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Abstract

Predictive State Representations (PSRs) are
an expressive class of models for controlled
stochastic processes. PSRs represent state
as a set of predictions of future observable
events. Because PSRs are defined entirely
in terms of observable data, statistically con-
sistent estimates of PSR parameters can be
learned efficiently by manipulating moments
of observed training data. Most learning al-
gorithms for PSRs have assumed that actions
and observations are finite with low cardinal-
ity. In this paper, we generalize PSRs to in-
finite sets of observations and actions, using
the recent concept of Hilbert space embed-
dings of distributions. The essence is to rep-
resent the state as one or more nonparamet-
ric conditional embedding operators in a Re-
producing Kernel Hilbert Space (RKHS) and
leverage recent work in kernel methods to es-
timate, predict, and update the representa-
tion. We show that these Hilbert space em-
beddings of PSRs are able to gracefully han-
dle continuous actions and observations, and
that our learned models outperform compet-
ing system identification algorithms on sev-
eral prediction benchmarks.

1 INTRODUCTION

Many problems in machine learning and artificial intel-
ligence involve discrete-time partially observable non-
linear dynamical systems. If the observations are
discrete, then Hidden Markov Models (HMMs) [1]
or, in the control setting, Input-Output HMMs (IO-
HMMs) [2], can be used to represent belief as a discrete
distribution over latent states. Predictive State Repre-
sentations (PSRs) [3] are generalizations of IO-HMMs
that have attracted interest because they can have
greater representational capacity for a fixed model di-
mension. In contrast to latent-variable representa-

tions like HMMs, PSRs represent the state of a dy-
namical system by tracking occurrence probabilities
of future observable events (called tests) conditioned
on past observable events (called histories). One of
the prime motivations for modeling dynamical systems
with PSRs was that, because tests and histories are
observable quantities, learning PSRs should be easier
than learning IO-HMMs by heuristics like Expectation
Maximization (EM), which suffer from bad local op-
tima and slow convergence rates.

For example, Boots et al. [4] proposed a spectral algo-
rithm for learning PSRs with discrete observations and
actions. At its core, the algorithm performs a singular
value decomposition of a matrix of joint probabilities
of tests and partitions of histories (the moments men-
tioned above), and then uses linear algebra to recover
parameters that allow predicting, simulating, and fil-
tering in the modeled system. As hinted above, the
algorithm is statistically consistent, and does not need
to resort to local search—an important benefit com-
pared to typical heuristics (like EM) for learning latent
variable representations.

Despite their positive properties, many algorithms for
PSRs are restricted to discrete observations and ac-
tions with only moderate cardinality. For continuous
actions and observations, and for actions and observa-
tions with large cardinalities, learning algorithms for
PSRs often run into trouble: we cannot hope to see
each action or observation more than a small num-
ber of times, so we cannot gather enough data to es-
timate the PSR parameters accurately without addi-
tional assumptions. Previous approaches attempt to
learn continuous PSRs by leveraging kernel density es-
timation [4] or modeling PSR distributions with expo-
nential families [5, 6]; each of these methods must con-
tend with drawbacks such as slow rates of statistical
convergence and difficult numerical integration.

In this paper, we fully generalize PSRs to continu-
ous observations and actions using a recent concept
called Hilbert space embeddings of distributions [7, 8].



The essence of our method is to represent distributions
of tests, histories, observations, and actions as points
in (possibly) infinite-dimensional reproducing kernel
Hilbert spaces. During filtering we update these em-
bedded distributions using a kernel version of Bayes’
rule [9]. The advantage of this approach is that embed-
ded distributions can be estimated accurately without
having to contend with problems such as density esti-
mation and numerical integration. Depending on the
kernel, the model can be parametric or nonparamet-
ric. We focus on the nonparametric case: we leverage
the “kernel trick” to represent the state and required
operators implicitly and maintain a state vector with
length proportional to the size of the training dataset.

1.1 RELATED WORK

Our approach is similar to recent work that applies
kernel methods to dynamical system modeling and re-
inforcement learning, which we summarize here. Song
et al. [10] proposed a nonparametric approach to learn-
ing HMM representations in RKHSs. The resulting
dynamical system model, called Hilbert Space Embed-
dings of Hidden Markov Models (HSE-HMMs), proved
to be more accurate compared to competing models
on several experimental benchmarks [10, 11]. Despite
these successes, HSE-HMMs have two major limita-
tions: first, the update rule for the HMM relies on den-
sity estimation instead of Bayesian inference in Hilbert
space, which results in an awkward model with poor
theoretical guarantees. Second, the model lacks the ca-
pacity to reason about actions, which limits the scope
of the algorithm. Our model can be viewed as an ex-
tension of HSE-HMMs that adds inputs and updates
state using a kernelized version of Bayes’ rule.

Grünewälder et al. [12] proposed a nonparametric ap-
proach to learning transition dynamics in Markov de-
cision processes (MDPs) by representing the stochas-
tic transitions as conditional distributions in RKHS.
This work was extended to POMDPs by Nishiyama et
al. [13]. Like the approach we propose here, the result-
ing Hilbert space embedding of POMDPs represents
distributions over the states, observations, and actions
as embeddings in RKHS and uses kernel Bayes’ rule to
update these distribution embeddings. Critically, the
algorithm requires training data that includes labels
for the true latent states. This is a serious limitation:
it precludes learning dynamical systems directly from
sensory data. By contrast, our algorithm only requires
access to an unlabeled sequence of actions and obser-
vations, and learns the more expressive PSR model,
which includes POMDPs as a special case.

2 PSRS

A PSR represents the state of a controlled stochas-
tic process as a set of predictions of observable ex-

periments or tests that can be performed in the
system. Specifically, a test of length N is an or-
dered sequence of future action-observations pairs τ =
a1, o1, . . . aN , oN that can be selected and observed at
any time t. Likewise, a history is an ordered sequence
of actions and observations h = a1, o1, . . . , aM , oM
that have been selected and observed prior to t.

A test τi is executed at time t if we intervene [14]
to select the sequence of actions specified by the test
τAi = a1, . . . , aN . It is said to succeed at time t if it is
executed and the sequence of observations in the test
τOi = o1, . . . , oN matches the observations generated
by the system. The prediction for test i at time t is
the probability of the test succeeding given a history
ht and given that we execute it:1

P
[
τOi,t | τAi,t, ht

]
=

P
[
τOi , τ

A
i | ht

]
P
[
τAi | ht

] (1)

The key idea behind a PSR is that if we know the
expected outcomes of executing all possible tests, then
we know everything there is to know about the state
of a dynamical system [16]. In practice we will work
with the predictions of some set of tests; therefore, let
T = {τi} be a set of d tests. We write

s(ht) =
(
P
[
τOi,t | τAi,t, ht

])d
i=1

(2)

for the prediction vector of success probabilities for the
tests τi ∈ T given a history ht.

Knowing the success probabilities of some tests may
allow us to compute the success probabilities of other
tests. That is, given a test τl and a prediction vector
s(ht), there may exist a prediction function fτl such
that P

[
τOl | τAl , ht

]
= fτl(s(ht)). In this case, we say

s(ht) is a sufficient statistic for P
[
τOl | τAl , ht

]
. A core

set of tests is a set whose prediction vector s(ht) is a
sufficient statistic for the predictions of all tests τl at
time t. Therefore, s(ht) is a state for our PSR: i.e., at
each time step t we can remember s(ht) instead ht.

Formally, a PSR is a tuple 〈O,A, T ,F , so〉. O is the
set of possible observations and A is the set of possible
actions. T is a core set of tests. F is the set of pre-
diction functions fτl for all tests τl (which must exist
since T is a core set), and s0 = s(h0) is the initial
prediction vector after seeing the empty history h0.

In this paper we restrict ourselves to linear PSRs, in
which all prediction functions are linear: fτl(s(ht)) =

1For simplicity, we assume that all probabilities involv-
ing actions refer to our PSR as controlled by an arbitrary
blind or open-loop policy [15] (also called exogenous in-
puts). In this case, conditioning on do(a1, . . . , aM ) is equiv-
alent to conditioning on observing a1, . . . , aM , which allows
us to avoid some complex notation and derivations.



fTτls(ht) for some vector fτl ∈ R|T |. Note that the re-
striction to linear prediction functions is only a restric-
tion to linear relationships between conditional proba-
bilities of tests; linear PSRs can still represent systems
with nonlinear dynamics.

2.1 FILTERING WITH BAYES’ RULE

After taking action a and seeing observation o, we can
update the state s(ht) to the state s(ht+1) by Bayes’
rule. The key idea is that the set of functions F allows
us to predict any test from our core set of tests.

The state update proceeds as follows: first, we predict
the success of any core test τi prepended by an action
a and an observation o, which we call aoτi, as a linear
function of our core test predictions s(ht):

P
[
τOi,t+1, ot=o | τAi,t+1, at=a, ht

]
= fTaoτis(ht) (3)

Second, we predict the likelihood of any observation o
given that we select action a (i.e., the test ao):

P [ot = o | at = a, ht] = fTaos(ht) (4)

After executing action a and seeing observation o,
Equations 3 and 4 allow us to find the prediction for
a core test τi from s(ht) using Bayes’ Rule:

si(ht+1) = P
[
τOi,t+1 | τAi,t+1, at = a, ot = o, ht

]
=

P
[
τOi,t+1, ot = o | τAi,t+1, at = a, ht

]
P [ot = o | at = a, ht]

=
fTaoτis(ht)

fTaos(ht)
(5)

This recursive application of Bayes’ rule to a belief
state is called a Bayes filter.

3 HILBERT SPACE EMBEDDINGS

The key idea in this paper is to represent (possibly con-
tinuous) distributions of tests, histories, observations,
and actions nonparametrically as points in (possibly
infinite dimensional) Hilbert spaces. During filtering
these points are updated entirely in Hilbert space, mir-
roring the finite-dimensional updates, using a kernel
version of Bayes’ rule.

3.1 MEAN MAPS

Let F be a reproducing kernel Hilbert space (RKHS)

associated with kernel KX(x, x′)
def
=
〈
φX(x), φX(x′)

〉
F

for x ∈ X . Let P be the set of probability distributions
on X , and X be a random variable with distribution
P ∈ P. Following Smola et al. [7], we define the mean
map (or the embedding) of P ∈ P into RKHS F to be

µX
def
= E

[
φX(X)

]
.

A characteristic RKHS is one for which the mean map
is injective: that is, each distribution P has a unique

embedding [8]. This property holds for many com-
monly used kernels, e.g., the Gaussian and Laplace
kernels when X = Rd.

Given i.i.d. observations xt, t = 1 . . . T , an estimate of
the mean map is straightforward:

µ̂X
def
=

1

T

T∑
t=1

φX(xt) =
1

T
ΥX1T (6)

where ΥX def
= (φX(x1), . . . , φX(xT )) is the linear oper-

ator which maps the tth unit vector of RT to φX(xt).

Below, we’ll sometimes need to embed a joint distribu-
tion P[X,Y ]. It is natural to embed P[X,Y ] into a ten-
sor product RKHS: let KY (y, y′) =

〈
φY (y), φY (y′)

〉
G

be a kernel on Y with associated RKHS G. Then we
write µXY for the mean map of P[X,Y ] under the ker-

nel KXY ((x, y), (x′, y′))
def
= KX(x, x′)KY (y, y′) for the

tensor product RKHS F ⊗ G.

3.2 COVARIANCE OPERATORS

The covariance operator is a generalization of the co-
variance matrix. Given a joint distribution P [X,Y ]
over two variables X on X and Y on Y, the uncen-
tered covariance operator CXY is the linear operator
which satisfies [17]

〈f, CXY g〉F = EXY [f(X)g(Y )] ∀f ∈ F , g ∈ G (7)

Both µXY and CXY represent the distribution P [X,Y ].
One is defined as an element of F⊗G, and the other as
a linear operator from G to F , but they are isomorphic
under the standard identification of these spaces [9], so
we abuse notation and write µXY = CXY .

Given T i.i.d. pairs of observations (xt, yt), de-
fine ΥX =

(
φX(x1), . . . , φX(xT )

)
and ΥY =(

φY (y1), . . . , φY (yT )
)
. Write Υ∗ for the adjoint of Υ.

Analogous to (6), we can estimate

ĈXY =
1

T
ΥXΥY ∗ (8)

3.3 CONDITIONAL OPERATORS

Based on covariance operators, Song et al. [18] de-
fine a linear operator WY |X : F 7→ G that allows

us to compute conditional expectations E
[
φY (Y ) | x

]
in RKHSs. Given some smoothness assumptions [18],
this conditional embedding operator is

WY |X
def
= CY XC−1XX (9)

and for all g ∈ G we have

E[g(Y ) | x] = 〈g,WY |Xφ
X(x)〉G

Given T i.i.d. pairs (xt, yt) from P[X,Y ], we can esti-
mate WY |X by kernel ridge regression [18, 19]:

ŴY |X = (1/T )ΥY
(
(1/T )ΥX

)†
λ



where the regularized pseudoinverse Υ†λ is given by

Υ†λ = Υ∗(ΥΥ∗+λI)−1. (The regularization parameter
λ helps to avoid overfitting and to ensure invertibility,
and thus that the resulting operator is well defined.)
Equivalently,

ŴY |X = ΥY (GX,X + λTI)−1ΥX∗

where the Gram matrix GX,X
def
= ΥX∗ΥX has (i, j)th

entry KX(xi, xj).

3.4 KERNEL BAYES’ RULE

We are now in a position to define the kernel mean
map implementation of Bayes’ rule (called the Kernel
Bayes’ Rule, or KBR). In particular, we want the ker-
nel analog of P [X | y, z] = P [X, y | z] /P [y | z]. In
deriving the kernel realization of this rule we need
the kernel mean representation of a conditional joint
probability P [X,Y | z]. Given Hilbert spaces F , G,
and H corresponding to the random variables X, Y ,
and Z respectively, P [X,Y | z] can be represented as

a mean map µXY |z
def
= E

[
φX(X)⊗ φY (Y ) | z

]
or the

corresponding operator CXY |z. Under some assump-
tions [9], and with a similar abuse of notation as be-
fore, this operator satisfies:

CXY |z = µXY |z
def
= C(XY )ZC−1ZZφ(z) (10)

Here the operator C(XY )Z represents the covariance of
the random variable (X,Y ) with the random variable
Z. (We can view (10) as applying a conditional embed-
ding operator WXY |Z to an observation z.) We now
define KBR in terms of conditional covariance opera-
tors [9]:

µX|y,z = CXY |zC−1Y Y |zφ(y) (11)

To map the KBR to the ordinary Bayes’ rule above,
µX|y,z is the embedding of P [X | y, z]; CXY |z is the

embedding of P [X,Y | z]; and the action of C−1Y Y |zφ(y)

corresponds to substituting Y = y into P [X,Y | z] and
dividing by P [y | z].

To use KBR in practice, we need to estimate the
operators on the RKHS of (11) from data. Given
T i.i.d. triples (xt, yt, zt) from P [X,Y, Z], write ΥX =(
φX(x1), . . . , φX(xT )

)
, ΥY =

(
φY (y1), . . . , φY (yT )

)
,

and ΥZ =
(
φZ(z1), . . . , φZ(zT )

)
. We can now es-

timate the covariance operators ĈXY |z and ĈY Y |z
via Equation 10; applying KBR, we get ĈX|y,z =

ĈXY |z
(
ĈY Y |z + λI

)−1
φY (y). We express this process

with Gram matrices, using a ridge parameter λ that
goes to zero at an appropriate rate with T [9]:

Λz = diag((GZ,Z + λTI)−1ΥZ∗φZ(z)) (12)

ŴX|Y,z = ΥX(ΛzGY,Y + λTI)−1ΛzΥ
Y ∗ (13)

µ̂X|y,z = ŴX|Y,zφ
Y (y) (14)

where GY,Y
def
= ΥY ∗ΥY has (i, j)th entry KY (yi, yj),

and GZ,Z
def
= ΥZ∗ΥZ has (i, j)th entry KZ(zi, zj). The

diagonal elements of Λz weight the samples, encoding
the conditioning information from z.

4 RKHS EMBEDDINGS OF PSRS

We are now ready to apply Hilbert space embeddings
to PSRs. For now we ignore the question of learning,
and simply suppose that we are given representations
of the RKHS operators described below. In Section 4.1
we show how predictive states can be represented as
mean embeddings. In Section 4.2 we generalize the
notion of a core set of tests and define the Hilbert
space embedding of PSRs. Finally, in Section 4.3 we
show how to perform filtering in our embedded PSR
with Kernel Bayes’ Rule. We return to learning in
Section 5.

4.1 PREDICTIVE STATE EMBEDDINGS

We begin by defining kernels on length-N sequences
of test observations τO, test actions τA, and his-

tories h: KT O (τO, τ ′
O

)
def
= 〈φT O (τO), φT

O
(τ ′
O

)〉F ,

KT A(τA, τ ′
A

)
def
= 〈φT A(τA), φT

A
(τ ′
A

)〉G , and

KH (h, h′)
def
=

〈
φH (h) , φH (h′)

〉
L. Define also the

mean maps

µT A,T A,H
def
= E

[
φT
A

(τA)⊗ φT
A

(τA)⊗ φH(Ht)
]

(15)

µT O,T A,H
def
= E

[
φT
O

(τO)⊗ φT
A

(τA)⊗ φH(Ht)
]

(16)

which correspond to operators CT A,T A,H and
CT O,T A,H. We now take our PSR state to be the
conditional embedding operator which predicts test
observations from test actions:

S(ht) =WT O|T A,ht
= CT O,T A|ht

C−1T A,T A|ht
(17)

where CT O,T A|ht
= CT O,T A,HC−1H,HφH(ht) and CT A,T A|ht

= CT A,T A,HC−1H,HφH(ht). This definition is analogous
to the finite-dimensional case, in which the PSR state
is a conditional probability table instead of a condi-
tional embedding operator.2

Given characteristic RKHSs, the operator S(ht)
uniquely encodes the predictive densities of future ob-
servation sequences given that we take future action
sequences. This is an expressive representation: we
can model near-arbitrary continuous-valued distribu-
tions, limited only by the existence of the conditional

2In contrast to discrete PSRs, we typically consider the
entire set of length-N tests at once; this change makes
notation simpler, and is no loss of generality since the em-
bedding includes the information needed to predict any
individual test of length up to N . (Computationally, we
always work with sample-based representations, so the size
of our set of tests doesn’t matter.)



embedding operatorWT O|T A,ht
(and therefore the as-

sumptions in Section 3.3).

4.2 CORE TESTS AND HSE-PSRS

As defined above, the embedding S(ht) lets us com-
pute predictions for a special set of tests, namely
length-N futures. As with discrete PSRs, knowing the
predictions for some tests may allow us to compute
the predictions for other tests. For example, given
the embedding S(ht) and another set of tests T , there
may exist a function FT such the predictions for T
can be computed as WT O|T A,ht

= FT (S(ht)). In this
case, S(ht) is a sufficient statistic for T . Here, as with
discrete PSRs, we focus on prediction functions that
are linear operators; however, this assumption is mild
compared to the finite case, since linear operators on
infinite-dimensional RKHSs are very expressive.

A core set of tests is defined similarly to the discrete
PSR case (Section 2): a core set is one whose embed-
ding S(ht) is a linearly sufficient statistic for the pre-
diction of distribution embeddings of any finite length.
Therefore, S(ht) is a state for an embedded PSR: at
each time step t we remember the embedding of test
predictions S(ht) instead of ht.

Formally, a Hilbert space embedding of a PSR
(HSE-PSR) is a tuple 〈KO(o, o′),KA(a, a′), N,F ,So〉.
KO(o, o′) is a characteristic kernel on observations and
KA(a, a′) is a characteristic kernel on actions. N is a
positive integer such that the set of length-N tests is
core. F is the set of linear operators for predicting
embeddings of any-length test predictions from the
length-N embedding (which must exist since length-
N tests are a core set), and S0 = S(h0) is the initial
prediction for our core tests given the null history h0.

4.3 UPDATING STATE WITH KERNEL
BAYES’ RULE

Given an action a and an observation o, the HSE-PSR
state update is computed using the kernel versions of
conditioning and Bayes rule given in Section 3. As in
Section 2, the key idea is that the set of functions F
allows us to predict the embedding of the predictive
distribution of any sequence of observations from the
embedding of our core set of tests S(ht).

The first step in updating the state is finding the em-
bedding of tests of length N + 1. By our assumptions,
a linear operator FAOT exists which accomplishes this:

WT O′ ,O|T A′ ,A,ht
= FAOT S(ht) (18)

The second step is finding the embedding of observa-
tion likelihoods at time t given actions. By our as-
sumptions, we can do so with an operator FAO:

WO,O|A,ht
= FAOS(ht) (19)

With the two embeddings WT O′ ,O|T A′ ,A,ht
and

WO,O|A,ht
, we can update the state given a new action

and observation. First, when we choose an action at,
we compute the conditional embeddings:

CO,O|ht,at = µO,O|ht,at=WO,O|A,ht
φA(at) (20)

WT O′,O|T A′ ,ht,at
=WT O′ ,O|T A′ ,A,ht

×A φA(at) (21)

Here, ×A specifies that we are thinking of
WT O′ ,O|T A′ ,A,ht

as a tensor with 4 modes, one for each

of T O′ , O, T A′ , A, and contracting along the mode A
corresponding to the current action. Finally, when we
receive the observation ot, we calculate the next state
by KBR:

S(ht+1) ≡ WT O′ |T A′ ,ht,at,ot

=WT O′ ,O|T A′ ,ht,at
×O C−1O,O|ht,at

φO(ot) (22)

Here, ×O specifies that we are thinking of
WT O′ ,O|T A′ ,ht,at

as a tensor with 3 modes and con-
tracting along the mode corresponding to the current
observation.

5 LEARNING HSE-PSRS

If the RKHS embeddings are finite and low-
dimensional, then the learning algorithm and state
update are straightforward: we estimate the condi-
tional embedding operators directly, learn the func-
tions FAOT and FAO by linear regression, and update
our state with Bayes’ rule via Eqs. 18–22. See, for
example [4] or [20]. However, if the RKHS is infinite,
e.g., if we use Gaussian RBF kernels, then it is not pos-
sible to store or manipulate HSE-PSR state directly.
In Sections 5.1–5.3, we show how learn a HSE-PSR in
potentially-infinite RKHSs by leveraging the “kernel
trick” and Gram matrices to represent all of the re-
quired operators implicitly. Section 5.1 describes how
to represent HSE-PSR states as vectors of weights on
sample histories; Section 5.2 describes how to learn the
operators needed for updating states; and Section 5.3
describes how to update the state weights recursively
using these operators.

5.1 A GRAM MATRIX FORMULATION

5.1.1 The HSE-PSR State

We begin by describing how to represent the HSE-PSR
state in Eq. 17 as a weighted combination of training

data samples. Given T i.i.d. tuples
{

(τOt , τ
A
t , ht)

}T
t=1

generated by a stochastic process controlled by a blind
policy, we denote:3

3To get independent samples, we’d need to reset our
process between samples, or run it long enough that it
mixes. In practice we can use dependent samples (as we’d
get from a single long trace) at the cost of reducing the
convergence rate in proportion to the mixing time. We
can also use dependent samples in Sec. 5.1.2 due to our
careful choice of which operators to estimate.



ΥT
O

=
(
φT
O

(τO1 ), . . . , φT
O

(τOT )
)

(23)

ΥT
A

=
(
φT
A

(τA1 ), . . . , φT
A

(τAT )
)

(24)

ΥH =
(
φH(h1), . . . , φH(hT )

)
(25)

and define Gram matrices:

GT A,T A = ΥT
A∗ΥT

A
(26)

GH,H = ΥH∗ΥH (27)

We can then calculate an estimate of the state at time
t in our training sample (Eq. 17) using Eqs. 12 and 13
from the kernel Bayes’ rule derivation:

αht
= (GH,H + λTI)−1ΥH

∗
φH(ht) (28)

Λht
= diag (αht

) (29)

Ŝ(ht) = ΥT
O

(ΛhtGT A,T A + λTI)−1ΛhtΥ
T A∗ (30)

We will use these training set state estimates below to
help learn state update operators for our HSE-PSR.

5.1.2 Vectorized States

The state update operators treat states as vectors
(e.g., mapping a current state to an expected future
state). The state in Eq. 30 is written as an operator,
so to put it in the more-convenient vector form, we
want to do the infinite-dimensional equivalent of re-
shaping a matrix to a vector. To see how, we can look
at the example of the covariance operator ĈT O,T A|ht

and its equivalent mean map vector µ̂T OT A|ht
:

ĈT O,T A|ht
= ΥT

O
Λht

ΥT
A∗

≡ µ̂T OT A|ht
= (ΥT

O
?ΥT

A
)αht

(31)

where ? is the Khatri-Rao (column-wise tensor) prod-
uct. The last line is analogous to Eq. 6: each column

of ΥT
O
? ΥT

A
is a single feature vector φT

O
(τOt ) ⊗

φT
A

(τAt ) in the joint RKHS for test observations and
test actions; multiplying by αht

gives a weighted aver-
age of these feature vectors.

Similarly, the HSE-PSR state can be written:

Ŝ(ht) = ĈT O,T A|ht
Ĉ−1T A,T A|ht

= ΥT
O

(Λht
GT A,T A + λTI)−1Λht

ΥT
A∗

≡ (ΥT
O

(ΛhtGT A,T A + λTI)−1 ?ΥT
A

)αht (32)

We can collect all the estimated HSE-PSR states, from
all the histories in our training data, into one operator

ΥT
O|T A :

WT O|T A,h1:T
≡ ΥT

O|T A =
(
Ŝ(h1), . . . , Ŝ(hT )

)
(33)

We need several similar operators which represent lists
of vectorized conditional embedding operators. Write:

ΥT
O′

=
(
φT
O

(τO2 ), . . . , φT
O

(τOT+1)
)

(34)

ΥT
A′

=
(
φT
A

(τA2 ), . . . , φT
A

(τAT+1)
)

(35)

ΥO =
(
φO(o1), . . . , φO(oT )

)
(36)

ΥA =
(
φA(a1), . . . , φA(aT )

)
(37)

(Our convention is that primes indicate tests shifted
forward in time by one step.) Now we can
compute lists of: expected next HSE-PSR states
WT O′|T A′,h1:T

; embeddings of length-1 predictive dis-
tributions WO|A,h1:T

; embeddings of length-1 predic-
tive distributions WO,O|A,h1:T

; and finally extended
tests WT O′,O|T A′,A,h1:T

. Vectorized, these become:

WT O′|T A′,h1:T
= ΥT

O′|T A′ (38)

WO|A,h1:T
= ΥO|A (39)

WO,O|A,h1:T
= ΥO,O|A (40)

WT O′,O|T A′,A,h1:T
= ΥT

O′,O|T A′,A (41)

Each of these operators is computed analogously to
Eqs. 32 and 33 above. The expanded columns of
Eqs. 40 and 41 are of particular importance for future
derivations:

Υ
O,O|A
t = ΥO,O(ΛhtGA,A + λTI)−1ΛhtΥ

A∗ (42)

Υ
TO′,O|TA′,A
t = ΥT

O′,O|TA′(ΛhtGA,A + λTI)−1ΛhtΥ
A∗

(43)

Finally, the finite-dimensional product of any two lists
of vectorized states is a Gram matrix. In particular, we
need GT ,T and GT ,T ′ , Gram matrices corresponding
to HSE-PSR states and time-shifted HSE-PSR states:

GT ,T = ΥT
O|T A∗ΥT

O|T A (44)

GT ,T ′ = ΥT
O|T A∗ΥT

O′|T A′ (45)

5.2 LEARNING THE UPDATE RULE

The above derivation shows how to get a state esti-
mate by embedding an entire history; for a dynamical
system model, though, we want to avoid remember-
ing the entire history, and instead recursively update
the state of the HSE-PSR given new actions and ob-
servations. We are now in a position to do so. We
first show how to learn a feasible HSE-PSR state that
we can use to initialize filtering (Section 5.2.1), and
then show how to learn the prediction operators (Sec-
tion 5.2.2). Finally, we show how to perform filtering
with KBR (Section 5.3).

5.2.1 Estimating a Feasible State

If our data consists of a single long trajectory, we can-
not estimate the initial state S0, since we only see the
null history once. So, instead, we will estimate an ar-
bitrary feasible state S∗, which is enough information
to enable prediction after an initial tracking phase if



we assume that our process mixes. If we have multi-
ple trajectories, a straightforward modification of (46)
will allow us to estimate S0 as well.

In particular, we take S∗ to be the RKHS representa-
tion of the stationary distribution of core test predic-
tions given the blind policy that we used to collect the
data. We estimate S∗ as the empirical average of state

estimates: ŴT O|T A,h∗ = ΥT
O|T Aαh∗ where

αh∗ =
1

T
1T (46)

5.2.2 Estimating the Prediction Operators

The linear prediction operators FAO and FAOT from
Eqs. 18 and 19 are the critical parameters of the HSE-
PSR used to update state. In particular, we note that
FAO is a linear mapping from WT O|T A,ht

to WO|A,ht

and FAOT is a linear mapping from WT O|T A,ht
to

WT O,O|T A,A,ht
. So, we estimate these prediction op-

erators by kernel ridge regression:

F̂AO = ΥO,O|A
(

ΥT
O|T A

)†
λT

(47)

F̂AOT = ΥT
O,O|T A,A

(
ΥT

O|T A
)†
λT

(48)

These operators are (possibly) infinite-dimensional, so
we never actually build them; instead, we show how to
use Gram matrices to apply these operators implicitly.

5.3 GRAM MATRIX STATE UPDATES

We now apply kernel Bayes’ rule to update state
given a new action and observation, i.e., to implement
Eqs. 18–22 via Gram matrices. We start from the cur-
rent weight vector αt, which represents our current

state S(ht) = ΥT
O′|T A′αt.

Predicting forward in time means applying Eqs. 47
and 48 to state. We do this in several steps. First we
apply the regularized pseudoinverse in Eqs. 47 and 48,
which can be written in terms of Gram matrices:(

ΥT
O|TA

)†
λT

= ΥT
O|TA∗

(
ΥT
O|TAΥT

O|TA∗ + λTI
)−1

= (GT ,T+λTI)−1ΥT
O|TA∗ (49)

Applying Eq. 49 to the state ΥT
O′|T A′αt results in

α̂t = (GT ,T + λTI)−1ΥT
O|T A∗ΥT

O′|T A′αt

= (GT ,T + λTI)−1GT ,T ′αt (50)

Here the weight vector α̂t allows us to predict the ex-
tended tests at time t conditioned on actions and ob-
servations up to time t− 1. That is, from Eqs. 47, 48
and 50 we can write the estimates of Eqs. 18 and 19:

FAOS(ht) = ΥO,O|Aα̂t

FAOT S(ht) = ΥT
O,O|T A,Aα̂t

And, from Eqs. 42 and 43 we see that

ΥO,O|Aα̂t =

T∑
i=1

[α̂t]i ΥO,O(ΛhiGA,A + λTI)−1ΛhiΥ
A∗(51)

ΥT
O′,O|TA′,Aα̂t

=

T∑
i=1

[α̂t]i ΥT
O′,O|TA′(ΛhiGA,A + λTI)−1ΛhiΥ

A∗ (52)

After choosing action at, we can condition the em-
bedded tests by right-multiplying Eqs. 51 and 52 by
φA(at). We do this by first collecting the common part
of Eqs. 51 and 52 into a new weight vector αat :

αat =

T∑
i=1

[α̂t]i (ΛhiGA,A+λTI)−1ΛhiΥ
A∗φA(at) (53)

The estimated conditional embeddings (Eqs. 20–21)
are therefore:

ĈO,O|ht,at = ΥO,Oαat

ŴT O′ ,O|T A′ ,ht,at
= ΥT

O′O|T A
′

αat

Or, given a diagonal matrix with the weights αat along
the diagonal, Λat = diag(αat ), the estimated conditional
embeddings can be written:

ĈO,O|ht,at = ΥOΛatΥO
∗

(54)

ŴT O′ ,O|T A′ ,ht,at
= ΥT

O′ |T A
′

ΛatΥO
∗

(55)

Given a new observation ot, we apply KBR (Eq. 22):

αaot = (ΛatGO,O + λTI)−1ΛatΥO
∗
φO(ot) (56)

Finally, given the coefficients αaot , the HSE-PSR state
at time t+ 1 is:

Ŝ(ht) = ŴT O′ |T A′ ,ht+1
= ΥT

O′|T A′αaot (57)

This completes the state update. The nonparametric
state at time t+ 1 is represented by the weight vector
αt+1 = αaot . We can continue to recursively filter on
actions and observations by repeating Eqs. 50–57.

6 PREDICTIONS

In the previous sections we have shown how to main-
tain the HSE-PSR state by implicitly tracking the
operator WT O|T A . However, the goal of modeling a
stochastic process is usually to make predictions, i.e.,
reason about properties of future observations. We
can do so via mean embeddings: for example, given
the state after some history h, WT O|T A,h, we can fill
in a sequence of test actions to find the mean embed-
ding of the distribution over test observations:

µT O|h,a1:M =WT O|T A,hφT
A

(a1:M ) (58)

As is typical with mean embeddings, we can now pre-
dict the expected value of any function f in our RKHS:
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Figure 1: Synthetic data prediction performance. (A)
Mean Squared Error for prediction with different esti-
mated models. Each model was evaluated 1000 times;
see text for details. (B) Example of the HSE-HMM’s
predicted observations given a sequence of 100 control
inputs. As expected, the prediction is very accurate
at the current time-step but degrades over time.

E[f(o1:M ) | h, a1:M ] =
〈
f, µT O|h,a1:M

〉
(59)

The range of predictions we can make therefore de-
pends on our RKHS. For example, write πij(o1:M ) for
the function which extracts the ith coordinate of the
jth future observation. If these coordinate projections
are in our RKHS, we can compute E[(oj)i | h, a1:M ]
as the inner product of µT O|h,a1:M with πij . (Coordi-
nate projection functions are present, for example, in
the RKHS for a polynomial kernel, or in the RKHS
for a Gaussian kernel on any compact subset of a real
vector space.) Or, if our RKHS contains an indicator
function for a region A, we can predict the probability
that the future observations fall in A.

Sometimes the desired function is absent from our
RKHS. In this case, we can learn an approximation
from our training data by kernel linear regression. This
approximation has a particularly simple and pleasing
form: we compute fs = f(os:s+M−1) at each training
time point s, collect these fs into a single vector f , and
predict E[f(o1:M ) | h, a1:M ] = f>αh, where αh is the
vector of weights representing our state after history
h. In the experiments in Section 7 below, we use this
trick to evaluate the expected next observation.

7 EXPERIMENTS

7.1 SYNTHETIC DATA

First we tested our algorithm on a benchmark syn-
thetic nonlinear dynamical system [21, 22]:

ẋ1(t) = x2(t) − 0.1 cos (x1(t))
(
5x1(t) − 4x31(t) + x51(t)

)
− 0.5 cos (x1(t))u(t),

ẋ2(t) = − 65x1(t) + 50x31(t) − 15x51(t) − x2(t) − 100u(t),

y(t) = x1(t)

The output is y; the policy for the control input u
is zero-order hold white noise, uniformly distributed

between −0.5 and 0.5. We collected a single trajectory
of 1600 observations and actions at 20Hz, and split it
into 500 training and 1200 test data points.

For each model, discussed below, we filtered for 1000
different extents t1 = 101, . . . , 1100, then predicted the
system output a further t2 steps in the future, for t2 =
1, . . . , 100. We averaged the squared prediction error
over all t1; results are plotted in Figure 1(A).

We trained a HSE-PSR using the algorithm described
in Section 5 with Gaussian RBF kernels and tests and
histories consisting of 10 consecutive actions and ob-
servations. The bandwidth parameter of the Gaussian
RBF kernels is set with the “median trick.” For com-
parison, we learned several additional models with pa-
rameters set to maximize each model’s performance:
a 5-dimensional nonlinear model using a kernelized
version of linear system identification (K-LDS) [22],
a 5-dimensional linear dynamical system (LDS) us-
ing a stabilized version of spectral subspace identifi-
cation [23, 24] with Hankel matrices of 10 time steps;
and a 50-state input-output HMM (IO-HMM) trained
via EM [2], with observations and actions discretized
into 100 bins. We also compared to simple baselines:
the mean observation and the previous observation.
The results (Figure 1(A)) demonstrate that the HSE-
PSR algorithm meets or exceeds the performance of
the competing models.

7.2 SLOT CAR

The second experiment was to model inertial measure-
ments from a slot car (1:32 scale) racing around a
track. Figure 2(A) shows the car and attached 6-axis
IMU (an Intel Inertiadot), as well as the 14m track.
([25, 20, 10] used a similar dataset.) We collected the
estimated 3D acceleration and angles of the car (ob-
servations) from the IMU as well as the velocity of the
car (the control input) at 10Hz for 2500 steps. We split
our data into 500 training and 2000 test data points.
The control policy was designed to maximize speed—
it is not blind, but our learning algorithm works well
despite this fact.

For each model, we performed filtering for 1000 dif-
ferent extents t1 = 501, . . . , 1500, then predicted an
IMU reading a further t2 steps in the future, for
t2 = 1, . . . , 500, using the given control signal. We
averaged the squared prediction error over all t1; re-
sults are plotted in Figure 2(B).

The models are: an HSE-PSR with Gaussian RBF ker-
nels on tests and histories consisting of 150 consecutive
actions and observations; a 40-dimensional nonlinear
model trained by K-LDS with the same settings as
our HSE-PSR; a stabilized 40-dimensional LDS with
Hankel matrices of 150 time steps; and a 50-state IO-
HMM, with observations and actions discretized into
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tom). (B) Mean Squared Error for prediction with
different estimated models. Each model was evaluated
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200 bins. We again included mean and previous obser-
vation as baselines.4 In general, the dynamical systems
designed for continuous observations and controls per-
formed well, but the HSE-PSR consistently yields the
lowest RMSE.

7.3 ARM END-EFFECTOR PREDICTION

In the final experiment we look at the problem of pre-
dicting the 3-d position of the end-effector of a simu-
lated Barrett WAM robot arm observed by a depth-
camera. Figure 3(A) shows example depth images.

We collected 1000 successive observations of the arm
motor babbling. The data set consisted of depth maps
and the 3D position of the end-effector along with the
joint angles of the robot arm (which we treat as the
control signal). The goal was to learn a nonlinear dy-
namical model of the depth images and 3D locations
in response to the joint angles, both to remove noise
and to account for hysteresis in the reported angles.
After filtering on the joint angles and depth images,
we predict current and future 3D locations of the end-
effector. We used the first 500 data points as training
data, and held out the last 500 data points for testing
the learned models.

For each model described below, we performed filter-
ing for 400 different extents t1 = 51, . . . , 450 based
on the depth camera data and the joint angles, then
predicted the end effector position a further t2 steps
in the future, for t2 = 1, 2..., 50 using just the inputs.
The squared error of the predicted end-effector posi-
tion was recorded, and averaged over all of the extents
t1 to obtain the means plotted in Figure 2(B).

We trained a HSE-PSR with Gaussian RBF kernels
and tests and histories consisting of 5 consecutive ac-

4Like a stopped clock, the previous observation (the
green dotted line) is a good predictor every 130 steps or so
as the car returns to a similar configuration on the track.
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Figure 3: Robot end-effector prediction. (A) Observa-
tions consisted 640x480 pixel depth images of a robot
arm. (B) Mean Squared Error (in cm) for end-effector
prediction with different learned models. Each model
was evaluated 400 times; see text for details.

tions and observations. For comparison, we learned
a 100-dimensional nonlinear model using K-LDS with
the same settings as our HSE-PSR, a stabilized 100-
dimensional LDS with Hankel matrices of 5 time steps;
and a 100-state discrete IO-HMM where observations
and actions were discretized into 100 values. This is a
very challenging problem and most of the approaches
had difficulty making good predictions. For example,
the K-LDS learning algorithm generated an unstable
model and the stabilized LDS had poor predictive ac-
curacy. The HSE-PSR yields significantly lower mean
prediction error compared to the alternatives.

8 CONCLUSION

In this paper we attack the problem of learning a con-
trolled stochastic process directly from sequences of ac-
tions and observations. We propose a novel and highly
expressive model: Hilbert space embeddings of predic-
tive state representations. This model extends discrete
linear PSRs to large and continuous-valued dynamical
systems. With the proper choice of kernel, HSE-PSRs
can represent near-arbitrary continuous and discrete-
valued stochastic processes.

HSE-PSRs also admit a powerful learning algorithm.
As with ordinary PSRs, the parameters of the model
can be written entirely in terms of predictive distribu-
tions of observable events. (This is in stark contrast
to latent variable models, which have unobservable pa-
rameters that are usually estimated by heuristics such
as EM.) Unlike previous work on continuous-valued
PSRs, we do not assume that predictive distributions
conform to particular parametric families. Instead, we
define the HSE-PSR state as the nonparametric em-
bedding of a conditional probability operator in a char-
acteristic RKHS, and use recent theory developed for
RKHS embeddings of distributions to derive sample-
based learning and filtering algorithms.
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