Lecture 14 Shape

ch. 9, sec. 1-8, 12-14 of Machine Vision by Wesley E. Snyder \& Hairong

 QiSpring 2024
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Shape Analysis

- Image analysis requires quantification of image contents
- We desire a relatively small number of highly meaningful image descriptors.
-But, segmentation gives us lots of data.
- We need a way to derive meaningful measures from a segmentation.

Shape Analysis

Segmentation
(Pixel labeling from object differentiation)

Image Understanding
(By means of shape analysis)

- How can I quantify the shape of this object?
- What, physically, is this segmented object?
- Does it look normal?

Shape Analysis \& Linear Transformations

- We want to identify objects...
- Based on numerical shape descriptors.
- But:
- Changing the the zoom (size), position, or orientation of an object (or the "camera") changes the contents of the resulting image.
- We often need...
- Shape descriptors that evaluate to the same (vector or scalar) value for all sizes, positions, and/or orientations of any given shape

Shape Analysis \& Linear Transformations

- Most shape descriptors are not invariant to all linear transforms.
- Many are not even invariant to similarity transformations
- Similarity transforms (i.e. pose transforms):
- Translation and/or rotation only
- Do not change the "shape" of an object

A digression into transformations

- Linear transforms can be implemented as a matrix that multiplies the vector coordinates of each pixel in an object
- Example of rotating shape S about the z-axis (2D in-plane rotation):

$$
\begin{aligned}
& S^{\prime}=R_{Z} S=\left[\begin{array}{c}
\cos \\
\sin \\
\text { everal types: }
\end{array}\right.
\end{aligned}
$$

- Rotation
- Translation
- Zoom
- Affine
- skew

- different scaling in different directions
- Perspective
- lines stay straight, but not parallel

Homogeneous coordinates

-What:

- A slick way to implement translation via matrix multiplication
-How:
- Add the "dummy" coordinate of 1 to the end of every coordinate vector:

$$
X^{\prime}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & d x \\
\sin \theta & \cos \theta & d y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Transformations for Medical Imaging

- In medical imaging, we usually don't have optical perspective.
- So, we usually don't want or need invariance to perspective transformations.
- We often don't even need affine transforms.
- In medical imaging, we know the size of each voxel.
- So, in some cases, we don't want or need invariance to scale/zoom either.

PCA (K-L Expansion)

- Big Picture: Fitting a hyper-ellipsoid \& then (typically) reducing dimensionality by flattening the shortest axes
- Same as fitting an ($\mathrm{N}+1$)-dimensional multivariate Gaussian, and then taking the level set corresponding to one standard deviation
- Mathematically, PCA reduces the dimensionality of data by mapping it to the first n eigenvectors (principal components) of the data's covariance matrix
- The first principal component is the eigenvector with the largest eigenvalue and corresponds to the longest axis of the ellipsoid
- The variance along an eigenvector is exactly the eigenvector's eigenvalue
- This is VERY important and VERY useful. Any questions?

Basic Shape Descriptors

- Trivial to compute—O(n) with a small coefficient:
- Average, max, and min intensity
- Area (A) and perimeter ${ }^{*}$ (P)
- Thinness / compactness / isoperimetric measure (T), if based on $\mathrm{P}^{2} / \mathrm{A}$
- Center of mass (i.e. center of gravity) $\longrightarrow \mathbf{m}=\frac{1}{N} \sum_{i=1}^{N}\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]$
- $X-Y$ Aspect Ratio
Easy to compute:
- Number of holes

- Triangle similarity (ratio of side lengths to P)

Basic Shape Descriptors

- Requires PCA first, which itself is $O\left(D^{3}+D^{2} n\right)$:
- Approximate minimum aspect ratio
- Approximate diameter (D)

- Thinness / compactness / isoperimetric measure (T), if based on D/A
- O($n \log n$):
- Convex discrepancy

- Difficult to compute:
- Exact diameter = absolute max chord
- Exact minimum aspect ratio
- Symmetry, mirror or rotational
* Perimeter has several definitions; some are difficult to compute

Shape Analysis in (Simple)ITK

- SimpleITK's LabelShapeStatisticsImageFilter:
- http://www.itk.org/SimplelTKDoxygen/html/classitk 11 simple 1 1LabelShapeStatisticsImageFilter.html
- Underlying ITK Filter \& Data Classes:
- http://www.itk.org/Doxygen/html/classitk 1 1Labellma geToShapeLabelMapFilter.html
- http://www.itk.org/Doxygen/html/classitk 1 1ShapeLab elObject.html
- C++ ITK Example:
- http://www.itk.org/Doxygen/html/WikiExamples 2lmag eProcessing 2ShapeAttributes 8cxx-example.htm

Method of Normalization

- Idea: Transform each shape’s image region into a canonical frame before attempting to identify shapes
-Simple, but common, example:
- Move origin to the center of gravity (CG) of the current shape
- Used by central moments (next slide)
- Complex example:
- Attempt to compute and apply an affine transform to each object such that all right-angle-triangle objects appear identical

Moments

- Easy to calculate
- Sequence of derivation:
- Moments: $m_{p q}=\sum x^{p} y^{q} f(x, y)$
- Central moments: $\mu_{p q}$ (origin @ CG)
- Normalized central moments: $\eta_{p q}$
- Invariant to translation \& scale
- Invariant moments: φ_{n}
- Invariant to translation, rotation, \& scale
- Only 7 of them in 2D
- Equations are in the text
-Problem: Sensitive to quantization \& sampling

Chain codes

- Describe the boundary as a sequence of steps
- Typically in 2D each step direction is coded with a number
- Conventionally, traverse the boundary in the counterclockwise direction
- Useful for many things, including syntactic pattern recognition

Fourier Descriptors

- Traverse the boundary
- Like for chain codes
- But, take the FT of the sequence of boundarypoint coordinates
- In 2D, use regular FT with $i=y$-axis
- Equivalences make invariance "easy":
- Translation = DC term
- Scale = multiplication by a constant
- Rotation about origin = phase shift
- Problem: Quantization error

Medial Axis

- I may revisit this in another lecture (if time allows)
-For now:
- Locus of the centers of the maximal bi-tangent circles/spheres/...

Deformable Templates

- Represent a shape by the active contour that segments it
- Deforming the contour deforms the shape
- Two shapes are considered similar if the boundary of one can be "easily" deformed into the boundary of the other.
- E.g., "easy" = small strain on the deformed curve and low energy required to deform the curve

Generalized Cylinders (GCs)

-Fit a GC to a shape

- This can be challenging
- Get two descriptive functions:
- Axis of the GC
- A vector-valued function
- Radius along the axis
- Typically a scalar-valued function

