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Lecture 8—Image 
Relaxation: Restoration and 

Feature Extraction
ch. 6 of Machine Vision by Wesley E. Snyder & Hairong Qi



§Remember, all measured 
images are degraded
§ Noise (always)
§ Distortion = Blur (usually)

§ False edges
§ From noise

§Unnoticed/Missed edges
§ From noise + blur
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We need an “un-degrader”…

§To extract “clean” features for 
segmentation, registration, etc.
§Restoration
§A-posteriori image restoration
§Removes degradations from images

§Feature extraction
§Iterative image feature extraction
§Extracts features from noisy images
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Image relaxation

§ The basic operation performed by:
§ Restoration
§ Feature extraction (of the type in ch. 6)

§An image relaxation process is a multistep algorithm with 
the properties that:
§ The output of a step is the same form as the input (e.g., 2562 image 

to 2562 image)
§ Allows iteration

§ It converges to a bounded result
§ The operation on any pixel is dependent only on those pixels in 

some well defined, finite neighborhood of that pixel. (optional)
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Restoration:
An inverse problem

§Assume:
§An ideal image,  f
§A measured image, g
§A distortion operation, D
§Random noise, n

§Put it all together:
g = D( f ) + n
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Restoration is ill-posed

§Even without noise
§Even if the distortion is linear blur
§Inverting linear blur = deconvolution

§But we want restoration to be well-posed…
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A well-posed problem

§g = D( f ) is well-posed if:
§For each f, a solution exists,
§The solution is unique, AND
§The solution g continuously depends on the data f

§Otherwise, it is ill-posed
§Usually because it has a large condition number:

K >> 1
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Condition number, K

§K » D output  /  D input
§For the linear system b = Ax
§K = ||A|| ||A-1||
§K Î [1,∞)
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K for convolved blur

§Why is restoration ill-posed for simple blur?
§Why not just linearize a blur kernel, and then take 

the inverse of that matrix?
§F = H-1G

§Because H is probably singular
§If not, H almost certainly has a large K
§ So small amounts of noise in G will make the computed 

F almost meaningless
§See the book for great examples
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Regularization theory
to the rescue!
§How to handle an ill-posed problem?
§Find a related well-posed problem!
§One whose solution approximates that of our ill-posed 

problem
§E.g., try minimizing:

§But unless we know something about the noise, this is 
the exact same problem!
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Digression: Statistics

§Remember Bayes’ rule?

§p( f | g ) = p( g | f ) * p( f ) / p( g )
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Maximum a posteriori (MAP) 
image processing algorithms
§ To find the f underlying a given g:

1. Use Bayes’ rule to “compute all” p( fq | g )
§ fq Î (the set of all possible f )

2. Pick the fq with the maximum p( fq | g )
§ p( g ) is “useless” here (it’s constant across all fq)

§ This is equivalent to:
§ f = argmax( fq)   p( g | fq ) * p( fq ) 
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Probabilities of images

§Based on probabilities of pixels
§For each pixel i:
§ p( fi | gi ) µ p( gi | fi ) * p( fi )

§Let’s simplify:
§Assume no blur (just noise)
§ At this point, some people would say we are denoising the image.

§ p( g | f ) = ∏ p( gi | fi )
§ p( f ) = ∏ p( fi )
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Probabilities of pixel values

§p( gi | fi )
§ This could be the density of the noise…
§ Such as a Gaussian noise model
§= constant * esomething

§p( fi )
§ This could be a Gibbs distribution…
§ If you model your image as an ND Markov field

§ = esomething

§See the book for more details
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Put the math together

§Remember, we want:
§ f = argmax( fq)  p( g | fq ) * p( fq )
§where fq Î (the set of all possible f )

§And remember:
§ p( g | f )  =  ∏ p( gi | fi ) =  constant * ∏ esomething
§ p( f )       =  ∏ p( fi )       =                   ∏ esomething

§where i Î (the set of all image pixels)
§But we like ∑something better than ∏esomething, so 

take the log and solve for:
§ f = argmin( fq)  ( ∑ p’ ( gi | fi ) + ∑ p’( fi )  )
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Objective functions

§We can re-write the previous slide’s final equation 
to use objective functions for our noise and prior 
terms:
§ f = argmin(fq)  ( ∑ p’( gi | fi ) + ∑ p’( fi )  )

ß

§ f = argmin(fq)  ( Hn( f, g ) + Hp( f )      )

§We can also combine these objective functions:
§H( f, g ) = Hn( f, g ) + Hp( f )
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Purpose of the objective 
functions
§Noise term Hn( f, g ):
§ If we assume independent, Gaussian noise for each pixel,
§We tell the minimization that f should resemble g.

§Prior term (a.k.a. regularization term) Hp( f ):
§ Tells the minimization what properties the image should 

have
§Often, this means brightness that is:
§ Constant in local areas
§ Discontinuous at boundaries
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Minimization is a beast!

§Our objective function is not “nice”
§ It has many local minima
§ So gradient descent will not do well

§We need a more powerful optimizer:
§Mean field annealing (MFA)
§Approximates simulated annealing
§But it’s faster!
§ It’s also based on the mean field approximation of 

statistical mechanics
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MFA

§ MFA is a continuation method
§ So it implements a homotopy

§ A homotopy is a continuous deformation of one 
hyper-surface into another

§ MFA procedure:
1. Distort our complex objective function into a convex 

hyper-surface (N-surface)
§ The only minima is now the global minimum

2. Gradually distort the convex N-surface back into our 
objective function
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MFA: Single-Pixel Visualization

Continuous deformation of a function which is 
initially convex to find the (near-) global 
minimum of a non-convex function.
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Generalized objective 
functions for MFA
§Noise term:

§ (D( f ))i denotes some distortion (e.g., blur) of image f in the vicinity 
of pixel I

§Prior term:

§ t represents a priori knowledge about the roughness of the image, 
which is altered in the course of MFA

§ (R( f ))i denotes some function of image f at pixel i
§ The prior will seek the f which causes R( f ) to be zero (or as close to 

zero as possible)
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R( f ): choices, choices

§Piecewise-constant images

§ =0 if the image is constant
§ »0 if the image is piecewise-constant (why?)

§ The noise term will force a piecewise-constant image
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R( f ): Piecewise-planer images

§ =0 if the image is a plane
§ »0 if the image is piecewise-planar

§ The noise term will force a piecewise-planar image
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Graduated nonconvexity (GNC)

§Similar to MFA
§Uses a descent method
§Reduces a control parameter
§Can be derived using MFA as its basis
§ “Weak membrane” GNC is analogous to piecewise-

constant MFA
§But different:
§ Its objective function treats the presence of edges 

explicitly
§ Pixels labeled as edges don’t count in our noise term
§ So we must explicitly minimize the # of edge pixels
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Variable conductance diffusion 
(VCD)

§Idea:
§Blur an image everywhere,
§except at features of interest
§ such as edges
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§Where:
§ t = time
§Ñi f = spatial gradient of f at pixel i
§ ci = conductivity (to blurring)
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Isotropic diffusion

§If ci is constant across all pixels:
§Isotropic diffusion
§Not really VCD

§Isotropic diffusion is equivalent to convolution 
with a Gaussian

§The Gaussian’s variance is defined in terms of t
and ci
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VCD

§ci is a function of spatial coordinates, 
parameterized by i
§ Typically a property of the local image intensities
§Can be thought of as a factor by which space is locally 

compressed
§To smooth except at edges:
§ Let ci be small if i is an edge pixel
§ Little smoothing occurs because “space is stretched” or “little heat 

flows”
§ Let ci be large at all other pixels
§ More smoothing occurs in the vicinity of pixel i because “space is 

compressed” or “heat flows easily”
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VCD

§A.K.A. Anisotropic diffusion
§With repetition, produces a nearly piecewise 

uniform result
§ Like MFA and GNC formulations
§ Equivalent to MFA w/o a noise term

§Edge-oriented VCD:
§VCD + diffuse tangential to edges when near edges

§Biased Anisotropic diffusion (BAD)
§ Equivalent to MAP image restoration
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§ From the Scientific Applications and Visualization Group at NIST
§ http://math.nist.gov/mcsd/savg/software/filters/
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§Mirebeau J., Fehrenbach J., Risser L., Tobji S., 
“Anisotropic Diffusion in ITK”, the Insight Journal

§Images copied per Creative Commons license
§http://www.insight-journal.org/browse/publication/953

§ Then click on the “Download Paper” link in the top-right
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Various VCD Approaches:
Tradeoffs and example images



Edge Preserving Smoothing

§Other techniques constantly being developed 
(but none is perfect)
§E.g., “A Brief Survey of Recent Edge-Preserving 

Smoothing Algorithms on Digital Images”
§https://arxiv.org/abs/1503.07297

§SimpleITK filters:
§BilateralImageFilter
§Various types of AnisotropicDiffusionImageFilter
§Various types of CurvatureFlowImageFilter
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Congratulations!

§ You have made it through most of the “introductory” 
material.

§Now we’re ready for the “fun stuff.”
§ “Fun stuff” (why we do image analysis):

§ Segmentation
§ Registration
§ Shape Analysis
§ Etc.
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