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Shape Analysis

§Image analysis requires quantification of image 
contents
§We desire a relatively small number of highly meaningful 

image descriptors.

§But, segmentation gives us lots of data.
§We need a way to derive meaningful measures 

from a segmentation.

2



Shape Analysis

§How can I quantify the 
shape of this object?

§What, physically, is this 
segmented object?

§Does it look normal?
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Segmentation
(Pixel labeling from object differentiation)

Image Understanding
(By means of shape analysis)



Shape Analysis &
Linear Transformations
§We want to identify objects…

§ Based on numerical shape descriptors.

§But:
§ Changing the the zoom (size), position, or orientation of an object 

(or the “camera”) changes the contents of the resulting image.

§We often need…
§ Shape descriptors that evaluate to the same (vector or scalar) value 

for all sizes, positions, and/or orientations of any given shape
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Shape Analysis &
Linear Transformations
§Most shape descriptors are not invariant to all 

linear transforms.
§Many are not even invariant to similarity 

transformations
§Similarity transforms (i.e. pose transforms):
§Translation and/or rotation only
§Do not change the “shape” of an object
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A digression into transformations

§ Linear transforms can be implemented as a matrix that 
multiplies the vector coordinates of each pixel in an object
§ Example of rotating shape S about the z-axis (2D in-plane rotation):

§Several types:
§ Rotation
§ Translation
§ Zoom
§ Affine
§ skew
§ different scaling in different directions

§ Perspective
§ lines stay straight, but not parallel
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Coordinates
of point 1 in

shape S

Coordinates
of point 3 in

shape S



Homogeneous coordinates

§What:
§A slick way to implement translation via matrix 

multiplication

§How:
§Add the “dummy” coordinate of 1 to the end of 

every coordinate vector:
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Transformations for Medical 
Imaging
§In medical imaging, we usually don’t have optical 

perspective.
§So, we usually don’t want or need invariance to 

perspective transformations.
§We often don’t even need affine transforms.

§In medical imaging, we know the size of each 
voxel.
§So, in some cases, we don’t want or need invariance to 

scale/zoom either.
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§ Big Picture:  Fitting a hyper-ellipsoid & then (typically) reducing dimensionality 
by flattening the shortest axes

§ Same as fitting an (N+1)-dimensional multivariate Gaussian, and then taking 
the level set corresponding to one standard deviation

§ Mathematically, PCA reduces the dimensionality of data by mapping it to the 
first n eigenvectors (principal components) of the data’s covariance matrix

§ The first principal component is the eigenvector with the largest eigenvalue 
and corresponds to the longest axis of the ellipsoid

§ The variance along an eigenvector is exactly the eigenvector’s eigenvalue
§ This is VERY important and VERY useful.  Any questions?
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Basic Shape Descriptors

§Trivial to compute—O(n) with a small coefficient:
§Average, max, and min intensity
§Area (A) and perimeter* (P)
§Thinness / compactness / isoperimetric measure (T), if 

based on P2/A
§Center of mass (i.e. center of gravity)
§X-Y Aspect Ratio

§Easy to compute:
§Number of holes
§Triangle similarity (ratio of side lengths to P)
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Basic Shape Descriptors

§Requires PCA first, which itself is O(D3+D2n):
§ Approximate minimum aspect ratio
§ Approximate diameter (D)
§ Thinness / compactness / isoperimetric measure (T), if 

based on D/A
§O(n log n):

§ Convex discrepancy
§Difficult to compute:

§ Exact diameter = absolute max chord
§ Exact minimum aspect ratio
§ Symmetry, mirror or rotational
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Shape Analysis in (Simple)ITK

§SimpleITK’s LabelShapeStatisticsImageFilter:
§http://www.itk.org/SimpleITKDoxygen/html/classitk_1_1

simple_1_1LabelShapeStatisticsImageFilter.html
§Underlying ITK Filter & Data Classes:
§http://www.itk.org/Doxygen/html/classitk_1_1LabelIma

geToShapeLabelMapFilter.html
§http://www.itk.org/Doxygen/html/classitk_1_1ShapeLab

elObject.html
§C++ ITK Example:
§http://www.itk.org/Doxygen/html/WikiExamples_2Imag

eProcessing_2ShapeAttributes_8cxx-example.html
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Method of Normalization

§Idea:  Transform each shape’s image region into a 
canonical frame before attempting to identify 
shapes

§Simple, but common, example:
§Move origin to the center of gravity (CG) of the current 

shape
§Used by central moments (next slide)

§Complex example:
§Attempt to compute and apply an affine transform to 

each object such that all right-angle-triangle objects 
appear identical
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Moments

§Easy to calculate
§Sequence of derivation:
§Moments:  mpq = ∑ xp yq f (x,y)
§Central moments: µpq (origin @ CG)
§Normalized central moments:  hpq
§ Invariant to translation & scale

§ Invariant moments:  jn
§ Invariant to translation, rotation, & scale
§ Only 7 of them in 2D
§ Equations are in the text

§Problem:  Sensitive to quantization & sampling
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§Describe the boundary as a sequence of steps
§ Typically in 2D each step direction is coded with a number

§Conventionally, traverse the boundary in the counter-
clockwise direction

§Useful for many things, including syntactic pattern 
recognition
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Fourier Descriptors

§Traverse the boundary
§ Like for chain codes

§But, take the FT of the sequence of boundary-
point coordinates
§ In 2D, use regular FT with i = y-axis

§Equivalences make invariance “easy”:
§Translation = DC term
§Scale = multiplication by a constant
§Rotation about origin = phase shift

§Problem:  Quantization error
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Medial Axis

§I may revisit this in 
another lecture (if 
time allows)
§For now:
§Locus of the centers of 

the maximal bi-tangent 
circles/spheres/…
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Deformable Templates

§Represent a shape by the active contour that 
segments it
§Deforming the contour deforms the shape

§Two shapes are considered similar if the boundary 
of one can be “easily” deformed into the boundary 
of the other.
§E.g., “easy” = small strain on the deformed curve and low 

energy required to deform the curve
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Generalized Cylinders (GCs)

§Fit a GC to a shape
§This can be challenging

§Get two descriptive functions:
§Axis of the GC
§A vector-valued function

§Radius along the axis
§Typically a scalar-valued function
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