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1 Introduction and Related Work
Many problems in machine learning and artificial intelligence involve discrete-time partially ob-
servable nonlinear dynamical systems. If the observations are discrete, then Hidden Markov Models
(HMMs) (Rabiner, 1989) or, in the control setting, Partially Observable Markov Decision Processes
(POMDPs) (Sondik, 1971) can be used to represent belief as a discrete distribution over latent states.
Predictive State Representations (PSRs) (Littman et al., 2002) are generalizations of POMDPs that
have attracted interest because they often have greater representational capacity for a fixed model
dimension. In contrast to the latent-variable representations of POMDPs, PSRs represent the state
of a dynamical system by tracking occurrence probabilities of a set of future events (called tests)
conditioned on past events (called histories). Because tests and histories are observable quantities,
it has been suggested that learning PSRs should be easier than learning POMDPs.

Recently, (Boots et al., 2010) proposed a spectral algorithm for learning PSRs with discrete obser-
vations and actions. At its core, the algorithm performs a singular value decomposition of a matrix
of joint probabilities of tests and partitions of histories, and then uses linear algebra to recover pa-
rameters which allow predicting, simulating, and filtering in the modeled system. Because PSRs of
dynamical systems consist of expectations of observable quantities that can be estimated directly
from training data, a statistically consistent estimate of the PSR can be found without resorting to
local search. This is an important benefit of spectral learning algorithms for PSRs over heuristics
(like EM) applied to latent variable representations.

Despite their positive properties, PSR models of controlled dynamical systems are usually restricted
to discrete observations and actions with only moderate cardinality. For continuous actions and
observations, and for actions and observations with large cardinalities, standard learning algorithms
for PSRs often run into trouble: we cannot hope to see each or action observation more than a small
number of times and we cannot gather enough data to estimate the PSR parameters accurately unless
we make additional assumptions.

In this paper, we fully generalize PSRs to continuous observations and actions using a recent concept
called Hilbert space embeddings of distributions (Smola et al., 2007; Sriperumbudur et al., 2008).
The essence of our method is to represent distributions of tests, histories, observations, and actions,
as points in (possibly) infinite-dimensional Reproducing Kernel Hilbert Spaces (RKHSs). During
filtering we update these distributions using a kernel version of Bayes’ rule (Fukumizu et al., 2011).
To improve computational tractability, we develop a spectral system identification method to learn a
succinct parameterization of the target system.

Our approach is similar to recent work that applies kernel methods to dynamical system modeling
and reinforcement learning, which we summarize here. Song et al. (Song et al., 2010) proposed
a nonparametric approach to learning HMM representations in RKHS. The resulting dynamical
system model, called Hilbert Space Embeddings of Hidden Markov Models (HSE-HMMs), proved
to be an impressive alternative to competing dynamical system models on several experimental
benchmarks. Despite these successes, HSE-HMMs have two major limitations: first, the update
rule for the HMM relies on density estimation instead of direct Bayesian inference in Hilbert space,
which results in a theoretically awkward model. Second, the model lacks the capacity to reason
about actions, which limits the scope of the algorithm. Our model is a PSR extension of HSE-
HMMs that adds control inputs and updates state using a kernelized version of Bayes’ rule.
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Grünewälder et al. (Grunewalder et al., 2012) proposed a nonparametric approach to learning transi-
tion dynamics in Markov decision processes (MDPs) by representing the MDP transitions as condi-
tional distributions in RKHS. This work was extended to POMDPs by Nishiyama et al. (Nishiyama
et al., 2012). The resulting Hilbert space embedding of POMDPs represents distributions over the
states, observations, and actions as embeddings in RKHS and uses kernel Bayes rule to update these
distribution embeddings. Critically, the authors only provided results for fully observable models,
where the training data includes labels for the true latent states. By contrast, our algorithm only
requires access to an (unlabeled) sequence of actions and observations and learns the more
expressive PSR model.

2 Predictive State Representations

The focus of this work is learning a special predictive representation of a dynamical system called
a Predictive State Representation (PSR). PSRs represent state as a set of predictions of observable
experiments or tests that one could perform in the system. Specifically, a test of length NF is an
ordered sequence of future action-observations pairs τi = a1, o1, . . . aNF

, oNF
that can be executed

and observed at any time t. Likewise, a history is an ordered sequence of actions and observations
ht = a1, o1, . . . , at−1, ot−1 that has been executed and observed prior to a given time t. A test
τi is said to be executed at time t if we take the sequence of actions specified by the test τAi =
a1, . . . , aNF

. It is said to succeed at time t if it is taken and if the sequence of observations in the
test τOi = o1, . . . , oNF

matches the observations generated by the system. The prediction for test
i at time t is the probability of the test succeeding given a history ht and given that we take it. In
this paper we assume that our data was generated by a blind policy, where future actions do not rely
on future observations. This means that the PSR state is the conditional probability of observation
sequences given action sequences: P

[
τOi,t | τAi,t, ht

]
. We write τ(ht) for the prediction vector of

success probabilities for tests τi given a history ht, with elements: τi(ht) = P
[
τOi,t | do

(
τAi,t
)
, ht
]

The key idea behind a PSR is that if we know the expected outcomes of executing all possible tests,
then we also know everything there is to know about the state of a dynamical system (Singh et al.,
2004). Given that we take an action at and see a new observation ot, the predictive density of tests
are updated using Bayes’ rule.

In this paper we will represent the predictive probability density for tests as an expectation of fea-
tures in Hilbert space and use kernel Bayes’ rule to update this density given new information. We
introduce the necessary background in Section 3 below.

3 Hilbert Space Embeddings

Let F be a reproducing kernel Hilbert space (RKHS) associated with kernel KX(x, x′)
def
=〈

φX(x), φX(x′)
〉
F . Following (Smola et al., 2007), we define the mean map of a probability distri-

bution P into RKHS F to be µX
def
= E

[
φX(X)

]
, also called the Hilbert space embedding of P. For

all f ∈ F , E[f(X)] = 〈f, µX〉F by the reproducing property and linearity of expectations.

Given a joint distribution P [X,Y ] over two variables X on X and Y on Y1the uncentered co-
variance operator CXY is (Baker, 1973) CXY

def
= EXY

[
φX(X)⊗ φY (Y )

]
.Based on covariance

operators (Song et al., 2009) define a conditional embedding operator which allows us to compute
conditional expectations E

[
φY (Y ) | X

]
as linear operators in RKHS. We define the conditional

embedding operatorWY |X
def
= CY XC−1XX such that for all g ∈ G, E[g(Y ) | x] = 〈g,WY |Xφ

X(x)〉G
given several assumptions.

Finally, we define Kernel Bayes’ Rule (KBR) which performs a Bayes rule update
P [X | Y = y, Z = z] = P[X,Y=y|Z=z]

P[Y=y|Z=z] entirely in RKHS. We accomplish this by implement-
ing Bayes’ rule in terms of conditional covariance operators (Fukumizu et al., 2011): µX|y,z =

CXY |zC−1Y Y |zφ(y).

In practice, the above operators can be expressed and estimated in terms of Gram matrices. Unfor-
tunately, due to space constraints we do not go into the details here.

1We assume a kernel Ky(y, y
′) =

〈
φY (y), φY (y′)

〉
G is defined on Y with associated RKHS G.
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4 Predictive Representations in RKHS
We will focus on learning the conditional embedding operator WT O|T A,ht

for the predictive den-
sity of tests P

[
τOt | τAt , ht

]
of a PSR and updating this conditional embedding operator given a

new action and observation using kernel Bayes’ rule. This is an expressive model: we can model
near-arbitrary continuous-valued dynamical systems, limited only by the existence of the condi-
tional embedding operator WT O|T A,ht

. In Section 4.2 below we break the PSR state WT O|T A,ht

down into its constituent parts, the conditional embedding operators CT O,T A|ht
and CT A,T A|ht

. We
then update these two operators instead of WT O|T A,ht

directly. This representation is at least as
expressive since we can always reconstructWT O|T A,ht

= CT O,T A|ht
C−1T A,T A|ht

.

4.1 A Minimal State Space
Instead of working with mean embeddings in generic RKHSs, it is sometimes possible to embed
distributions in a finite-dimensional subspace of the RKHS. For discrete action-observation PSRs
with delta kernels, such a subspace corresponds to a core set of tests (Singh et al., 2004). In the
more general case, we can factor the conditional embedding of the covariance operator CT O,T A|ht

into a finite dimensional operator CXO,XA|ht
and a conditional covariance operator U :

CT O,T A|ht
= UCXO,XA|ht

(1)

Here X = (XO, XA) is a finite set of linear combinations of tests, which we choose to make the
factorization possible. Analogous to the discrete case we can find U by performing a ‘thin’ (kernel)
SVD of the covariance operator C(T O,T A)H and taking the top d singular vectors as U . (So we are
choosing X so that U∗U = I .)

4.2 The State Update
To implement the Bayes’ rule state update we start with a PSR state at time t, then take an ac-
tion, receive an observation, and incorporate this information into the PSR to get the state at
time t + 1. In what follows, we need to be careful about independence between different ran-
dom variables. For example, if we evaluate φT

O
(τOt ) and φT

O
(τOt+1) at the same time step,

the realizations will not be independent, even conditioned on the state of the process—if we
wanted independent realizations of φT

O
(τOt ) and φT

O
(τOt+1), we’d have to assume the ability

to reset the system to a desired state. Below we will take care that we only ask for operators
which we can estimate without resets. (If we didn’t have to obey this constraint, the algorithm
would become somewhat simpler, but the need for resets would constrain applicability.) There-
fore, we define several covariance operators which are needed to update the state: CT O,T A,H

def
=

E
[
φT

O
(τOt )⊗ φT A

(τAt )⊗ φH(ht)
]
, CT A,T A,H

def
= E

[
φT

A
(τAt )⊗ φT A

(τAt )⊗ φH(ht)
]
,

CT O+,T A+,O,A,H
def
= E

[
φT

O
(τOt+1)⊗ φT

A
(τAt+1)⊗ φO(ot)⊗ φA(at)⊗ φH(ht)

]
, CO,O,A,H

def
=

E
[
φO(ot)⊗ φO(ot)⊗ φA(at)⊗ φH(ht)

]
, and CA,A,H

def
= E

[
φA(at)⊗ φA(at)⊗ φH(ht)

]
.

Since U∗CT O,T A|ht
= CXO,XA|ht

is the characteristic embedding of the probability distribution of
all tests, we assume that we can compute the embedding of the probability distribution of any subset
of observations, actions, or tests with a conditional covariance operator from this embedding. For
example,

CA,A|ht
=WAA|XO,XACXO,XA|ht

Specifically, we assume that the operators WXO+,XA+,O,A|XO,XA , WT A,T A|XO,XA ,
WO,O,A|XO,XA , and WA,A|XO,XA exist and that we can pseudo-invert C(XO,XA)H such
that C(XO,XA)HC†(XO,XA)H = I . With some algebraic manipulation it is possible to show that:

U∗C(T O+,T A+,O,A)H(U∗C(T O,T A)H)
† =WXO+,XA+,O,A|XO,XA

C(T A,T A)H(U∗C(T O,T A)H)
† =WT A,T A|XO,XA

C(O,O,A)H(U∗C(T O,T A)H)
† =WO,O,A|XO,XA

C(A,A)H(U∗C(T O,T A)H)
† =WA,A|XO,XA
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Using the above equations, we can find covariance operators conditioned on history at time t, based
on the covariance CXO,XA|ht

at time t:

CXO+,XA+,O,A|ht
=WXO+,XA+,O,A|XO,XACXO,XA|ht

CT A,T A|ht
=WT A,T A|XO,XACXO,XA|ht

CO,O,A|ht
=WO,O,A|XO,XACXO,XA|ht

CA,A|ht
=WA,A|XO,XACXO,XA|ht

Finally, in order to update our state, we execute two instances of KBR. First, when we choose an
action at, we update:

CXO+,XA+,O|ht,at
= C(XO+,XA+,O)A|ht

C−1A,A|ht
φA(at)

CO,O|ht,at
= C(O,O)A|ht

C−1A,A|ht
φA(at)

Next, when we receive the observation generated by the system, ot, we incorporate it to calculate
the joint conditional covariance:

CXO+,XA+|ht,at,ot = C(XO+,XA+)O|ht,at
C−1O,O|ht,at

φO(ot)

Finally, the joint conditional covariance at time t+ 1 is identified as CT O+,T A+|ht,at,ot :

CXO,XA|ht+1
≡ CXO+,XA+|ht,at,ot

The PSR state can now be computed:

CXO,XA|ht+1
≡ CXO+,XA+|ht,at,ot

CT A,T A|ht+1
=WT A,T A|XO,XACXO,XA|ht+1

WT O|T A,ht+1
= UCXO,XA|ht+1

C−1T A,T A|ht+1

5 Learning
The learning algorithm for Hilbert space embeddings of PSRs is very simple. We estimate the
covariance operators CT O,T A,H, CT A,T A,H, CT O+,T A+,O,A,H, CO,O,A,H, and CA,A,H from our ob-
servable data, and plug into the above equations to learn the PSR model and to filter in the learned
model. If the RKHS is infinite, which is often the case, then it is not possible to store or manipulate
the above covariances directly. Instead, we use the “kernel trick” and represent all of the covari-
ances and compute state updates with Gram matrices. Further details, including the Gram matrix
formulation of the algorithm, can be found in (Boots, 2012).

We expect to have experimental results comparing to previous approaches like Hilbert Space Em-
beddings of HMMs and POMDPs by the time that the workshop is held.
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