ associated withm. Then, for each

5We also require that the number of points on each shape be the same.

classCi : i = 1 . . . k, find correspondences betweenτ and the
mean shapeµi of modelCi and normalizeτ to have the same
number of points asµi, with the points aroundτ ’s contour
corresponding as closely as possible to the points around
the contour ofµi. Next, re-normalize this feature-matchedτ
so that it lies in pre-shape space (i.e. center at the origin,
length one), and call this re-normalized pre-shapeτ ′. Finally,
compute the orthogonal Procrustes fit ofτ ′ onto µi, giving
orientationθ∗, and project into tangent space so that

z = MRθ∗τ ′, (28)

where againRθ∗ is the rotation matrix ofθ∗. The probability
of this pointx in tangent space is then given with the standard
Gaussian likelihood,

P (m|Ci) ≈ P (z|Ci) =
1

√

(2π)2n|Σi|
exp(−

1

2
z

T Σ−1

i z).

(29)

C. Partial Shape Class Likelihood

The most obvious approach to partial shape class likelihood
is to simply complete the missing portion of the partial shape
corresponding tom with respect to each shape class, then
classify the completed shape as above (Figure 7). To make
this concrete, letz = {z1, z2} be the completed shape, where
z1 is the partial shape corresponding to measurementm, and
z2 is unknown. Then

P (Ci|z1) =
P (Ci, z1)

P (z1)
∝

∫

P (Ci, z1, z2)dz2 (30)

Rather than marginalize over the hidden data,z2, we
can approximate with estimatêz2, the output of our shape
classification algorithm, yielding:

P (Ci|z1) ≈ η · P (z1, ẑ2|Ci) (31)

whereη is a normalizing constant (and can be ignored during
classification), andP (z1, ẑ2|Ci) is the complete shape class
likelihood of the completed shape.

There are several variables of the shape completion algo-
rithm which may influence the accuracy of the completed
shape, e.g. feature correspondences, sample rotations and
sample scales. As there is some randomness associated with
these variables, they should ideally be marginalized out from
the partial shape class likelihood. Additionally, we may want
to include a prior on the number of points to be completed as
this number must be estimated with a partial shape feature
correspondence algorithm. Such a prior would indicate the
common-sense principle that shape completions with fewer
unknown points are to be preferred over shape completions
with a large number of unknown points.

VI. EXPERIMENTAL RESULTS

Videos of a controlled desktop environment were processed
with routines from the Intel Open Source Video Project
(OpenCV). Contours were extracted from the raw image
frames using intensity thresholding and pyramid segmentation
edges (as in figure 1). Shape models of three object classes–
forks, spoons, and wire-cutter tools–were then generated from
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Figure 8. Partial contour shape classification. Top row: the extracted contour is correctly classified as a spoon. Left to right: original image, extracted contour,
shape completion using tool, fork, and spoon models. Bottomrow: extracted contour is misclassified as a spoon; however,partial contour is uninformative,
even for humans. Left to right: original image, extracted contour, shape completion using tool, fork, and spoon models.

a manually-chosen subset of the extracted contours. An illus-
tration of the tool shape model is shown in figure 5.

Complete contour shape classification was then tested on a
subset of the training data and, as expected, the classification
rate was 100% (Figure 3). Next, eight partial contours (three
of tools, three of forks, and two of spoons) were extracted
from video frames of occluded objects. Partial contours were
segmented by hand (where needed), completed with respect to
each shape model, and classified (Figure 8). This process was
repeated while varyingN , the number of principle components
kept in each shape model, from one to ten. ForN < 5,
the classification rate was5/8, while for N = 5 and above,
the classification rate was6/8. Incorporating a prior on the
completion size (as in the previous section) increased the
classification rate to7/8 for N > 7. The one partial shape
which was consistently misclassified was the end of a fork
handle, impossible even for a human to classify correctly more
than one-third of the time (figure 7, lower row).

VII. R ELATED WORK

There is a great deal of work on statistical shape model-
ing, beginning with the work on landmark data by Kendall
[10] and Bookstein [4] in the 1980’s. In recent years, more
complex statistical shape models have arisen, for example,
in the active contours literature [3]. Procrustes analysispre-
dates statistical shape theory by two decades; algorithms for
finding Procrustean mean shapes [6], [2] were developed long
before the topology of shape spaces were well-understood
[11]. In terms of shape classification, shape contexts [1] and
spin images [8] provide robust frameworks for estimating
correspondences between shape features for recognition and
modelling problems. An interesting take on shape completion
using probable object symmetries has been done in [14].

VIII. C ONCLUSION

We have presented an approach to geometric object mod-
elling that unified the problems of modelling geometry, rec-
ognizing object shapes and inferring occluded portions of the
object model. The algorithm depends on a technique known

as Procrustean shape analysis [10], and in particular we have
derived an expression for the maximum likelihood object
geometry given only a partial observation of the object. We
have shown some preliminary results on everyday objects, but
we plan to extend these results to more complex scenes and
geometric inference problems.

The description of our algorithm given in this paper is
restricted to inferring geometry from two-dimensional images.
However, the technique extends to higher dimensions, and we
plan to demonstrate the same approach to object modelling
on three-dimensional object data, such as from a laser range
finder or stereo camera.
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