(©) 2016 by Dennis Edward Griffith. All rights reserved.

POLARIZED SUBSTRUCTURAL SESSION TYPES

BY

DENNIS EDWARD GRIFFITH

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Research Professor Elsa L. Gunter, Chair
Professor Frank Pfenning, Carnegie Mellon University, Co-Advisor

Professor Carl Gunter
Professor Gul Agha

Abstract

Concurrent processes can be extremely difficult to reason about, both for pro-
grammers and formally. One approach to coping with this difficulty is to study
new programming languages and type features such as Session Types. Session
types take as their conceptual notion of concurrency as a collection of pro-
cesses linked together via channels and provide type-level coordination between
processes using these channels.

Logically motivated programming languages exploit the idea that providing
a proof of a theorem in a logic is similar to proving that a given term has a
particular type in a programming language and vice versa. These connections
can be interesting for a few different reasons. First, when language and logic are
independently discovered and independently useful, the existence of a connection
suggests that both are onto some fundamentally important idea. Additionally, a
connection provides a basis both for sanity checking our ideas and also can be
fruitful grounds for inspiration by seeing how variants of either the logic or the
language are reflected through the connection.

This thesis primarily describes an exploration of logically motivated session
types, SILL. Polarization, classifying propositions as either positive or negative,
provides a natural way to describe a logically based session typing language
with asynchronous communication while retaining a semantics that is reasonably
implementable. Additionally, polarization gives us a way to smoothly integrate
synchronous channels into SILL without needing a semantic extension. When
combined with Adjoint Logic, this gives us an ability to incorporate a variety of
modalities with relatively little work. From a practical perspective, this gives
SILL access to persistent processes and garbage collection.

We additionally explore a trio of loosely related extensions to SILL, and their
logical connections, inspired by the above results: bundled message passing to
reduce the number of communications performed by processes; racy programs,
enabled by a select/epoll-like mechanism; and asynchronous receiving, an almost
generalization of the basic asynchronous semantics. We have three different
implementations of SILL: a simple but relatively full featured interpreter written
in OCaml; a fragment of SILL as an embedded domain specific language in

Haskell; and a cleaner version of the same in Idris.
Lastly, we show that Liquid Types and Session Types are compatible. This
gives us one notion of a dependently session typed language.

ii

Table of Contents

Listof Figures 0 i it i i ittt i v
Chapter 1 Introduction 1
1.1 Motivation 1
1.1.1 Types oo e 1

1.1.2 Concurrency 2

1.1.3 Logically Based Languages 2

1.2 Claimso 0 3
1.3 Outlineof Thesis 3
Chapter 2 Background 5
2.1 m-calculus)
2.2 Session Types 6
2.3 Curry-Howard Connections 8
2.4 Substructural Logics o 9
2.5 Dependent Typeso 10
2.6 Bidirectional Type Checking 11
Chapter 3 Value-Dependent Session Types 14
3.1 Basics 14
3.2 Inferencing 16
3.2.1 Simple Types 17

3.22 Constraints 17

3.2.3 Solving 19
Chapter 4 Curry-Howard Session Types 21
4.1 Polarization 21
4.1.1 Polarized Intuistionistic Linear Logic 21

4.1.2 Cutting Apart CUT 23

4.1.3 Syntax 24

4.14 TypingRules L. 25

4.1.5 Semantics 25

4.1.6 Syntactic Sugaro 30

4.1.7 Example: Prime Sieve 31

4.1.8 Well-typed Polarized Configurations 33

4.1.9 Theorems o 35

4.1.10 Related Work L 43

4.2 Focusing 45
4.2.1 Theorems 46

4.2.2 Focused Logics L 46

423 Related Work oo 49

4.3 Racy Programs L. 50

iii

4.3.1 Theorems e 54

4.3.2 Related Work 55

4.4 Asynchronous Reading 56
4.4.1 Related Work 59

4.5 Polymorphism.o oo 60
4.5.1 Example: Queue of Channels 62

4.5.2 Quantifiers 63

453 Theorems 64

454 Related Work 66

4.6 Polarized Adjoint Logic oL 67
4.6.1 Categorical Truth 67

4.6.2 Adjoint Logic 70

4.6.3 Polarized Adjoint Logic 73

4.6.4 Theorems 75

4.6.5 Sequent Calculus for Polarized Adjoint Logic 79

4.6.6 Garbage Collection, 79

4.6.7 Related Work 82

4.7 Subtyping 82
4.7.1 Example: Permissions 87

4.72 Theorems 89

4.8 Forwardingo 92
Chapter 5 Implementation 98
5.1 Resource Management 98
5.2 Bidirectional Checking 103
5.3 Coinductive Subtyping Algorithm 105
5.4 Working With Infinite Equirecursive Types 108
5.5 OCaml 109
5.6 Haskell 111
5.6.1 Execution 119

5.6.2 Prime Sieve Example 124

5.6.3 Related Work 127

5.7 Idris 127
Chapter 6 Conclusion 130
6.1 Future Work 131
References 0 i i i i i e e e e e e e e e e e e 133
Appendix A Supplementary Listings 141
A1l SILL Logic e e e 141
A2 SILL Type System, 142
A3 SILL Semanticso 143
A4 OCaml SILL Syntax 143
Appendix B Code Listings 148
Bl OCaml. 148
B.2 Haskell. 148
B3 Idris 148

v

List of Figures

21

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4
9.5

Typing Rules for Simple Session Types 7
Type Rules for Refined Session Types 15
Constraint Generation Algorithm 20
Judgment for Polarized Intuitionistic Linear Logic 23
SILL Syntax o oo vt 25
SILL Type System 26
Well-typed Queues 34
Boundedness Judgment o000 42
Polarization Function 44
Altered Operational Rules for Bundled Messages 45
Weakly Focused Logic 48
New Racy Rules 52
First Come First Served vend Definition 53
Definition of REORDER 58
Out-of-order vs Asynchronous Receiving 59
Polarized Logic with Atomic Propositions 61
Queue Example 62
Polarized Adjoint Logic 80
Naive Resource Tracking 101
Coinduction for Subtyping 106
GADT for SILL Types oo oo 112
Unfolding SILL Session Types 112
Indexed Monadic Forwarding 123

Chapter 1

Introduction

This thesis describes an exploration in concurrent programming language design,
focusing on session types. Our aim is to study logically motivated session typing
systems which have received increasing research attention recently [16, 28,72, 89,
94]. The main result of this investigation is SILL, a language that demonstrates
the compatibility of a number of interesting and practically important language

features with a logical basis.

1.1 Motivation

Modern computers force programmers to think about concurrency frequently,
but modern programmers are often equipped languages that were designed with
concurrency as a secondary focus. This leaves an opportunity for new languages
with a greater care for concurrency to be developed and understood, hopefully
enabling better tools for mainstream programmers. We hope SILL might be

another step in developing such languages.

1.1.1 Types

When programming there is a strong need to classify the behaviors of programs
to enable thinking about them at a high-level and ensure compatibility of
interaction between components of the program. Good type systems assist the
programmer in several important ways. First, they give users a vocabulary for
thinking about their program behavior, discussing programs and problems with
colleagues, and documenting work. Additionally, types help programmers avoid
dangerous (either unambiguously wrong or hard to get right) programs. Lastly,
types can provide a convenient basis for language implementation design or even
enable critical optimizations.

When statically checked, types become even more exciting. One of the
most compelling feature of type systems is that their banning of bad behavior
means that static checks can rule out entire, hopefully broad and important,
classes of bugs before code is executed. In this sense static type systems can be
thought of as one of the most important and widely deployed formal verification
methods. When made explicit in the program, types can serve as machine

checked documentation, more usefully with more expressive type systems. When

inferable, static type systems can provide most, or all, of the convenience of their
dynamically checked, or unchecked, counterparts with no extra user overhead
and some of the previously mentioned benefits. Lastly, these types can enable
comparatively expensive type-directed optimizations, of which we will see an
example of in this thesis, by amortizing the cost of performing the optimization

across all runs of a program.

1.1.2 Concurrency

Concurrent processes can be extremely difficult to reason about, both for pro-
grammers and formally. One approach to coping with this difficulty is to study
new programming languages and paradigms that try to simplify this task, gen-
erally by only allowing for well behaved programs to be constructed, as with
type systems. There has been both a large amount of foundational work in this
area [3,59,60,83] as well as practical languages resulting from this work [6,67].
Some of these, particularly when intended for high-performance computing, work
by attaching new abstractions to existing languages or paradigms that either
make concurrent programs easy to right correctly [78] or completely ban certain
classes of dangerous concurrent behavior [52,79,86], e.g., raciness for software
transactional memory.

One approach to these concurrency problems that has been receiving increas-
ing attention is session types [15,16,28,36,42,46,61,62,64,72,75,90,91,99]. Session
types take as their conceptual notion of concurrency a collection of processes
linked together via channels. Naively integrated, channels have a number of prob-
lems due to the need to coordinate the involved processes’ behaviors to enable
sensible communication. Session types help us answer the following coordination
questions about the users of a channel at any given point of program execution:
“Who is sending information?”; “Who is receiving information?”; “What sort of
information is being sent?” Each of these questions can have different answers
depending on the system. The first question is invariably answered with only
one process, but we can either have a constant process for a channel [39] or a
potentially different process for every communication along a channel [41]. The
second question allows us to say whether the channel is involved in point-to-point
communication, if only one process can receive the information, and the most
common choice, or broadcast communication [46], a relatively unexplored space.
The last question has a variety of answers, from the simplest of “a single fixed
type,” to elaborate systems that allow for the transmission of channels over
channels [41]. Another question some session typing systems can answer is how

to coordinate the behavior of multiple processes [42].

1.1.3 Logically Based Languages

Logically motivated programming languages [33, 68,94, 95] exploit the idea that

providing a proof of a theorem in a logic is similar to proving that a given

term has a particular type in a programming language and vice versa. These
connections can be interesting for a few different reasons. First, when language
and logic are independently discovered and independently useful, the existence
of a connection suggests that both are onto some fundamentally important idea.
Additionally, a connection provide a basis both for sanity checking our ideas
and also can be fruitful grounds for inspiration by seeing how variants of either
the logic or the language are reflected through the connection. In this thesis
we will mostly be concerned with how polarization of substructural logics and
related concepts can help us design a logically motivated language for concurrent

programming using session types.

1.2 Claims

The main claims of this thesis are the following:

e Polarization provides a natural way to describe a logically based session
typing language with asynchronous communication while retaining a se-
mantics that is reasonably implementable. Additionally, polarization gives
us a way to smoothly integrate synchronous channels into SILL without

needing a semantic extension.

e Polarization and Adjoint Logic combine very cleanly, giving SILL an ability
to incorporate a variety of modalities with relatively little work. From a
practical perspective, this gives SILL access to persistent processes and

garbage collection for processes.

e We explore a trio of loosely related language extensions, and their logi-
cal connections, inspired by the above results: bundled message passing
to reduce the number of communications performed by processes; racy
programs, enabled by a select/epoll-like mechanism; and asynchronous

receiving, a generalization of the basic asynchronous semantics.

o We have three different implementations of SILL: a simple but relatively
full featured interpreter written in OCaml; a fragment of SILL as an
embedded domain specific language in Haskell; and a cleaner version of

the same in Idris.

e We show that Liquid Types and Session Types are compatible. This gives

us one notion of a dependently session typed language.

1.3 Outline of Thesis

Chapter 2 covers background material needed for the remainder of this thesis.
This should be a self-contained reference for those unfamiliar with the mate-

rial, but contains no novel results itself. Contained are short references on

the m-alculus, Session Types, Curry-Howard style connections between logics
and type systems, Substructural Logics, Dependent Types, and Bidirectional
Typechecking.

Chapter 3 describes an integration of Liquid Typing [82] into a session typed
m-calculus. This provides a mechanism for increasing the expressivity of session
types by enabling more precise descriptions of data communicated across channels
in the system, all while maintaining the ability to perform type inference. These
precise descriptions are enabled by adding a very restricted class of dependent
types to the language.

Chapter 4 introduces SILL, a logically rooted language for concurrent com-
putation. We first introduce polarized logic and the fragment of SILL based
on it, showing a Preservation and Progress result as well as showing how the
Curry-Howard interpretation of polarization gives us an ability to intermingle
synchronous and asynchronous channels in a typed fashion. Next we study an al-
ternate, message bundling semantics for SILL related to focused logics [9,51] and
show the expected Preservation and Progress results. Additionally, we present
one solution to an open question on how to appropriately incorporate racy be-
havior into session typed programs by exploring the Curry-Howard implications
of a result used in proof search, showing the expected progress and preservation
results. Then we describe a counterpart of the standard asynchronous semantics
that also enables receiving along a channel to be performed asynchronously.
Along with the expected Preservation and Progress, we show that this semantics
can be reduced to the construct introduced in the section on racy programs.
Next we describe a simple integration of polymorphism into SILL along with
Curry-Howard interpretations of quantification. Then we explore an integration
of polarization and Adjoint Logic [77], which are surprisingly easy to combine,
allowing us to integrate more modalities from substructural logic, e.g., the affine
modality allows us to easily discard unneeded processes. We then explore a
notion of subtyping on branches in SILL and show how it might be applied
to some security concerns and limitations exposed while doing so. Lastly, we
discuss alternate mechanisms for implementing forwarding and their theoretical
and practical properties.

Chapter 5 covers some results needed for implementing SILL and then
describes three different implementations. This first and fullest featured is a
OCaml based interpreter that closely follows the development of SILL throughout
this thesis. The second shows how recent, and powerful, advances in Haskell’s
type system allow us to expose much of the functionality of SILL directly in
the language, including using Haskell’s do-notation to provide a pleasant syntax.
Lastly, we discuss an effort to implement SILL in Idris, whose richer type system
provided a chance to prototype the Haskell version of SILL in a more traditional

dependently typed language, and problems encountered during this.

Chapter 2

Background

2.1 m-calculus

The n-calculus [60] is a process algebra for modeling distributed computation.
It uses synchronous channels to pass data (including channel names) between
processes that execute in parallel. The 7-calculus can be viewed as a wrapper
providing these distributed communication constructs around some underlying
language of data and computation. For the purposes of this thesis we will assume
that the underlying language is a simple functional language. We will impose a
few other requirements on this underlying language in chapter 3. The syntax of
the 7-calculus, along with some informal meaning, is presented in the following
grammar, where x ranges over a set of data variables, e ranges over expressions
in the underlying functional language, k ranges over a distinct set of channel
names, 7 is a type from the underlying functional language, P; is a 7-indexed

family of processes, and X ranges over a distinct set of definition variables.

P :=0]|P|P|k\e).P|KkI(k).P
| k?(x).P | k?(k).P | if e then P else P | (vk)P | k<e.P; | case, k= P;
| def X (Z;k) = P in P | X(€,k)

Informally, 0 is the terminated process. The process Pj|| P is the processes
P, and P, executing in parallel. The process k!(e).P sends the result of e along
k and then continues as P. The process k1!(k2).P sends the channel ko over k;
and then continues as P. The process k7(x).P binds the next data value sent on
k to and then continues as P. The process k17 (kz).P receives the next channel
sent on k1 and then continues as P. The process if ¢ then P; else P, evaluates
e and proceeds as P; or P, as appropriate. The process (vk)P generates a
fresh channel and binds it to k. The process case, k = P; receives a value,
v, of type 7 along k then proceeds as the corresponding P,. The declaration
def X (&; E) = P; in P, defines X as process P; that can use the variables in
scope along with those supplied by ¥ and E, binds the definition to X, and
proceeds as P». The process X (€, E) calls the process defined by X and supplies
it as arguments the evaluated € and k. m-calculus semantics are traditionally
given in terms of a transition semantics that assumes a structural congruence

that brings together compatible send/receive instructions so that communication

can occur. For more details on semantics see Yoshida’s survey [99].

2.2 Session Types

Session Types [41,99] were introduced to provide a static characterization of the
temporal behavior of the m-calculus. They rule out some dangers present in the
m-calculus like the nondeterminism possible with channels held by more than
two processes and sending and receiving processes disagreeing over the type of
data being communicated. The type system disallows these while still allowing
for a high degree of expressiveness such as communicating channel names and
heterogeneous channel usage. The syntax of session types, S, is given by the
following grammar where ¢t ranges over a set of type variable names, 7 is a type

from the underlying functional language, and S; is a 7-indexed family of session

types.
Su=1|t|wS|TAS|[7D8|S®S|S—S| &{r:8}|&{r:Si}:

The informal meaning of these are as follows. 1 is the type of channels that
will have no further communication. The types pt.S and t allow us to construct
(possibly infinite) recursive types. We treat types equirecursively (i.e., we identify
a recursive type with its unfolding pt.S = S[ut.S/t]). The type 7 A S is that
of a channel that sends a data value of type 7 and then proceeds as S. The
type 7 D S is that of a channel that receives a data value of type 7 and then
proceeds as S. The type S1 ® S is that of a channel that sends a channel with
type S7 and then proceeds as S;. The type S; — S5 is that of a channel that
receives a channel with type S; and then proceeds as S;. The type &{7; : S;}-
is that of a channel that sends a piece of data of type 7 and then proceeds as
the appropriate 7-indexed S;. The type &{7; : S;} is that of a channel that
receives a piece of data of type 7 and then proceeds as the appropriate 7-indexed
S;. As with processes, our types have a notion of send/receive pairs. We define
the notion of a dual type to encode this correspondence. The dual of a session
type S is denoted S and defined below.

1=1 TAS=7D8 TOS=7AS
S1®8S; =251 — 5 Sp =S5 =585
&{r; : Sitr =8&{r : Si}r &{rmi: Si}r = B{r : Si}»

The session type system will use duality to match up compatible channel users.
A channel typing is a mapping from channel variables to session types. We use
I' = 1 to denote that all bindings in I" are 1. The last notation needed is for
marking polarity. Polarity markings are superscripts on channel names that will
allow us to distinguish the two conceptual “ends” of a channel so that we can

rule out send/receive confusion and more than two processes using a channel

O;V kg Pul,(kS) Ylhe:r OV, z:7kg PuT,(k:5S)

O; U kg kl(e).P =T, (kAS) T.SeNp O;V kg k?(x).P T, (k:7 D S) T-Rue

_ O;¥ g Pl (k:5)
r=1
==+ I.END T.THR
O;¥hkg0::T O; WU kg ky!l(k2).P T, (k1 : So®Sy), (ko : So)
O;U g P:Ty(kP:9),(kP:95) O;Utg Pl (k:S1), (ka:S2)
.Nu T.Car
O;Vtg (vEk)P::T ;U kg k17(ka).P : T, (k1: S2 — S1)
;¥ g Pl (kT :GX ;g Pl (k™ : G(X
SPEL (G e Pal (ki GX)
O; ¥ g accept X (k).P :: T O; ¥ t-g request X (k).P = T
O;Ukg Py O;0kgP::Ty
T.PAR
@; v l_S P“Q b Fl,rg
Uhke:Bool O;UFgPul O;0FgQ::T T
O; VU tgifethen Pelse @ :: T AF
Uhe:7 7:ENUM forier ©;¥kg P T (k:S;) T1
;U kg kel =T, (k:{r:Si}:) ANT
7:ENUM forieT: ©;U kg P T, (k:S;)
T.EXT
O;Vtgcase, k= P, T, (k:&{m:Si}r)
fori: 7he i I'=1
— - ———= T.CALL
(X :(7,9);¥ ks X(€k):T,(k:S)
0,(X: (790, (@:A)ksP:(k:S5) ©,(X:(75):;UrgQuT
T.DEF

O;W g def X(#k)=Pin Q=T
Figure 2.1: Typing Rules for Simple Session Types

at once. We use k1 to denote the positive end of channel k, £~ to denote the
negative “end”, and kP to denote swapping the polarity of kP.

When moving the session typed setting we add two small syntactic extension.
First, we add a pair keywords (request X (k).P) and (accept X (k).P) to initiate
sessions, which, informally, match a process that requests a new session X with
one that accepts its request. These two processes then communicate along
a new channel bound to k within both of their continuation processes. The
process k < e.P evaluates e and sends it along k then proceeds as P. This will
be distinguished from k!(e).P in the type system by allowing the the type of P
to depend on the value of e.

Using the notions above we can give the rules for session types. We use © to
denote a mapping from process variables to tuples of their argument types, ¥ to
denote typings for our functional variables, and I" to denote channel typings. We
use I'1, s to denote the merger of two channel typings that share no common

bindings.!

We use the hypothesis 7 : ENUM to denote that the type 7 is a
finite enumeration. Depending on the details underlying functional language
this may have different interpretations. These enumerations could be smoothly

generalized to algebraic datatypes, but we present only the simplified view to

IDifferently polarized channel names are treated as distinct.

avoid unneeded clutter. The judgment ©; ¥ Fg P :: I' denotes that, assuming
the definitions of © and the functional types in W, the free channel variables of
process P have the session types in I'. We use ¥ I e : 7 to denote that the type
system for the underlying functional language proves that e has type 7 from
the assumptions in ¥. We assume that sessions have some globally visible type
and so assume a mapping, GG, from session names to session types. Figure 2.1
contains a listing of the typing rules for simple session types. To see how the
rules eliminate dangerous behavior consider the rule T.NU. This rule ensures
two things: the fresh channel has two and only two “ends”; the users of each end
agree both in the direction of communication at every step and the type of value

or channel being communicated.

2.3 Curry-Howard Connections

Curry-Howard connections [94,95], used throughout this thesis, are connections
between logical proof systems and programming languages. These function by
noticing that propositions in a logic can be viewed as types in a programming
language, and vice versa. These connections are most exciting when the logic
and the connected programming language are discovered independently. In
this case, it likely means that both the language and the logic are describing
something that is in some sense important. However, even when this is not
the case, we can still try to force a connection by picking a logic or a type
system and asking “What would this look like as a programming language (or
logic)?” Another advantage of a connection is the ability to use it as inspiration
for explorations into linguistic changes. For example, a logic for which general
identity is admissible in the fragment without identity (or only propositional
identity), might show us how to simplify our programming language.

A great deal of forcing these connections is fairly mechanical and corresponds
to finding a text editor friendly way to represent proof trees in the logical system.
The first step for forming such a connection is to name each proposition used
throughout the proof so that we can refer to it by name rather than by pattern
matching. Next, each rule needs some syntax associated with it, containing at
least enough information to ensure we know how the proof rule is used (e.g.,
by containing all the names of assumptions used by the rule). A bit of care
should be applied in selecting suitably suggestive syntax, e.g., since this thesis
will focus on concurrent languages communicating across channels, we will use
send and recv to denote certain constructs rather than, say, juxtaposition and
A. The last step is to design a semantics that corresponds, often obviously, to
proof normalization, generally cut-reduction. At that point we have a logically
inspired language, if not a guarantee that we choose something useful at either

the syntax or semantics step.

2.4 Substructural Logics

Traditional logics view their assumptions as persistent, i.e., they may be used as
many or as few times as desired. This will stand in contrast to the substructural
logics which will give us the ability to provide much finer grained control over
the use (or non-use) of assumptions.

Before describing substructural logics, we need a working baseline of a
structural logic with which they can be below. A simple structural logic can be

presented by generating propositions from the following grammar:

¢u=T|L[oAd|oVP|P—0

And, then creating a judgment ® - ¢, where ® is a list of propositions that may
be assumed to be true while proving ¢. The judgement comes with a variety of
structural proof rules for manipulating the list of assumptions:

q)17¢37¢27(1)4'_¢5 ¢F¢/ ¢7¢7¢F¢/

EXCHANGE —— 5 WEAKEN
@17¢27¢37¢)4F¢)5 ©7¢F¢/ q)ad)ng/

CONTRACT

Often these structural rules are implicit in a structural logic’s description , e.g.,
by defining ® to be a set of assumptions rather than a list. Additionally, the
logical connectives themselves come with proof rules, mostly one right rule to

prove the connective and one left rule to utilize it:

0N)
oro® TrT R TTrs L Tire L
D¢ Dy O, ¢y, o F 3 oF
———— AR —— AL — VR;
D ¢ Ao D, 01 NP - @3 D d1 Voo
Qo1 bds Bdabdy o Ddiké Do Dok
D, b1 Vo F o3 Y —— O, 61— ok bs

Substructural logics omit at least one of the structural rules: Linear Logics [37]
permits only EXCHANGE; Affine Logics [70] allow WEAKEN and EXCHANGE;
and Ordered Logics [47] allow only for associativity of environment joining (i.e.,
environments are lists, not trees). To focus on the linear case, this restriction to
only allowing EXCHANGE means that assumptions can be modeled as multisets.
Intiuitively, linearity means that we never discard or duplicate assumptions
during a proof, in some sense treating them as consumable resources. However,
since VL, AR, and — L duplicate their assumptions, we will need to either
decide to allow this or split ® into a portion for each subproof. In practice, both
of these are useful, so, instead, we will split our logical connectives into versions

for each. These new connectives are generated by the following grammar:

Av=AQA|A—oA|[1]0|A®A|ARA|T

where: the proposition A ® A represent a assumption splitting notion of con-
junction; the proposition A — A is (linear) implication; the proposition 1 is
a notion of true that is an identity for ®; the proposition 0 represents false;
the proposition A @ A represents a non-splitting notion of disjunction; A&A is
a non-splitting conjunction; the proposition T is a notion of true that is the

identity for &; and there is no version of a splitting disjunction.

Arallc pplR Fljl}_l—AA 1L Frll,krzhk AFlQ@; ;1422 DR
DAy Ay - As T, Ay - Ay Ty E Ay Ty Ay b A
T A, oA As 20 Tra, =4, °f T4 A4, °L
TF 4 DA - As T, Ay Ag
T B Tora% Traea O T A 6 Ay -4y OF
THA, TkA T, A; - As
TF Aed, P Taeara & rrT TR

As we will discuss in more detail in subsection 4.6.1, linear logics often
find a need to reintroduce peristent assumptions in a controlled fashion. One

mechanism for this is to add a new connective:
Axz=... |1A

and then adding rules for proving that a consequent is persistent (i.e., we can
make as much as needed), commit to using it linearly if we want, and contracting

or weaking it (here !I" means that all the assumptions in I' are persistent):

reA,, LAEA L LEd LA A F A,
IDHA Y TUA F Ay 7 T 1A R Ay WP TTIA R Ay Oovmaer

2.5 Dependent Types

Dependent Types [53], which we use in chapter 3, section 5.6, and section 5.7,
are types that allow the meaning of types to depend on data values. Dependently
typed functions explicitly bind their input values at the type level, just as they
do at the program level, and generally allow for the usage of function at the type
level. For example, a dependently typed programming language might allow
us to define lists that explicitly carry their length at the type level, commonly

called vectors, with the following code:

data Nat = Z | S Nat

data Vect :: a -> Nat -> Type where
VNil :: (a:Type) -> Vect a Z
VCons :: (a:Type) -> (m:Nat) -> a -> Vect a n -> Vect a (S n)

10

which says that vectors, Vect, define a type that takes a type parameter, a, and
a natural number length. It has two constructors: the empty vector, VNil, which
is a list with any element type and a vector with one extra element attached to
the front. These two constructors have types that explicitly bind their inputs
for later use, i.e., VNil takes as an argument the type of empty list it is and
VCons takes both the type of its elements and the length of the list to prepend
an element to. Notice that VCons also utilizes a type level function S n to ensure
it has the correct return type. In practical systems [1,11,66], these type level
arguments could be marked implicit in some fashion, with the hope that the
typechecker will be able to determine them as needed (e.g., via unification).

In chapter 3, we will mostly be interested in are a restricted class of dependent
types called refinement types. A refinement type is a basic type (i.e., a non-
compound type—int but not int->float) with a predicate attached to it; e.g.,
the positive integers are given by {v : int|0 < v}. Simple types can naturally
be viewed as refinement types by using the trivial always-true predicate. From
this follows a natural notion of subtyping (with the normal contravariance
for functions). In addition to allowing predicates to incorporate constants,
we will want them to allow for dependency on previously bound terms, e.g.,
{v: int|v < z} for some previously bound z. For compound functional types
we assume that refinements are available on the “leaf” types. Rondon [81] shows
that for a certain class of predicates in ML we can maintain ML’s guarantee
of inferability while still allowing for extra expressiveness (e.g., they used their

approach to check array bounds accesses through their types).

2.6 Bidirectional Type Checking

Bidirectional typechecking [76] is a scheme for working with type systems that
exploits the idea that some expressions are easy to infer, or synthesize, the type
of and some expressions are only easy to check that they have a given type. This
provides a few advantages. First, it can incorporate features that may not have
complete inference algorithms (e.g., dependent types [2,7]). Second, because
checking is done with the goal type in hand, bidirectional checking can provide
easier reporting [74] of high-quality error messages. Additionally, a bidirectional
presentation of a type system can, in the incomplete case, show us what kind of
expressions require type annotations (i.e., when we are forced to synthesize a
type for an expression we only know how to check).

To see this in action, consider the following simple functional language:

n= 7—7|Int] ... (Types)
n= L (Variables)
= z|funz—e|e+e|ee]| ... (Expressions)

11

and some of its type system, where U maps variables to types:

v U,o:The:7 Fux R \IlFeg:T’A
UV zr:Thax:T AR Uhkfune —e:7— 7 Uhkee:T PP

A bidirectional system for this language consists of two mutual recursive judg-
ments: the judgment W - e = 7 says, given the mapping W, the expression e
synthesizes type 7; the judgment W - e <= 7, confirms, given ¥ and 7, that e
has the type 7. We add one metarule to mediate between these two judgments

and classify our earlier type rules:

mSYNTH ———— VAR
UkFe<T V.z:7hx=>T
U zr:Thes 7 —_— Uher=7 71 \I'|—62<:7"A
Uhfune we<=1—= 71 Uhee=T PP

These directions can be justified by seeing what happens if we try to use each
expression with the opposite judgement. Since SYNTH is a metarule, notice
that inverting it requires us to guess 7. A checking version of VAR or APP is
merely the fusion of SYNTH with VAR or APP, respectively. For FUN, we again
would need to guess the type of . To get an algorithm out of this, we view the
synthesizing judgment as outputting its 7 and the checking judgement as only
outputting a boolean value. Due to the SYNTH rule, this is not quite syntax
directed, but we can fix this by applying SYNTH only when no other rule applies.

This altered system is incomplete: there are some terms that have a sensible
typing under the non-algorithmic judgment but cannot be checked or synthesized.

To see this, consider the following judgment:
y:IntF (funz —) y: Int

This is easily proven, but, due to our inability to synthesize types for anonymous
functions, cannot be checked or synthesized. In some sense, the real problem is
a lack of polymorphism preventing us from finding most general types, but this
example also illustrates how we can easily know where the tricky parts of our
type system are. If we want to avoid adding polymorphism, as some bidirectional
systems for very powerful languages [30] have explored, we could instead add
type annotations to function arguments. Of course, these would occasionally be
redundant. An alternative fix would be to add general purpose type annotations
to the language, e.g., extending expressions with (e : 7) which denotes that e
should have type 7. This gives us a way to write the counterpart of SYNTH

without any guessing:
UVhe<erT

UF(e:r) =7 CMECK

Notice that this still does not quite fix our problem. However, it does enable the

bidirectional type checking algorithm to provide a suggestion to the user so that

12

they can change their program to the following provable judgment:

y:Int F (fun z — 2 : Int — Int) y < Int

13

Chapter 3

Value-Dependent Session
Types

In this chapter, we pursue the integration of the dependent types of section 2.5

with session types.

3.1 Basics

Refined session types, T, are generated by the following grammar, where p
denotes a refined simple type and Y; denotes a 7-indexed family of refined

session types.
T =1t L] pAYT | (@:p) DT |TRT|T -1 | & T;| &Y

These types are nearly the same as their simple counterparts but utilizing refined
functional types instead of simple functional types. A construct that does change
is (x:p) D Y. This construct allows refined session types to bind the data value
that was sent across the channel and refer to this in later refined types. In
particular, this allows for session types like (x: {v : int|TRUE}) D {v : int|v >
x} A1, which would be a refined session type for describing a process that receives
an integer and then returns the absolute value of that integer. Why not provide
more binders? For the sending of data there is no new value introduced, e could
always be reconstructed in our refinement as needed, so there is nothing to bind.
An additional practical consideration is that it is not obvious what variable to
use to bind the result of e. For sending and receiving channels, we assume that
the logic that section 3.2 uses cannot analyze channels and so has no need to
refer to a received channel in our predicates. For the two choice constructs, there
is no need to provide an explicit binding for the enumeration value chosen, the
T-indexed family of types can already implicitly use this knowledge.

We will need a few more definitions before introducing the typing rules for
refined session types. First, p| is a refined type with all the refinement information
striped out (e.g., {v : int|0 < v}| = int). This has a natural generalization to
environments and typings. The notion of the dual of a session type is essentially
unchanged except for the need to handle bindings during the reception of data, so
we say that for any z, pAY = (z:p) D T and (z:p) D T = pA Y. Additionally,
refinements introduce a notion of subtyping. We use ¥ F p; C ps to denote that
p1 is a subtype of ps under the assumptions in ¥ (defined by Rondon [81]) and

14

O;Utg, PuTk: T Uhkpe:p UEpCp

O:;W sy kl(e) P, (k:p AT) R.SEND
O;V,z:pks, PuT,(k:T) UFp Cp
7 R.REC
;U kgp k?(x).P =T, (k:(z:p) D)
O;Utkgy, PuT kY
SL - R.THR

O; U ks kil(k2).P T, (k1 T2 @ Yy), (k2 To)
;U kg PuT,(ky:Ty), (ke :Ya)

O: 0 Fop k1?(ka) P T, (ky - Ty —o 1q) AT
O;U gy P, (kP:7),(kP:7)
R.Nu
O;Vtgr (vEk)P:T

O:;Uhtgr, PuT'y O;Utkgr P::Ty for (k:T)el: T =1

©:% sz P|Q = Iy, T, R.PAR O Utg 0T 1WEND
O; U kg PuT, (kT : GL(X)) ;U gy, PuT, (k™ : GL(X))

.Acc R.REQ

O; ¥ g accept X (k).P =T O; VU gy request X (k).P :: T

Uhkre:p pl = Bool O;U etgp P::Ty

O:W,—eFg, Q:Ty WebTyCT W,—ebT,CT

O; VU gy if e then Pelse Q :: T R.Ir
Utre:p pl:ENuMm fori€pl: ©;Ubgr P:T(k:S;) RI
;U bgp k<e P T k: ®{r: S} ANT
7:ENUM forieT: ©;U kg P T, (k:S;)
R.EXT
O;Vbgpcase, k=P, =T, k:&{r:S:}:
fori: Ukpe :p, fori: Ukp,Cp; for (k:T)el: T =1
- - — R.CaLL
0,X:(p,Y);VUtgr X k)T, k:Y
@,X:(ﬁ,f);\ll,f:ﬁl—SLP:: (Ef) @,X:(@f);\ll Fsr QT
R.DEF

©; W bgy def X(Z;k) =P inQ::T
Figure 3.1: Type Rules for Refined Session Types

U Y, C T for subtyping of refined session types, defined below:

UhkpiEpy VET;ET,

WFlEl \I/Fpl/\Tlgpg/\Tg
UkEprCpy VET,ETy T CY3 UHEYT,CTy
\Ifl_(l'Ipl)DTlg(l'ipg)DTg \I/FT1®TQET2®T3
\Ifl_ngTl \I’FTQETZL \If}—fOI‘ZTlET;
\I/}—Tl—OTQETg—OTAL \I’F@{Tzrz}rg@{ﬂﬂr;}q—

forallé: ¥FT, C Y]
Uk &{r: T} C&{ri:T}},

Figure 3.1 introduces the typing rules for Refined Session Types. The judg-
ment ©; ¥ gy, P :: T" denotes that, using the definitions of © and assumptions of

15

U (many of which are just functional typing assignments), the free process chan-
nels of process P have the refined session types in I'. The judgment Uy e: p
denotes that, under the assumptions of ¥, e has refined type p, the details of
which depend on the underlying functional language. The rules are similar to
the rules presented for unrefined session types but with the addition of sub-
typing information where appropriate. R.SEND uses the idea that a process
may transmit a subtype of its declared type and still maintain correct behavior.
Conversely, R.REC encodes that a process may use a looser approximation of its
received data than required while still maintaining correctness. R.INU remains
“unchanged” for two reasons. First, the notion of duality has changed a bit, so
an implicit change to handle refinements occurs. Second, while this would be a
reasonable place to include subtyping information, the rules R.SEND and R.REC
already account for this. Similarly, R.CALL and not R.DEF encapsulates the
idea that definitions usage can accepted more tightly constrained types for a
particular instance than they accept in general. Perhaps the most interesting
rule is R.IF. This rule makes refined session types path sensitive [4] by allowing
for both branches to have different types and slightly different assumptions (e
vs. —e) and then combining to have one unified typing for the whole process.
The type system for refined session types has a close connection with the

simple session types as exhibited by the following lemma.

Lemma 1 (Judgement Correspondence). For refined definition environment ©,
refined functional assumptions I, process P and refined channel environment T,
O; VU gy P::T implies©|; V| Fg P ::T'|. For simple definition environment ©1,
simple functional environment Uy, and simple channel typing 'y, ©1; ¥ g P =
Ay implies there exists Oo, Vs, and Ay s.t. Oy; Vo g, P :: Ty and O3] = O,
Uy| =V, and T'y| =T

Proof. Both proofs proceed by induction on the size of proof trees. For the first
result, notice that by dropping all the refinement information (and subtyping)
each of the refined session type rules becomes a simple session typing rule. For
the second result, use the trivial always-true predicate to (not) constrain the

types. O

3.2 Inferencing

Inferring arbitrary refinement predicates is undecidable in general (consider
trying to infer the type of a function that generates random primes) so we will
restrict our attention significantly. In particular, we will fix some set of basic
predicates and then infer predicates that are finite conjunctions drawn from
this set. For example, if wishing to infer simple interval properties, we might
have a set of predicates like {v < 5,v < x,y < v,...}. Following [81], we will

assume that this set is generated by a finite set of templates instantiated by

16

program variables. We then look for conjunctions of ground substitutions for
these templates that are suitable solutions to our constraints.

Inferring refined session types proceeds in three major steps:
1. Infer simple types and record some information from doing so
2. Add predicate variables to types and gather constraints on them

3. Solve these constraints

3.2.1 Simple Types

Inferring simple types is done by utilizing prior work [4,26,41]. In particular, we
assume that for our functional language we can infer simple types. During this
inferencing we will need to record a bit of extra information. Specifically, we
will assume that the simple session type inferencing algorithm annotates channel
generation with the channel’s session type. Because of polarity considerations
there is not a single type for a channel but two dual types, one for each end. For
presentational compactuness, we will assume that (vk)P is annotated to become
(v k: S)P were S was the type of kT, found during inferencing. Additionally,
we will assume that parallel compositions are annotated with how to split the
combined channel typing environment for the process into one typing for each
of the two subprocesses. We will denote this split by converting P; || P, into
Py i, ||k, P> with the names of K; being those for P;. Last, we assume that
definitions are annotated with their argument types. That is def X (&; E) =
Py in P, becomes def X(Z;k) : (7;S) = Py in P,. With these annotations we
will be able to calculate at any point the simple channel typing of a subprocess of
the process that we are trying to infer types. A more complicated implementation
might be able to cache information closer to its use location, but we think these

annotations provide a good trade-off between clarity and completeness.

3.2.2 Constraints

We utilize constraints of the following forms during constraint generation. W k¢
T indicates that T is well-formed w.r.t. ¥, i.e., that the free variables in YT
are bound in T', (FREENAMES(Y) C dom(¥)). Additionally, we use subtyping
requirements of the form W - Y1 C Ty and ¥ + p; C ps. The constraint
T; = Yy is used to enforce duality. We also lift our constraints to work on (equal
length) vectors of types pointwise (e.g., U Fyr g is equivalent to |J{¥ Fy¢ pi})-

We assume that we have some constraint generation algorithm that will
produce correct constraints for our underlying functional language [81]. Armed
with this we can read our typing rules as generating constraints by inserting
subtyping constraints as appropriate (and in the case of T.NU a duality con-
straint). Throughout the process of constraint gathering we will occasionally

need to generate new refined session types with predicate variables, we denote

17

this by FRESH(7) for basic types and FRESH(S) for session types. Whenever
we perform this generation, we will provide some well-formedness constraint in
addition to any subtyping constraints generated by the typing rules.

As an example consider the rule R.SEND. Suppose that we know (O]; ¥| Fgp,
kEl(e).P == I',(k : 7 AS)) from our simple inference step. When we generate
constraints for this, we will make one call to our functional constraint generation
algorithm (¥ k1, e : p), one recursive call to our session type constraint generation
algorithm (0; ¥ Fgy, P :: T, (k: Y)), generate one refined type FRESH(7), and
add the constraints ¥ - p C FRESH(7) and U ¢ FRESH(7), which corresponds
to the constraints imposed by the typing rule.

Figure 3.2 provides a listing of the constraint generation algorithm for refined
session types. To avoid confusion between tuple construction and map combining
we denote the later with - in the algorithm listing. CONSTRg(©,V, P,I's)
returns (I', C) a pair of refined channel typing (with predicate variables) and
a set of constraints. We use CONSTRy, (U, e) to denote the assumed constraint
gatherer of our underlying functional language. The algorithm assumes that,
for functional assumptions W, CONSTRy, (W,) returns (p, C') a pair of a refined
functional type and a set of constraints (both well-formedness and subtyping). A
small abuse of notation occurs in the case for terminated processes and in process
variable definition. Specifically, we use I's as both a simple session typing and as
a refined one. From our typing rules we know in both cases it must be entirely
composed of mappings of the form (k : 1) and so can be reasonably used in
both contexts. While most of the cases used to define CONSTRgy, are relatively
straightforward, we highlight a few rules here.

Consider the case for conditional branching, perhaps the most complicated
case. First we make recursive calls with the altered assumptions, allowing for
sensitivity to the value of e. From R.IF we know that both of the typings
returned by these must be subtypes of our overall typing. Since we do not have a
preexisting typing use for this subtyping we have to generate one (FRESH(I's(k))).
We then return this typing along with our recursively generated constraints and
three new constraints for each channel in our typing. The first new constraint
ensures that our freshly generated types are well-formed. The other encodes the
subtyping present in the rule. One might worry that if both kP and kP appear
in our typing that this might cause them to become delinked. Since we will
only use our constraint generation on closed processes after simple session type
inferencing we know that these paired channel ends will eventually be generated
by some ((v k)P) and thus duality will be ensured there.

The following lemma gives us the correctness of our constraint generation

algorithm.

Lemma 2 (Constraint Correctness). For a closed annotated process P, empty
definition and functional environments and simple typing, CONSTRg (0, 0, P, D)
returns (T, C), s.t. 0;0 g P :: T if and only if C has a solution.

18

Proof. Induction on the proof of ©; W gy, P :: . The result is a corollary of

this induction. O

3.2.3 Solving

Once all constraints have been generated, we will have many predicate variables
left. A solution to a system of constraints is a ground substitution for predicate
variables such that all constraints are satisfied. Assuming that our constraints
allow all legal solutions (Lemma 2), we know that there is at least one possible
solution, the trivial always-true solution. The important question is then that of
finding a maximally specific solution. We search for a maximal solution using
the normal implication ordering lifted to maps (i.e., o1 > 09 <= Vz.01(z) =
oa(x)).

A first pass removes all duality constraints by performing the substitutions
implied by the equations. Since all ¥ in our constraints are finite and every
predicate variable has at least one well-formedness constraint, we know that for
any given predicate variable, there can be at most a finite number of ground
substitutions admissible by its well-formedness constraints. This, together with
the observation that only the predicate variables mentioned in our constraints
matter for a substitution’s admissibility, ensures we have only a finite number of
“interesting” substitutions that might be solutions. Assuming that we can decide
admissibility and solution ordering (e.g., via an SMT solver) then we can just
try all solutions and select a maximal one. This requirement for being able to
decide ordering is perhaps the biggest constraint on what we can choose as our
templates, since we need to stay away from choosing those that are incompatible
with our choice of SMT solver.

This proposed solution process is unsatifyingly slow, so we instead suggest
using Iterative Weakening [81]. Iterative Weakening is a technique that starts
from the strongest admissible ground substitution (for each predicate variable a
conjunction of all predicates admissible by its well-formedness constraints) and
iteratively removes an offending conjunct that prevents us from satisfying all
constraints. Since we deal with conjunctions of instantiated templates we know
that removing a conjunct can at most preserve a substitution’s strength and the
always-true substitution is a solution, we know that iterative weakening will find
a maximally specific solution. From the above arguments we have the following

lemma.

Lemma 3 (Solver Correctness). For a given set of constraints, s.t. every
predicate variable has at least one (finite) well-formedness constraint, iterative

weakening produces a mazximally specific solution.

Sketch. Outlined above, this is proven by a generalization of Rondon [81]. O

19

CONSTRgL (0, ¥,0,I's) = (I's, 0)
CONSTRgL (O, U, accept X (k).P,T'g) =
(- (kt: T),C) < CONSTRsL(0, 9, P, T - (kT : G(X)))
return (,CU{¥ T C GL(X)}
CONSTRgL, (0, U, request X (k).P,I'g) =
(T- (k= :7),C) < COoNSTRg,(O, ¥, P,T - (k~ : G(X)))
return (I,CU{¥ YT C GL(X)}
CONSTRgL (0, U, kl(e).P,Ts - (k: TAS)) =
(T k:7,C) < CONSTRgL(O,¥,P,Ts - (k:95))
(p,C") +— CONSTRL (¥, €)
p < FRESHT
return (T-k: p AT, CUC"U{U by p; ¥ - pCp'})
CONSTRgL (0, U, k?(x).P,Ts - (k:7D8)) =
p < FRESHT
p' + FRESHT
(T k:7,C)+ CONSTRgL(O,V -z :p, PTg-(k:5))
return (T-k: (z:p)) DL, CU{¥U by p; U byr p; U p C p'})
CONSTRSL(@,\I/,kl!(kQ).P, I's- (kl 1S9 ® 51) . (kz : SQ)) =
(F ke Tl, C) — CONSTRSL((a7 W,P, FS . (k?l : Sl))
Y5 <+ FRESHS,
return (F . k’l : TQ & Tl, cu {\If }_Wf Tg})
CONSTRSL(@,\I/J{J?(]{)Q).P, T'sg- (kl : SQ —o Sl)) =
(F . (k?l : Tl) . (l{?g : Tg),C) — CONSTRSL(@,\I’,P, I's- (kl : Sl) . (kQ : Sg))
return (I'- (k1 : To — Y1), C)
CONSTRSL(@, v, P1K1 HKZPQ, Fs) =
(T'1,C1) + CONSTRgL (0, ¥, P, T's [k,)
(FQ, CQ) — CONSTRSL(@, \I/, PQ, I's [K2)
return (I'y - T2, C1 U Co)
CONSTRgLL(0,V, k<e. P, T's - (k:®{m :Si};)) =
for i: (- (k:7;),C;) < CONSTRgL(O,V - (e =), P, T's - (k:5;))
return (T (k: ®{n : Ti}+),UC))
CONSTRsL (0, U, case;, € = P;,Ts - (k: &{m : Si}+)) =
for i: (F . (k’ : Tz), CZ) — CONSTRSL(@, v. (6 = i),Pi,FS . (kJ : Sz))
return (I (k: ®{r : Ti},),UCi)
CONSTRgL (O, U, if e then P; else P, T'g) =
(T'1,C1) < CONSTRgL(©,V - e, P, T's)
(FQ, CQ) — CONSTRSL(@, v (“6), P, Fs)
for k € dom(I'g): T < FRESHI g(k)

Lo U byt T
return | k:Y,C; UCy U Ukedom(r) U.eb (k) C Ty

CONSTRg(0,V, (v k: S)P,I's) =
(T-(k*: Y1) (k= :Ys),C) < CONSTRg(O, ¥, P,T - (kT :S)- (k= : 9))
return (I, C U {Y; = Tg})
ConsTRsL (€ (X : (7,Y)), ¥, X(&.k),Is - (k: §)) =
for i: (p;,C) — CONSTRL(,€i)
return (Tg - (k: 1),JC; U{¥ + o/ C })
CONSTRgL (0, ¥, def X(Z;k) : (755) = Py in Py,Tg-(k:S)) =
(7:T) « (FRESHT; FRESHS)
(T1 - (k: Y7),C1) 4 CONSTRsr (O - (X : (7 Y)), ¥ - (F: p), Pr, (K : 5))
(FQ,CQ) — CONSTRSL(® (X : (ﬁ, Y/)),\D7P2’
return (I'a, O UCo U{W by 520 o T30 H T/ C T}

ﬂ
S

Figure 3.2: Constraint Generation Algorithm

20

Chapter 4

Curry-Howard Session Types

4.1 Polarization

A way to design concurrent and distributed programs is as a collection of processes
communicating over channels connecting them. To be sensibly behaved these
processes need to have some notion of how communication across these channels
will proceed. For example, a channel between two processes, A and B, might
want to ensure that A sends Ints only when B expects to receive them. One
mechanism that has been successful for describing channels in such systems is
Session Types [41]. Session types ensure that all channels are used by exactly
two processes and that each of these processes agrees both on what will be sent
over the channel and which of the two processes will send and which will receive
for every exchange over the lifetime of the program.

Session Types can be connected to Intuistionistic Linear Logic [72,90] via a
Curry-Howard style connection that associates propositions with types, proofs
with programs, and computation with proof normalization. As mentioned in
section 2.3, such connections both provide sanity checking and suggest new direc-
tions for language or logic design by transporting results and other innovations
from one domain to the other, as is done in this thesis. With these in mind SILL

will exploit various logical features to describe and inspire its own features.

4.1.1 Polarized Intuistionistic Linear Logic

To start with, we introduce the multiplicative and additive fragment of Intu-
itionistic Linear Logic [48,58]. Like other linear logics, this is a substructural
logic (section 2.4), i.e., it gives up on some of the normal structural rules on
hypothesises. Propositions are split into two polarities, positive and negative
propositions, and are generated by the following grammar, where 7 is some
underlying set of basic propositions, indented to be basic data types after a

Curry-Howard connection (e.g., 7 might contain Int or Float):

A* B 0t u=1|TAAT | At @ At | AT @ AT | LA-
A= B=,C~ u=7DA" | At o A~ | A"&A™ | 1A*

21

When the polarity of a proposition is unimportant we will write unannotated A,
B, or C.

Propositions are connected with (session) types. These types describe the
behavior of each channel (i.e., the provider of the channel sending or receiving
a particular kind of message along it). Our system, following the tradition of
session types, will force channels to connect exactly two processes, i.e., we do
not allow for broadcast communications (with some extensions along those lines
in section 4.6). In principle, we could give a type to channel from the client of
the channel’s dual perspective (perhaps erasing the notion of provider and client
entirely), and some systems do [41], but we will not pursue that route futher.

The session types have the following informal meanings: the type 1 represents
a channel that will terminate; the type AT ® B* is the channel that sends a
channel of type A" and then continues as B™; the type 7 A A" is a channel that
sends a value of type 7 and continues as AT; the type 7 D A~ expects to receive
a value of type 7 and then behaves as A™; the type AT — B~ is the type of
channel that expects to receive a channel of type A and then continue as B~;
while the type AT @ BT is the channel that sends its choice between behaving
as AT and BT in the future; and A~&B~ is the type of a channel that expects
to receive a choice to behave as either A~ or B~ in the future.

Since we will wish to model potentially infinite interactions along channels
(e.g., a long running webserver), we need to include some ability to create
infinite propositions. Perhaps the simplest would be to just allow infinite types
(i.e., assume our grammar only specifies local acceptability of finite terms), but
this leaves us with a problem of how to finitarily represent our propositions.
For concreteness, we will add a least fixed point operator to our propositions,
augmenting our grammar as follows, where x is drawn from a countably infinite

set of variables:
AB,Cu=... |uz.Alx

We assume that propositions formed with this fixed point operator are contrac-
tive [35] (e.g., not of the form pz.x) and are closed. Additionally, we take an
equirecursive view of these propositions, i.e., pz.A = A[ux.A] without the need
to explicitly unfold the p. Occasionally, we will want to be more explicit about
our treatment of p and will utilize an explicit UNFOLD operator to perform
any required substitutions in those situations. Additionally, we will sometimes
specify propositions, particularly when viewed as types, by giving a recursive
equation. As an example, the type of a channel that sends an unending stream

of Ints might be defined by this equation:
Stream = px.Int A x

and a stream that provides an ability to either generate the next element of the

22

U, TFB WI',BFA
U, AF A U T, F A U0k 1
U:TFA U;TFA W.I'F Bt T, AT, Bt C
wrira L vITrratent B YT atenrc
U,T, At - B~ U;TFHAT W.I'.B-+C
VAt o5 ok U.T,I", AT =B~ FC
. I'-A- U:I'k B~ v, INA~FC v:I'B~+FC
vrraan R YT aenro® vraes ro &
U Tk AT ;T F B* U;T,A*-C TI,B*FC
U;T-AteBT ' Wk AteB* BR2 U;T, AT @Bt +C ®L
U7 U AY U, 7T, A" - B
U, I'FTAAT N \I!;F,T/\AJFFBAL
v, T H A k7 U:I''A"+B
\I/;FFT:)Ain v, I'tD>DA FB
U T kA WILAEB | WAt U;T, A"+ B

=22 R it Rl R el
U:I'FJA™ v v:.I,JA-+B ;T - 1AT U:I'1tAT - B

Ip Cur 1R

®L

DL

+L

Figure 4.1: Judgment for Polarized Intuitionistic Linear Logic

stream or stop might have the type:
GStream = puz.1 ® (Int A x)

Since explicitly naming p-variables is somewhat tedious, we will generally write
recurse types equationally, as in traditional functional languages. E.g., the type

GStream could also be written as:
GStream = 1 @ (Int A GStream)

and then converted into the prior definition as needed.

Proofs of our propositions are formed from the judgement ¥;T'F A, where ¥
is some set of assumptions from for our underlying types (i.e., for 7s) equipped
with its own judgment (¥ F 7), T' is a multiset of linear assumptions (i.e., As),
and A is the goal proposition to prove. We assume that the normal structural
rules hold for ¥ and only EXCHANGE holds for I' (implicit in specifying it as a

multiset). The proof rules for this logic are given in Figure 4.1.

4.1.2 Cutting Apart CuT

Since CUT is a relatively complicated and metatheoretically important rule,
let us consider it a bit more detail. Informally, cut consists of two operations:
specifying a subproof to import and then adding the result of that import to

the assumptions (possibly consuming some existing assumptions during the

23

importing step). If we had a proposition for “A is provable from ¥ and I
we could split CUT into its two constituent operations. We will write this
proposition as {A « /Y} where A is the consequent of the judgment and A
is some linearization of I'. Since I' is a multiset, the exact linearization is in
some sense irrelevant, but will provide nicer syntax for the Curry-Howard style
language we are driving towards. To avoid a proliferation of proposition kinds,

we will assume that 7 is extended with types of this form:
Tu=... | {A<—ff}
Which comes with the following rules:

U+{B«+ B} W.I'B+A
U;B,T+A

\I/;/TFA
Uk {A+ A}

{3 {}E

Together, these allow us to reproduce CUT as a derived rule:

A
/—:h
A U:AFC B
wArc T.orB Uk {C <« A} \II;I‘,C’I—B{}E
= uT =
v:AT'FB — v:AT'FB

4.1.3 Syntax

The process of going from our proof rules to a type system for a language in the
Curry-Howard style is has a few key steps [90]: we name all the assumptions
used by each proof rule; create suggestive syntax for each proof rule, to permit
writing proof trees in a fashion suitable for use with a text editor; and then write
semantics to give an operational meaning to our syntax. Both of our kinds of
propositions, 7 and A, will correspond to some set of terms, e and P, respectively.
We assume that channel names, ¢, are drawn from some countably infinite set of
names and that z captures the variable names used in e. To maintain flexibility,
we will leave e mostly unspecified (other than the syntax for {}7) and assume it
corresponds to some simple functional language. To economize on syntax, we
exploit the duality of our typing rules and say that each construct of P that
corresponds to a particular kind of communication is differentiated between
being the appropriate left or right rule by the by whether it uses the process’s
provided channel (this will be clearer in the full type listing Figure 4.3). Since
the constructs of P will have an imperative flavor, we will occasionally refer to
the outermost construct of a process expression as an instruction or command.
The grammar for this language is presented in Figure 4.2 with comments to the

side indicating to which rule(s) each construct corresponds.

24

a,be,d, f,g == (Channels names)
x,Y, 2 n= L (Variable names)
e n= ... e+ {P}—=¢Z ({}])
P,Q,R = c4+e—C ({}E)
| cec (Ip)
| wait ¢; P (1L)
| close ¢ (1R)
| z <+ recv ;P (DR,AL)
| send ce; P (AR,DL)
| ¢+ recve P (—R,®L)
| sendc (c«+ P);P (®R,— L)
| case ¢ of (&R, ®L)
inl > P
inr — P
| send cinl; P (®BR1, &L1)
| send cinr; P (®Ry, &L2)
| shift < recv ¢; P (TR,\L)
| send c shift; P (JR,1TL)

Figure 4.2: SILL Syntax

4.1.4 Typing Rules

Now that we have fixed our types and syntax, we need to connect the two by
adapting the proof rules of Figure 4.1. This gives us two type judgments, one for
Ut 7 and one for ¥;T"' = A. The first will again be assumed to reuse its rules
from an already existing ¥ I e : 7, where ¥ is a mapping from variable names
to types from the underlying functional language (i.e., those generated by the
underlying non-terminal 7), and will be extended with one case for the construct
for {}1. The judgement for processes is given by ¥; ' P :: ¢: A, where U is a
mapping from variable names to types from the underlying functional language,
I' is a mapping from channel names to session types, P is the process expression,
¢ is the channel provided by P, and A is the type of ¢ (recall that A without a
superscript denotes either AT or A7). It may not be immediately obvious which
channel is provided by a particular process expression: the answer can be found
by examining the channel used by either ID or 1R. The full listing of rules is
presented in Figure 4.3, where ¢: A denotes a mapping of the channels of ¢ to

their counterparts in A.

4.1.5 Semantics

The operational semantics of this system is given in terms of a substructural
semantics [87], a semantics approach based on multiset rewriting [19]. In this
style of semantics execution configurations consist of multisets of executing
processes and transitions take the form of linear implications. This allows
us to utilize linear logic’s existing facilities for tracking resources along with

persistent information to describe that a configuration evolves from, e.g., E to

25

U;c:AFPc: A 0 Ute:{B« A} \I/;F,b:BI—P::c:C{}E
\II;I‘,(i:Aal—b<—e—<Ei;P::c:C

Ip \I/;(Z)}—closec::czllR

. I'FP:uc:C Uhe:r W I'FP:uc:CT
\II;I‘,azll—waita;P::c:ClL U:T'ksendce;Puc:TANCT
UVz:17;T,a: AT+-P:uc:C
U:la:TANAT Rz +recva;P:c: C
V.oz:m;'FPuc:C™
U:I'tx<+reevePic:7DC™
Uhke:m U;TNa: A FP:uc:C
\I/;F,a:TDA_l—sendae;P::c:CD
U:I'FP:ia: AT U IVFQuc:CF

Uk ¢ {P}—&: {A« A}

U:ia:Abc+a:zc: A
AR

AL

O R

L

U:;T,I"Fsendc (a< P);Q:c: At®@C™T wR
U:T,a: AT, b: BT FP:uc:C
U:l'a: BT®@ AT Fb+recva;P:c: C wL
U:Ta: AT FPc:C™
— R

U:I'Fa+recvePuc: At —C~
U:I'FP:b:BY U:Ta:AFQ:uc:C I
\I/;l",a:B“‘—oA_l—senda(b(—P);Q::c:C_o
U:I'FP:uc: AT U;'+P:ic: BT
- SR - DR,
U:I'tsend cinl::c: At @ BT U;T'send cinr::c: At @ BT
U:la:ATFP:uc: C \II;F,a:BJW—Q::c:C’@L
case a of
U:la: AT Bt | inl=P|:c:C
inr— Q
U:I'FP:u:c: A~ U T'FQ:c:B™
&R
case ¢ of
U:I'H | inl>P | :c:A&B~
inr— Q
U:Ta: A—FP:uc:C
U:I'a: A &B Fsendainl;P:c:C
U:Ta: B " FP:c:C
U:l'a: A~&B Fsend ainr; P::c: C
U:T'FP:c: A™ ! U:I'a:A—FP:c:C L
U; T+ send ¢ shift; P::c: JA™ ;T a: A" Fshift<recva; P:c:C
U:I'-P:uc: AT 4 U:a:ATFP:uc:C L
U:T,a:1AT -send a shift; P ::c: C

&I

&Lo

U: I Fshift <~ recv c; P i c: TAT

Figure 4.3: SILL Type System

26

E’ by proving it from the semantic implications. Parallelism in a programming
language then becomes the non-determinism inherent in deciding how to utilize
these implications; side conditions become persistent (i.e., !) propositions; and
fresh variables are represented by existential quantification. We will assume that
® binds tighter than —o or quantification. To see this in action, let us examine

the following artificial rule, where all Greek variables are atomic predicates:
PRpR(la) oJzyRIx 0

This says that if our set of resources has a ¢ and a p and can supply at least one
«, we can transition to a state that replaces ¢ and p with v, 6 and 8, where x is
visible only to 7, § and . Since la is persistent even after executing the rule
we still have la. Additionally, while this rule does not bind some larger context,
we can apply this rule in a larger context. For example, if we started from the

multiset of assumptions {¢, ¢, p,!a} we could prove the larger transition,
PR92pR(la) ©odpITARIR B

by composing our starting transition with ® R/L. This is similar to the frame
rule of Separation Logic [80].

In asynchronous communication each linear channel contains a message
queue [36], which can be related directly to the proof system via continuation
channels [28]. Sending adds to the queue on one end and receiving takes from the
other. Because session-based communication goes in both directions, the queue
switches direction at certain times. Moreover, the queue must maintain some
information on the direction of the queue so that a process that performs a send
followed by a receive does not incorrectly read its own message. Fortunately,
session typing guarantees that there is no send/receive mismatch.

Our configurations, consisting of both linear and persistent resources, as in
Linear Logic (section 2.4), utilize two sorts of linear propositions: executing
processes and queues that buffer messages between them. Executing processes
are of the form exec.(P) where c is the channel provided by P. Queues are of
the form que(a, M,b) where a is the channel name that a process can use to
read from the queue, b is the channel name that a process can use to write to
the queue, and M is a list of messages whose elements are from the following

grammar:
K :=wv|c|inl|inr]|end | shift | fwd®(c) | fwd™(c)

The constructs of K are: v for values from our underlying functional language;
¢ for channels; inl and inr for choices; end for messages indicating process
termination; and fwd ™ (c) /fwd ™ (¢) indicating that the current queue “continues”
by reading the queue at ¢ (the polarity annotations are only needed for later

proofs).

27

Before examining the operational rules, we introduce a persistent predicate,
e — €', indicating that the underlying functional language can take a step, from
e to ¢, via an assumed small-step semantics (big-step would also work, but
makes our progress theorem more complicated). First we have two rules that
involve evaluating expressions from the underlying language as normal for small

step semantics.

BINDgtep : exec.(a < e—a; P)®!(e — €') —o exec.(a < €' —a; P)
DATAgtep: execc(send b e; P)®!(e — €’) —o exec.(send b €’; P)

We will defer the details of evaluating (a <— v — @) until later, since it is relatively
complicated. In the rules for sending and receiving data we assume that values
can be substituted freely for variables (of the correct type). These rules work
by either appending the value to the end of the appropriate queue or reading a

value from the head of the queue.

SENDgata : exece(send b v; P) ® que(a, M,b) —o exec.(P) ® que(a, M v,b)
RECVdata: exec.(x —recv a; P)®que(a,v M, b) —oexec.(P[v/z])@que(a,M,b)

When we close a channel its providing process disappears.

SENDenq : exec.(close ¢) ® que(a, M, c) — que(a, M end,c)
RECVeng: exec.(wait a; P) ® que(a,end, b) —o exec.(P)

When we transmit a channel, we know the direction the new queue provided
by the new process must point (processes spawned this way always provide a

positively typed channel).

SENDchan : exec.(send b (d < P); Q) ® que(a, M, b)

—o 3f, g.exec.(Q) ® que(a, M g¢,b) ® execy(P[f/d]) ® que(g,-, f)
RECVchan: exec.(d « recv a; P) @ que(a, f M,b)

—o exec.(P[f/d]) ® que(a, M, b)

Choice constructs require us to branch on reception.

SENDj, : execc(send b inl; P) ® que(a, M, b) —o exec.(P) @ que(a, M inl,b)

SENDjn, : execc(send b inr; P) ® que(a, M, b) —o exec.(P) ® que(a, M inr,b)
case a of

RECViy: exec.| inl = P | ® que(a, M inl,b) —o exec.(P) ® que(a, M, b)

inr— Q

case a of

RECVin,: exec| inl = P | ® que(a, M inr,b) —o exec.(P) ® que(a, M,b)

inr— Q

When receiving, but not when sending, a shift, we reverse the direction of the

28

queue.

SENDghist : exec.(send b shift; P) @ que(a, M, b) —o exec.(P) ® que(a,M shift,b)
RECVghift: exec.(shift « recv a; P) ® que(a, shift,b) —o exec.(P) ® que(b, -, a)

The remaining rules all need a more careful accounting of the directionality of
channels involved in communication. For example, when using a < e — d, we will
create a new process and a new que corresponding to the channel that the new
process provides. Since our queues are directed and the newly spawned process
can provide either a positive or negative type, we need to know which direction
to point this newly created que. Unfortunately, we cannot easily discover the
direction from the process expression syntax. An easy way to fix this would
be to split this construct into a pair of polarized constructs, e.g., a & e—a
and a < e—d. Instead, we assume that any typechecker will be able to resolve
this ambiguity and record the information so that at run time we will execute
the appropriate choice of operational rule. In these rules we use the persistent
predicates (i.e., ones that we can weaken and contract as needed), Pos(a) and
NEG(a), that indicate the channel a initially has either a positive or negative

type in the given process expression, respectively.

BIND,: exec.(a + (b + {Q} —b) —a; P)®!(Pos(a))
—o 3d, f.exec.(Pld/a]) ® exec;(Q[f,@/b, b)) @ que(d, -, f)

)

()
BIND_: exec.(a + (b« {Q}—<5) —d; P)®!(NEG(a))
(b))

—o 3d, f.exec.(P[d/a]) @ execy(Q[f,d/b,b]) ® que(f,-,d)

To implement the process (¢ < d) we want to send either fwd ™" (¢) or fwd ™ (d)
depending on whether ¢ is positive in this process, so that we respect the
directionality of channels. As with BIND we assume this choice will be resolved
either by type checking or, not pursued here, by splitting the construct into two

polarized versions. Sending forwarding messages is easy:

SENDgq+: que(a, M, c) ® exec.(c + d)®!(Pos(c)) —o que(a, M fwd™ (d), ¢)
SENDg,q—: que(a, M,d) ® exec.(c < d)Q!(NEG(c)) —o que(a, M fwd™ (c),d)

However, receiving forwarding messages is slightly harder. Since there is no
“receive a forward message” instruction, processes must be ready to receive one
any time they perform a receive operation. In the following rules we will constrain

P to be one of the following:

wait a; Q) T 4+ recv a; Q b <+ recv a; Q shift «+ recv a; Q case a of
inl = Q@
inr— R

In the following rules for receiving a forward, two versions of RECV¢,q+ should

29

be unneeded but seem required for the proof of Session Fidelity (Theorem 6):

RECVgq- 1 execq(P) ® que(a, fwd™ (¢), d) ® que(c, M, b)
—o exec.(P[c/a]) ® que(c, M, b)

RECVg,g+ 1 execy(P) @ que(f, M, g) ® que(a, fwd ™ (d), ¢)
—o execy(P[d/a]) ® que(f, M, g)

RECVg,q+ 1 execs(P) ® que(g, M, f) ® que(a, fwd ™t (d), ¢)
—o execy(P[d/a]) @ que(g, M, f)

4.1.6 Syntactic Sugar

Before we see an extended example, we need to introduce some common syntactic
sugar. First, while logically motivated, using @ R or —o L to send a preexisting
channel is fairly awkward. Thus, we introduce the following syntax to send a

single preexisting channel, with its desugaring after the — and a fresh:
sendcd;P — sendc(a+ a<+d);P

When dealing with recursively defined processes, it is common to perform a
tail-bind, which binds a new process and immediately forwards from it. In the

following desugaring a is assumed to be fresh:
c—e—C — a4 e—Cc+a

As we will see in section 5.2 and section 5.5, this construct enables an important
optimization akin to tail call optimization.

Our reification of processes into the underlying functional language allows us
to lift constructs from the underlying functional language to the process level as
syntactic sugar rather than as new typing rules. This is similar to the power
provided by monadic expressions in Haskell [93]. To give a flavor of this, we
present the following lifted if-then-else construct, where c is the channel that the
current process provides and ¢ are all the currently in-scope channels (notice the

use of tail-binding here):

if e
if e then Pelse @ — ¢+ |thenc+ {P}—c| —<¢

else ¢ < {Q} —<¢

Another important feature to borrow from the underlying functional language
is top-level definitions. We introduce the following syntax to enable processes to

appear at the top level:

c+—x§f—cé=P — ay=c+{P}—=2c

Since some processes only provide a channel while utilizing no arguments we

30

introduce the following abbreviation, where - represents an empty list of channel
arguments:

Al — {Ae}

Similarly, uses of {}I and {}F both can omit their channel arguments:

c—e P — cée—4P and c+—{P} — c«{P}—-

4.1.7 Example: Prime Sieve

In this section, we work through a small example: building a prime sieve. To
accomplish this we will define a process that provides an infinite stream of natural
numbers by counting up from some starting point, a process expression that
filters the output of another process, and a function that uses these to recursively
filter out newly identified composite numbers after each newly discovered prime.

First we start with a variant of our Stream type for natural numbers, repre-

sented by the type Nat.
type NStream = ut™.(T1)&T(Nat A [¢7)

Next we define our counting process, which either terminates, if directed to
do so, or sends the current natural number n and recurses, via a tail-bind, to a

process that counts up from n + 1.

countup : Nat — {NStream}
Cc < countup n =
case c of
inl — shift < recv ¢;
close ¢
inr — shift < recv ¢;
send ¢ n;
send c shift;
¢« countup (n+1)

Next we define a filter that takes a NStream and a predicate, with type
Nat — Bool, and either kills the NStream or requests an element from it until
one is found that passes the predicate. Notice that in the case where our predicate
fails we cannot tail-bind the recursive call to filter since we must cope with
the initial &7. Additionally, we can see that while we will be able to guarantee

deadlock freedom (Theorem 8), we cannot guarantee productivity: a filter

31

process may never find a satisfactory element.

filter : (Nat — Bool) — {NStream < NStream}
c+ filterp < d=
case c of
inl — shift « recv ¢;
send d inl;
send d shift;
wait d; close ¢
inr — send d inr;
send d shift;
T < recv d;
ifpx
then shift < recv ¢;
send ¢ x;
send c shift;
shift < recv d;
c+ filter p— d
else shift « recv d;
a < filter p—d;
send a inr;
send a shift;
c+a

Last, we define our sieving process by taking in a NStream of potential primes
(where the first is assumed to be prime) and then recursively filtering the tail of
that the stream to remove multiples of that prime.

sieve : {NStream < NStream}
c < sieve— d =
case ¢ of
inl = send d inl;
send d shift;
wait d;
close ¢
inr — send d inr;
send d shift;
T + recv d;
shift < recv d;
shift < recv ¢;
send ¢ x;
send ¢ shift
a < filter (A\y.xfy)— d

Cc < sieve—a

32

Lastly, we can define a small wrapper that initiates the sieving process from
the initial prime.
sieve : {NStream}
Cc 4 sieve =
a <+ countup 2;

c < sieve—a

4.1.8 Well-typed Polarized Configurations

To prove progress and preservation for SILL, we need to define two notions: a
well-typed queues and well-typed execution configurations. A queue provides two
different names for the logical channel and a buffer of messages that mediates
between its users’ views of the channel. This means that queues connect two
different types based on their message contents. To express this we create a
typing judgment for queues I' - M : A « B which says that we could present
a channel of type B as having type A by prepending the messages of M to
whatever would normally be sent over that channel. Queues ending in either
forwarding messages or end cannot be prepended to anything, so we will allow B
to be either a session type or e (Griffith and Pfenning [75] present an alternative
version using wildcard channel names rather than e), indicating that this queue
cannot be extended (in ML terms, a session type option). Unfortunately, the
information contained in fwd™ (¢) messages will not quite be enough to define
well-typed queues or well-typed configurations. To enable this we annotate
fwd™ (c) with a type to record the type of ¢, becoming fwd _(c). Instead of
presenting a fully annotated semantics, we will leave the straightforward changes
implicit in the proof of the preservation theorem. The rules for this judgment
are presented in Figure 4.4. Additionally, we will occasionally need a queue
concatenation lemma, though we will mostly use it to append a single message

onto the end of a queue.
Lemma 4. The following rules are admissible:
'-M:At « Bt T"FM' :Bt «C
LT'-MM AT «~ C

I-M:A~ «~B~ T'FM' :B~ «C
TLT'FM M : A= « C

transt

trans—

Proof. By induction on the proof for M and then by cases on the last proof rule

used.
Case (q: Use the proof of I' = M'.
Case end,: There cannot be a proof for M’, so this case is vacuously true.

Other cases: Use the inductive hypothesis.

33

0

— end
(Z)}—endzlwoenq

fwd — fwd,
b: BT+ fwdt(b): BT « e Ffwd;_ (b): B~ «~ e
DFv:T F}—M:A'*'WC/\ DFv:T FI—M:A_WC'D
TFoM:TANAT « C 'FroM:7D A «C
'M: At «~ B ® I'-M:A" « B
Te:CtbeM:CT@AT B ' Te:CtbeM:Ct—oA- «~ B

DA~ A

q q

—o,

q

].—‘l_M.AJrWC inl].—‘l_M.BJrWC inr
T'Finl M: AT® Bt «C ¢ T'FinrM: At @Bt «C ¢
T'FM:A" « C inl I'EM:B™ «~C inr
F'Finl M:A&B~ «C ¢ Tkint M: A &B~ « C ¢
lq Tq

0k shift: JA™ « A~ 0k shift : AT « AT

Figure 4.4: Well-typed Queues

Informally, a well-typed configuration is one where: every process provides
exactly one queue; every queue has at most two users; and the provider and client
of each queue agree on its type (adjusted by <). These goals are accomplished
by the following rules for a well-typed configuration, where I'® respresents a

typing environment where every entry is of the form (c: e):

rer. W

);I'+FPic:C TVFM:C~ «~B TII'T"+E
I',b: Bt exec.(P),que(c, M,b), E
);IV+-Puc:C T"FM:Bt «C T,I'.T"FE
T,b: BT F exec.(P),que(b, M,c), E
I't-Mend: A~ o I'N'I"b:eFE
Iya: At que(a, M end,d), E

I"+M fwd™(c): AT o ITVFE

T,a: AT que(a, M fwd™(c),b), E
I't-M:C~ «~ D TI,I"b: el que(a, M fwd,_(c),b),E
I',d: Dt que(c, M,d),que(a, M’ fwd;_(c),b), E -
I'tM:Dt « C~ T,I”,b: et que(a, M fwd;_(c),b), E

)

WF

WF_,

Fend

fwdt

Notice that we can resolve the dualizing ambiguity present in «~ by relying
on provider annotations (i.e., the subscripts on exec). Since this judgement gives
us a tree structure of our processes and every process must provide a channel,
our initial typing context cannot be the trivial) but, instead, will be the next

simplest context, ¢ : 1, for some specially designated top level channel c.

34

4.1.9 Theorems

The main theorems we will show about our system are type preservation, also
called session fidelity in the literature, and progress, which when combined with
preservation implies deadlock-freedom. Before doing so we will need a few simple
lemmas.

The first lemma allows us to “rotate” the queues used by some process to be

adjacent to it in our well-typing proof tree.

Lemma 5. If we have a well-typedness proof I';a : A+ E, then we can prove

this by starting with a rule that uses a.
Proof. By induction on given proof and then by cases on the last proof rule used.
Case WVF,: Vacuous.

Otherwise: If the current rule starts with the provider for a, we are done.
Otherwise, notice that the current rule cannot use a, and then use the

inductive hypothesis and a final transposition to finish this case.
O

We can then prove the expected preservation result, with an assumption of

preservation for the underlying functional language.
Theorem 6 (Preservation). IfT'F E and E — E' then T+ E'.

Proof. Proof by cases on the transitions rule. In general this proceeds by
replacing the well-typed subproof that directly uses the process mentioned in

the case’s transition with a new subproof for the results of the transition.

Case BINDgep: Use the assumption of preservation of the underlying language

to create the new proof.

Case BIND,: While this can occur with both WF._ and WF_,, we only show

examine the first case, since the differences are minor. We are given:

P
0:;b:AFPub: A 01 o)
@I—b<—{P}—ﬂ<5:{A<—A’} @_ff',b:Al—Q::c:C{}E
A= 01, d: At a+ (b+ {P}—=b)—ad;Q:c:C
M £
A TEMC o Tra AT EE WE.

I, : C'F exec.(a + (b + {P}—b)—a;Q),que(c, M,c'),E

And replace it with the following, where d and d’ are fresh and substitution

35

on proofs is used to denote renaming;:

I —

Pld,d/bb) 0:A~ A ¢ £

Qld/a] M execy(P[d',a/b,b]),que(d,-,d), E .
= —

]
I, c:C'F exec.(Q[d/al), que(c, M,), execq: (Pld’, @/b, b)), que(d,-, d’), E

Case BIND_: As with BIND, but swapping the direction of the newly created

que and, consequently, using WF_,.
Case SENDy,4+: We are given:

M E
(Z);d:0+|—c<—d::c:C+I I'+-M:Bt"«~Ct d:C",'+E
T,b: BY I que(b, M, c),exec.(c + d), E

D

WF_,

Which we replace with the following to finish this case:

+
M T CTECT e g

I',d:Ct+ M fwd®(d) : Bt «~ e
I,b: Bt F que(b, M fwd™(d),c), E

transt

W FfwdJr

Case SENDy,4-: There are two cases to consider, when the forwarding process
is used with WF,_ and when it is used with WF_,. Starting with WF_

case we are given, after use of Lemma 5:

P M £
:1"+-Pub:B- I"FM :B «~C- I,I'TT"FE
Z = I,d:C™, IV F que(b, M',d),execy(P), F
M
Q);d:C*l-c(—d::c:C’fI I'e-M:C”«~A Z
Tya: Al que(e, M, a),exec.(c « d),que(b, M',d), execy(P), E

WF_

D

WF,_

Which we replace with the following:

fwdg
M DF deE,,(C) C7 oo
trans™

P T+ M fwd,_(c): B~ «~ o £
M T,17.d: et que(b, M’ fwd,_(c),d),execy(P), E
I'ya: AF que(c, M,a),que(b, M’ fwd_(c),d),exec,(P), E

WF
WFfwdf_

When the forwarding process is used with WF_, are given, after use of

36

Lemma 5:
P M £
:r"+-Pub:B- T"FM :B «C- L,I'TT'FE
Z = I,d:C~,T"F que(b, M’',d),exec,(P), E
M

WF

0;d:CFcedic:C™ Ip I'-M:C™ «~ AT Z

T,a: AT+ que(a, M, c), exec.(c < d),que(b, M', d), execy,(P), £

WF_,

Which we replace with the following:

fwdgq
M/ @ i—fwda,(c) O oo
trans—

P I"EM fwd;_(c): B~ « e &
M T,17.d: et que(b, M’ fwd,_(c),d),execy(P), E
I,a: A"+ que(a, M, c),que(b, M’ fwd;_(c),d), execy,(P), E -

Fe

Case RECVy, 4+ : We are given, after uses of Lemma 5 and assuming P is of
—

the appropriate form (i.e., a receiving instruction using a):

£
b AT fwd(h) AT e M T A B WE
Z= .1V, a: AT, I" I que(a, fwd™ (b),d), E fod®
P M
0:Ia:ATFPuc:C T"FM:C'«C Z
-

I,¢ : C'F que(e, M,), exec.(P), que(a, fwd™ (b),d), E

Which we replace with the following to finish this case, using substitution

to denote renaming:

Plbja] M &
I, : C'+ que(e, M,), exec.(P[b/al), E

WF,_

Case RECVy,4+ : Use the proof for RECVy,4+ , but swap the initial use of
WEF_, for a use of WF_.

Case RECVy,4-: We only show the case for WFy,4- , the case for WFg,4- is

similar. After uses of Lemma 5, we have:

P
deq /—f\ﬁ
PFP:a:C7 DFfwd, (c):C™ «~ o F,F'I—EW
Z= TV, b: et que(a,fwd,_(c),b),exec,(P), E <
M
’ =
I'FM:C~«D Z WFpa

I',d : D+ que(a,fwd_(c),b), exec,(P),que(c, M,d), E

37

And replace it with the following:

Plc/a)] M & WE
I,d: D F exec.(Plc/a)]),que(c, M,d), B~ *

Case SENDg,4: We are given:
M &
1R 7 n e
I'FM:A* 1 T.,I'FE
WF_,

P;0Fclosec:c:1
T,a: AT I que(a, M, c), exec.(close c),

Which becomes:
_ end
M OFend:1 « o enda N
7 Tar trans
I"FMend: AT « @ £
I,a: AT+ que(a, M end,), E

WFend

Case RECVeyq: There are two case here, when the initial rule is WF,_ or WF_,
We only show the first, the other is very similar. We are given, after use of

Lemma 5:
£

_ end —_—
fFend:1cwe 9 TIT'FE

WFen
Z= I,I',a:1,I"F que(a,end,b), E d

P
—_———
§G:I'-P:uc:C M

0;T a:1Fwaita;P:c: C 1L I'"+-M:C«~D Z WE
I',d: Dt que(e, M,d), exec.(wait a; P),que(a,end, b), E -

And replace this with:

P M E WE
T,c:CF que(c, M,d),exec.(P),E "

Case STEPgate: Use preservation for the underlying language.

Case SENDyaia: There are two cases, corresponding to AR and D L. The
second is only slightly more complicated, so we only show the first. We

are given:
E=T;I"T"+FE

PFv:T O;IVFP:uc:CT
AR

0;T"+Fsendcv;Pc:TACT
I,b: BT F que(b, M, c),exec.(send c v; P), F

I M:BY e 7 ACT €
~T WF_,

38

We can replace this with:

DF-:CT «CT (b/‘i
M OFrACt~Ct
P I"FMuv:B' —~Ct ™ ¢
I,b: BT F que(b, M v,c),exec.(P), E

WF_,

Case RECVy,ta: Again there are two cases, one for DR and one for AL. Since

they are fundamentally the same, we focus on the simplier DR case. We

are given:
M
0Fv:7 T"FC «~ B =¥
Z=T1T'+-M:T>C « B
P
z:IVFPic:C™ <
0:TVFxz+reeve,Pic:TDC™ oR Z LIV T"+FE

WF
T,b: Bt que(c,v M,b),exec.(x < recv ¢; P), E <

Which we can replace with the following, P[v/x] denotes using substi-

tutabililty in the underlying language:

Plv/z] M &
T',b: B+ que(c, M,b),exec.(Plv/x]), E

WF,_

Case SEND¢han: AS SENDyata, but with ® R and —o L.
Case RECV¢han: As RECVqata, but with —o R and ®L.
Case SENDj,: AS SENDyata, but with &Ry and &L .
Case RECV;,: As RECVyata, but with &R and ®L.
Case SENDj,: As SENDyats, but with @Rs and &Ls.
Case RECV;,: As RECVqata, but with &R and @®L.
Case SENDgpift: AS SENDgata, but with | R and 1L.

Case RECVgifi: Two cases, TR and | L. Start with TR. We are given:

E-TT'FE
P
¢GI'FP:c:CT R 4
0; I’ I shift < recv ¢; P :: c: 1CT 0 F shift: 1Ct « CT 9 &
WF_

T,a:CT F que(c,shift, a), exec.(shift « recv ¢; P), E

39

Which we replace with:

U
P OF-:Cte~Ct ™ ¢
I'ya:CT I que(a,-,c), exec.(shift < recv ¢; P), E

WF_,

For | L, there are two cases, corresponding to whether the inital rule is
WF . or WF_,. Since they are very similar we only show the case for WF_.

After use of Lemma 5, we have:

Q £
0:;I"" +Q:d: B @Fﬁﬁh¢B—«»B—¢q RFQFQV”FE\NF
Z= [,I,b: [B, T" F que(b, shift, d), execy(Q),E -
P
IV b:BtHFP:c: M
0; T, c: C L

0;T7,b: | BT I~ shift<recvb; P ::c: C I"F-M:A~C Z
T, a:A ¢ que(a, M, c), exec.(shift < recv b; P), que(b, shift, d), execq(Q),E

WF_,

Which we replace with:

0
Q 0rF-:B-«~B~ % ¢
P M T,TVb: B ,T"F que(d,-,b),execy(Q), E
T a:AtF que(a, M, c),exec.(P),que(d, -, b), execy(Q), E

WF
WF_,

O

To prove the progress theorem, we first need a notion of which configurations
should legitimately be unable to transition (i.e., which do not count as dead-
locked). A configuration should be stuck if it is waiting on an interaction with
the outside world (i.e., there is some context that it could be inserted into and

transition). We call such configurations reactive.

Definition 7 (Reactive). We call a queue, que(c, M,d) reactive, if it is non-
empty. A process exec.(P) is reactive if its top level construct is one of D R,
— R, &R, or TR and its provided queue is empty (i.e., que(c,-,d) for some d).
A configuration E is reactive if each of its queues is reactive or provided by a

reactive process.

Progress then says that either a configuration can take a step or it is reactive.
Theorem 8 (Progress). If I' - E then either: E — E' or E is reactive.
Proof. By induction on I' = E. There are four cases of last rule used to consider:
Case WF,: Vacuously true.
Case WF¢nq: The mentioned queue must be non-empty, so it is reactive. By

the induction hypotheses the remainder of the configuration can either

40

transition or is reactive. If the subconfiguration can transition, so can the
overall configuration. If the subconfiguration is reactive, adding a reactive

queue to it makes the overall configuration reactive.

Case WF;‘rNd: As with the previous case, the queue must be non-empty, so either

E is reactive or the subconfiguration can transition.

Case WF_: By the induction hypothesis, the subconfiguration is either able
to make a transition or is reactive. This first case means that the overall
configuration can transition. The second case is more involved. If the top-
level instruction for P is one of of the right rules, it can either transition,
e.g., via one of the SEND rules, or is reactive. If the top-level instruction
is one of the left rules, then, since the subconfiguration is reactive, it can
perform the appropriate transition. To see this, consider the case where the
appropriate transition is a SEND and the case where it is a RECV. In the
SEND case, the appropriate transition can be used since the corresponding
queue is reactive and thus empty and pointed in the correct direction. In
the RECV, the appropriate transition can be used since the corresponding

queue has something to receive.
Case WF_,: Like the WF case but dualizing the rules involved.

Case WFde; : This cannot directly transition, but, by the inductive hypothesis,
if F, excluding the process that provides a (or queue that metions a in
the case of multiple forwards), cannot transition it must be reactive. As
before the exluded process either can transition by interacting with the

remainder of E, or it can receive a message from the forwarding queue.
Case WFy,4- : As above.
O

Recall that the top level process was typed with ¢ : 1 = E. Thanks to
Theorem 8 we know that if this reaches a configuration, E’, where it is stuck it
must be reactive. By preservation and inverting the well-typedness judgment we
then know that E’ must be que(c,end, b), i.e., we know that either we can make
progress or all our processes have terminated.

Polarization allows us to place upper bounds on the size of queues that might
be needed at run time [36]. To make this precise we define a notion of a bounded

type and the (maximum) queue size of that type.

Definition 9 (Bounded). A proposition A is bounded with queue size n, for
n > 0 if it satisfies the judgment n b A of Figure 4.5 for some n. Additionally,
we define the following bounding function A|} wheren >1, k>0, andn >k (n

is the upper bound on queue size and k is a counter tracking how many more

41

n>1 n>0 nk AT n>0 nk AT

nh1 ! nE AT PR
n—ll—A"‘/\ n—1FA"
nkETAAT nk1T>A”
n—1FAT n—ll—B+® n—1FAT n—1kB~
nk AT ® Bt nk At — B~
n—1FAT n_“_B+€B n—1FA" n—ll—B’&
nk AT @ BT nk A“&B~
Figure 4.5: Boundedness Judgment
steps before a polarity shift must be inserted):
AT[R =11(ATR) ATlg =14 1p=1
(TA7) [=1(A717) A7) =HAT[7)
(TAAD) R =7 A (AT]E) (rD A7)k =72 (AR)
(AT @B =(AT_) @ (B) (AT eBh)i= (AT e (B i)
(A* = BTl = (AT} ® (B~ [5_1) (A*&BF)i = (A7 [R_)&(B™[i_1)

There is a bit of tension between this definition of boundedness and our oper-
ational semantics. Specifically, the operational semantics stores shift messages in
its queues, while this boundness judgment treats 1 and | as needing no space for

its messages. Before seeing why we chose this treatment, we need a few lemmas.
Lemma 10. For any k>0, k F A|}.

Proof. By induction on A.

Case A = 1: Trivial.

Case k = 0: We need either 1 F |[1AT or 1 - 1/A~. Both of these follow from

the rules for 1 and | when combined with the inductive hypothesis.
Case k > 0: These follow from the relevant rule plus the inductive hypothesis.

O

The following results states that our intuitions about upper bounds on queue
sizes is respected by well-typed configurations. Note, a slightly tighter result
could be proven by defining initial queue sizes as those starting from a type’s

root.

Lemma 11. IfT + E and que(a, M,b) is in E and a is assigned type A in a
proof of I' = E, then the length of M, ignoring any shift or fwd™, is at most the

queue size of A.

42

Proof. Find the proof of A « B needed to type I'V \ (que(a, M,b), E’). The
size of that proof is the size of the number of elements of M. Since these queue
proofs cannot extend past a polarity shift, the queue size of A provides an upper

bound on the size of this queue proof and, thus, an upper bound on the size of
M. O

We have ignored recursive types when discussing boundedness. Our bound-
edness judgement can be adapted to handle this case by adding a mapping the
judgment to hold assumed queue size bounds for any p-bound subterm of the
type. Then two rules need to be added to handle the p case (letting ¢ represent
the mapping from subterms to bounds):

!

m<n ((pz.A:m);mb Aluz.A/z] m<n
Gnkpz.A a ¢, (. A:m);n b px. A K

This rule works by letting the proof assert that pz.A has a queue size bound
of m and then confirming that assertion, while possibly assuming that bound
in the process. To force boundedness without thought towards minimizing the
number of inserted polarity shifts, we can insert a polarity shift at every pu.

To convert an asynchronous program to a synchronous one, use A|! on all
of the types of the program and insert shift instructions (i.e., uses of TR, 1L,
JR, and | L) as needed. While the underlying semantics is asynchronous, a type
with queue size 1 can only send one “interesting” message at a time. Essentially,
the extraneous 1s and |s force us to implement a handshaking protocol for

synchronous communication over an asynchronous network.

4.1.10 Related Work

The most directly related work is Toninho et al.’s work [90]. They explore a
language based on a Curry-Howard style connection with, unpolarized, Intuis-
tionistic Linear Logic by providing a synchronous semantics. Since they do not

need to track queues they give combined SEND/RECV rules like the following:

COMMyata : execc(send ¢ v; P) ® execq(x < recv ¢; Q)

—o exec.(P) ® execq(Q[v/x])

In addition to a enabling a somewhat shorter presentation, this enables a stronger
notion of synchronization. Specifically, their semantics allows for no operations
to occur between steps of communication (there are no distinct steps). To
see this more concretely, contrast the following two processes that utilize two
channels with the type Int A 1. On the left is one in suitable for use with their

43

t=1 1= =J1

(rAAT =7 (AN (r AA)™ =11 A (AN)
(2> AT =L > (4]7)) (r2>A)|" =72(4]7)
(A@B)[" = (A" ® (B]")) (A® B)|” =1(Al" @ (B]"))
(A — B)I" = L(A]" — (B|")) (A— B)|” = (A" — (B]"))
(AeB)[" = (A" & (B|7)) (Ae B)|” =1(Al" & (B]7))
(A&B)|" = L(A]"&(B|7)) (A&B)|™ = (A" &(B[7))

Figure 4.6: Polarization Function

synchronous system; on the right is a one using synchronized types in SILL:

foo:{l+ Int Al;Int A1} bar:{l+<+ Int A[1l;Int A |11}

c+ foo— ab= c+bar— a b=
T 4 recv a; X 4 recv a;
1y < recv b; 1y < recv b;
wait a; shift < recv a;
wait b; shift < recv b;
close ¢ send a shift;
send b shift;
wait a;
wait b;
close ¢

In addition to being more verbose, the synchronized types in SILL allow the
provider of b to send its Int before the provider of a knows its Int has been
received. This can be avoided by requiring shifts to occur immediately after their
associated recv.

To go from an unpolarized logic proposition A to polarized logic we can
use the pair of polarization functions, A|* and A|~, shown in Figure 4.6. The
two superscripts indicate whether the resulting polarized proposition should be
positive or negative. Since the initial context could be viewed as either negative
or positive, we generally want to use the result of A|* or A|~ that has fewer
shifts. After converting types in this way, the programmer (or possibly the
typechecker) will still need to insert the appropriate shift instructions.

Another higher-order integration of Session Types is that of Monstrous and
Yoshida [62]. Our logical foundation makes the language presentation simpler
and we feel that a monadic integration of process expressions into our functional

language is cleaner than their approach of passing closures between processes.

44

RECVy : exec.(x + recv d; P) ® que(d,v M T,)
—o exec.(Pv/x]) ® que(d, M T,)
RECV, : exec.(a < recv d; P) ® que(d,b M T,c)
—o exec.(P[b/a]) ® que(d, M T,)
case d of
RECV;,: exec. | inl = Py | ® que(d,inl M T,¢)
inr — Ps
—o exec.(P)) ® que(d, M T,)

case d of
RECViy,: exec. | inl = Py | ® que(d,inr M T, ')
inr — Py
—o exec.(P2) ® que(d, M T,)

Figure 4.7: Altered Operational Rules for Bundled Messages

4.2 Focusing

In high performance systems, reducing the overall number of communications
performed by sending fewer larger messages can be an important optimization [63],
assuming that communciation is relatively expensive. With polarization this can
be accomplished by revising our operational rules to prohibit reading until a
phase of communication is complete. Consequently, the queues can be viewed
merely as large bundled messages, incrementally constructed, to be sent all at
once. While this semantics that enable this optimization look very similar to
that presented in subsection 4.1.5, it will never read partial messages (i.e., the
queues are never used concurrently other than when one process blocks).

We implement this optimization by tracking the phase terminating messages,
shift and end, as well as fwd™® (¢), in our semantics by creating a new non-terminal
T. Otherwise our configurations are constructed as before (subsection 4.1.5),
with M now representing lists of Ks possible with a single T' at the end (i.e.,
M = K*T|K* as a regular expression):

T ::= shift | end | fwd™(c) | fwd ™ (c) K :=wv|inl|inr]|ec

Using our new classification, we restrict the various receiving rules to only
perform their receive when they can see both the component message they care
about and the end of the bundled message. These restricted rules are shown in
Figure 4.7, otherwise rules are reused from subsection 4.1.5. Whether a que has
a phase terminating message encodes whether it models a message that is under
construction in some local buffer (if it lacks a phase terminator) or it models a
message that has been sent and is ready for consumption. In addition to the
generic communication overhead savings, if we are willing to track transmitted
and untransmitted messages separately, a bundled system allows to entirely omit

the shift and end message components. While we will not pursue this further,

45

this may be useful while constructing efficient real-world implementations.
One drawback of this approach is that for unbounded (i.e., not bounded per
Definition 9) types we may never actually transmit the bundled message because
we never, dynamically, encounter a T-message. For most applications this maybe
acceptable, e.g., we may have an external termination argument indicating that
a phase terminates without being able to represent it in SILL’s type system.
Additionally, as we saw in Lemma 10, it is always possible to force boundedness
for any session type by inserting extra shifts, but this might cause us to miss
some opportunities for bundling messages that would be possible otherwise. In
practice, setting a bound that forces each bundled message to be less than some
system appropriate size (e.g., to ensure all bundled messages fit in a single jumbo

frame) should make this concern irrelevant.

4.2.1 Theorems

We can prove the expected preservation result reasonably easily.
Theorem 12 (Preservation). If '+ E and E — FE’, then T+ E’.
Proof. By cases on the transition. The proof proceeds as in Theorem 6. O

Before proving progress, we need to modify our definition of reactive slightly.
The proof of Theorem 8 relies on being able to ensure that a RECV transition
can be used if the queue used by that rule is reactive. With the restrictions
on these rules in the bundled messaging semantics, we need a somewhat more

restrictive definition of reactive.

Definition 13 (Completely Reactive). A queue, que(c, M,d), is completely
reactive, if M = M' T (i.e., it has a terminating message). A process exec.(P)
is completely reactive if its top level construct is one of D R, — R, &R, or TR
and its provided queue is empty (i.e., que(c, -, d) for some d). A configuration E
is completely reactive if each of its queues is completely reactive or provided by

a completely reactive process.

Notice that for the initial process reactive and completely reactive coincide,

so progress still ensures deadlock freedom.

Theorem 14 (Progress). If T' + E then either E — E' or E is completely

reactive.
Proof. Use the same argument of Theorem 8, but substitute completely reactive

for reactive. O

4.2.2 Focused Logics

While bundled messages can be an important operation, their use may lead to

mysterious executions. Specifically, it breaks the normally tight linkage between

46

when messages are sent and when they can first be received. Of course, one
answer, common in HPC settings, is to tell programmers “tough, learn a new
quirk,” however, by utilizing focused logics we can force the programmer to
write a program that both “obviously” enables the bundling optimization while
retaining our logical motivation.

Polarization is, traditionally, a precursor to requiring proofs to be in a focused
normal form. Focusing is a normal form [51], originally studied in the context of
proof search, that structures proofs as an alternating sequence of synchronous
or asynchronous rules where all possible asynchronous rules are applied in each
asynchronous phase and during each synchronous phase synchronous rules are
applied to a single formula (and its resulting subformulae) until we can no longer
apply synchronous rules to this formula. While rooted in the literature, the uses
of “synchronous rules” and “asynchronous rules” in this section are unfortunately
overloaded with the notion of synchronous and asynchronous communication.
Thanks to the tightly controlled nature of the synchronous phase, this normal
form can be viewed as using small rules to generate a class of big-step rules for
use in a, more complicated, proof system that has no notion of phasing.

From a Curry-Howard perspective the synchronous rules correspond to those
that send information and the asynchronous rules correspond to rules that receive
information. Thanks to the “single (sub)formula(e)” portion of the normal form
this means that all of the sends along a channel in a given communication phase
occur consecutively not just from the channel’s perspective but are actually
adjacent in the program text as well.

Let us now turn to how to describe this system formally. First, we need to
augment our judgments to allow for focusing annotations of the form [A] to
appear either in I' or as the goal proposition. Letting I indicate that I' contains
no focusing annotations, we can enforce the focusing restrictions with the weakly
focused system [49] of Figure 4.8. In this weakly focused system, rules can
be classified into two different kinds: active rules, which contain no focusing
annotation, and focused rules, which contain exactly one focusing annotation.
Thanks to the design of the rules, this means that as many focused rules are used
on the same formula as possible. The Curry-Howard connection here is as before,
with the assumption that uses of Focus™ and Focus™ are implicit. As a result,
all uses of SEND rules along a channel in a single phase of communication occur
consecutively, exactly as if the programmer were explicitly building and then
finalizing a bundled message.

In addition to the constraints imposed by weakly focused logic, we could
instead use a focused logic [9,51]. A non-weakly focused logic enforces an
extra constraint on the unfocused propositions present in the focused rules:
assumptions must all be negative and the consequent must be positive. Thus, a
proof must first apply all possible active rules before choosing to initiate a focused
phase. Historically, this difference has been most important when performing

proof search, it ensures that all invertible rules are used before initiating a

47

e o N
W AT F [AF] W [A7]F A- W0 F 1]

U:T, 1+ A
;T B U;Ty,,BFA U Tk [AT] , WL[AT]FB -
U:T,.ToF A VT T ar FOCUsT Ty T 4-p p FOoUs
U7 T [AT] v, T,A* B U, T F A
= AR = AL —— DR
U;TF [AAT] U:ITANATFB U:I'k7> A"
Ukr I, [AT]FB UiTy, Do [AT] WiT - [BY] SR
— >\ ——
U:I'[r>A"|FB U: T, [y F [AT @ BT]
U, T, AT, Bt +-C @ U, T, AT+ B~
U:T, At @ Bt +C U:THAt — B~
Ui Ty - [AT] ;T H Af
@R,

—_— — _OL - =
U: Ty, Tg, [AT — BT C T AT @ A
U.T,AT+-C WU, T,Bt+C I U.THA- U.T+ B~

= @ = &R
U: AT BT +-C . I'- A-&B~
U:T[A]]|+F B U:THA- U.T, A"+ B
— A/ &L; ——— |R ———— |L
U;T[A;&A; | F B U:TH[JA] U.T,|A + B
U:TH At U: T, At +B L
U:T 1At U;T,[tAT]F B

Figure 4.8: Weakly Focused Logic

48

phase that may require backtracking. Operationally, this corresponds to reading
bundled messages relatively promptly after receiving them, which may allow for
lower memory usage by freeing up space used to hold the bundled message and
by more promptly exposing data from those messages to the garbage collector.

Focusing can force a program to take extra memory, as witnessed by the
following unfocused and focused programs, where the unfocused definition is on
the left):

foo: {Int AFloat Al < Int AFloat A1}

c+ foo—~d= ¢+ foo—d=
1 4 recv d; 1 4 recv d;
send ¢ 1; f <« recv d;
f + recv d; wait d;
send ¢ f; send ¢ i;
wait d; send ¢ f;
close ¢ close ¢

When contrasted with its unfocused counterpart, the focused version of foo
requires us to store both ¢ and f simultaneously. It is unclear how problematic
this is in practice. Under the original asynchronous semantics the que that
supplied d might have needed to store both ¢ and f simultaneously as well
(i.e., the focused version always achieves the worst case memory usage in this

example).

4.2.3 Related Work

Focusing, but not its Curry-Howard interpretation, has been studied by wide
varieties of authors [50,51,58]. Some of the closest logics to the system we utilize
are those that examine focusing for intuistionistic linear logic [58] and that of
Baelde [9] that examines focusing in linear logic with fixed points. Bealde’s work
uses an inductive rule instead of CuT, allowing proofs to replace problematic
fixed points with other types. Roughly translated into our system the inductive

rule might look like
CkFAC/x) U;TCFB
. I ur. A+ B

where C' can mention = (which would also require some changes to our assumption
of closed types). This rule is challenging to operationalize. Specifically, it requires
us to replace the running process that provides px.A with one that provides C.

Additionally, instead of a pair of general identity rules, Baelde reduces to
an atomic propositional identity rule and an “atomic fixedpoint” identity rule
that operates on frozen recursive propositions. A frozen recursive proposition
is one that is forbidden from being unfolded. Thus Bealde’s proof system

allows proofs to declare that they are done using recursive proposition in non-

49

trivial ways. This is important from a focusing perspective because the system
uses frozen propositions to avoid requiring too much decomposition during
focusing. Operationally, there are reasons to want to utilize only atomic notions
of forwarding (e.g., it corresponds to utilizing a long running repeater process
to perform the forwarding instead of que redirection), however, there should be
no situations where “atomic fixedpoint” forwarding is executable but a general
forwarding rule is not.

The practical importance of the gains to performance offered by bundling
messages can been seen by noticing that some high performance computing
systems sometimes adopt message bundling in their communication layers to
enable efficient usage of, relatively, slow networks. One system that attempts
to do this for its users is GRAPPA [63], which stores outgoing messages from a
given node to a target node (i.e., messages along a channel in our terms) and
only sends bundled messages when either a maximum bundled message sized
is reached or some component message has been delayed by a maximum delay
time (i.e., it is does not do type directed bundling).

Session Java [64] provides a Java implementation of session types, where
channel are rendered as objects in their system and communication primitives
transform this object (and its type) over the course of communication. The
message sending primitives are structured so that method chaining allows for
relatively compact specification of multiple message sends utilizing the same
session. A more compact interface is also provided by making the send method
variadic so that all sends along a session in one phase of communication can be
done via a single method call. It is unclear if this is more than a programmer
convenience, but it superficially resembles the textual adjacency that focusing
requires. At a higher level the Session Java work does not try to connect to
a logic via a Curry-Howard style connection, so, even allowing for operational

similarity, our system makes an improvement in that respect.

4.3 Racy Programs

Focusing eliminates one sort of nondeterminism from our proofs by forcing us to
apply all the asynchronous rules possible to a given formula at once. This still
leaves some degrees of nondeterminism present: the choice of order in which to
apply the asynchronous rules and the choice of which formula to focus to initiate
a focused phase. It is unclear what removing the latter nondeterminism would
do, but more careful treatment of asynchronous phase nondeterminism enables
SILL to tackle a class of problems that our prior systems cannot handle.
Consider trying to write a process that sells a single ticket to one of two

client processes. We might give each of the clients the type

Client = [((Int D T1)&11)

50

where the ticket vending machine will, after receiving a request (represented here
by a shift message) from the client, either tell the client no ticket is available
(i.e., send inr) after which that client will terminate, or the client will receive a
inl followed by its reservation number. A simple attempt at a vending process

then might be

vend : {1 + Client;Client}

c+ vend—a b=
shift < a;
shift <+ b;
send a inl;
send a 42;
send a shift;
wait a;
send a inr;
send b shift;
wait b;

close ¢

This vending machine has a major flaw: the d client always receives the reserva-
tion, i.e., the vending machine is unfair. To cope with this we might introduce
some sort of explicit randomization to our process, i.e., vend could flip a coin
before deciding which client gets the reservation. Unfortunately, this does not
help us implement a “first come first served” notion of fairness. The issue seems
to be that while our system is asynchronous, it does not permit any truly racy
behavior.

To enable this, we will develop a notion of non-deterministically selecting
over a list of channels that could potentially be ready for reception. Specifically,
we will split our proofs into phases as in focused logics, i.e., create synthetic rules.
This time, the rules will explicitly witness that the nondeterminism inherent in
choosing which asynchronous rule to apply at a given step is unimportant. The

changes we make to our system are the following:

e Introduce two new rules SEL and SELp that demonstrate we could start

our proof via any one of a nonempty set of active rules

e Introduce a notion of selected judgments that encode which of our asyn-

chronous rules must be used first

e For each active rule we move it to either a left selected judgment or right

judgment as appropriate

Together, these mean that when we use one of the SEL rules, we demonstrate
that our proof could safely proceed starting from any of the listed formulae (the
selected judgments ensure that the appropriate rule is applied first). As a result,

proofs in the original system can reasonably be viewed as a normal form of the

o1

Select Rules:

— A — AT
[AT|>1 @;T AT + B U, T,AT - B
— SEL
U:I,AT+ B
- — A — AL
U, I At - B~ W, IAT - B U:I'AT - B
— SELR
U, T, AT+ B~
AT
Left Selected Rules: A - B
v.I'A~+B . U:I'AT, BT+ C
— =2 T2y WrEB oL
1A 1 TRAT
v:I'|A- + B v:I'1+B U AT®BT F C
U:IAt+-C ¥, I,BT+C
eL
A+$B+
I, ATeBt F C
-
Right Selected Rules: A - A~
U;TF At T, A+ - B~ U, TFA- O;TFB-

— 0 1R — — R — &R

TA At B A~ &B
;T - AT v, I F At B~ ;I A &B-

Figure 4.9: New Racy Rules

system presented in Figure 4.9 that chooses one of the possible ways to proceed
at each selection point.
Since our new proof system is a very slight alteration of the original one, our

soundness and completeness theorems are relatively easy.

Theorem 15 (Soundness). If U;T' F A in the system of Figure 4.9 then U;T - A

in the system of subsection 4.1.1.

Proof. By erasing annotations and replacing uses of SEL and SELgr with one of

their subproofs we can get a proof in the original system. O

Theorem 16 (Completeness). If U;T' = A in the system of subsection 4.1.1
then W;T'+ A in the system of Figure 4.9.

Proof. A proof in the original system is almost a proof in the racy system. It
can be transformed into such by replacing usages of | L, 1L, ®L, and &L with
unary uses of SEL with the appropriate rule. Similarly, we can replace uses of

TR, — R, and &R with uses of SELg followed by the appropriate rule. O

52

vend : {1 «+ Client;Client}
c <+ vend—d e =

select d e

| d — shift « recv d;
send d success;
send d 42;
send d shift;
shift < recv ¢;
send e failure;
send e shift;
wait d; wait e;
close ¢

| e — shift < recv ¢;
send e success;
send e 42;
send e shift;
shift < recv d;
send d failure;
send d shift;
wait e; wait d;
close ¢

Figure 4.10: First Come First Served vend Definition

Operational Rules

Before we can define the operational rules for programs involving SEL and
SELr we augment the program syntax with the following construct for them

(overloading based on usage of the provided channel as normal):
P:=... |select ¢ {c; — P}

With this new construct we can express the ticket vending machine that
implements a “First Come First Served” notion for resolving conflicts between
clients. The code is listed in Figure 4.10 and uses select to choose between which
of d and e receive the ticket based on which one’s request (i.e., shift) is received
first.

As an additional convenience, we will permit the order of the channels
supplied to syntax as a list of channels and in the cases to be permutations of
each other, thus permitting something other than the provided channel to be the
first case when using the typing rule for SELg. Additionally, we will adopt the
convention that unary uses of select may be implicit. The operational rule for
select is straightforward: find a waiting message on one of the selected channels

and transition to the appropriate process.

select d

SELECT : exec,

) @ que(d;, K M,a)®!(Vb.K ¢ {fwd™ (b),fwd™ (b)})
—o exec.(P;) ® que(d;, K M, a)

93

Additionally, we add select to the rules for receiving a forward. It would be safe
to omit this update, but it would run the risk of committing to a channel that

only has a forwarding message and is not truly ready.

4.3.1 Theorems

Well-typed configurations work almost as in the basic polarized system. Un-
fortunately, our tagged left and right selection rules will require us to split our
well-typed configuration rules. We leave the case where P should be judged using
the basic judgment unannotated and add either L or R superscripts to indicate
that P should be judged using the left or right selected judgments, respectively.
As written, these rules are not syntactically distinct w.r.t. P, but this can be
resolved by differentiating between rules that use recv instruction vs those that
do not. Notice that there is no case where a hypothetical WFﬁ> could be legally

applied. We present the new rules below:

AT
INa:AYTFP:c:C- T"FM:C™ «~B T,a: AT T'.T"-E WEL

I',d: Bt exec.(P),que(c, M,d), E <
-
I+ Puc:A- TMFM:2A- «B ILIVT'HE WEE
I',d: Bt exec.(P),que(c, M,d), E -
I'a:AtTFP:uc:Ct T"FM:B«~Ct Ta: AV T/ T"FE WEL
I',d: Bt exec.(P),que(d,M,c), E -

Theorem 17 (Preservation). IfT'H E and E — E’ thenT'+ E’.

Proof. Proof by cases on the transition used. Most cases can be handled by
reusing the proof of Theorem 6 with appropriate substitution of the selected
rules for their basic equivalents. We need one extra case for the select rule. In
this case, we fix the subproof for the transitioning process by taking using one
of the selected rules. To see this in action, let’s examine the case for SELECT,
when the channel with a waiting message is the channel provided by the current

process. We are given:

P
—~
GI'FPuc:C™
SELg
select & of M £
;| ¢c—> P ne:C™ I"rKM:C~«~A TILI'T'+E
WF_
select ¢ of

INa: Ak exec.| ¢c— P ,que(c, K M,a),E

o4

Which we replace with:

P M £
T'ya: Al exec.(P),que(c, K M,a),E =

O

Our progress theorem can almost be stated as before, however we first need
to alter our definition of reactive. In addition to the prior ways that a process
can be considered reactive we add that processes that starts with the construct
for SELR counts as reactive if all the queues used by that instruction are empty.
Notice, that we treat SELR as a receiving rule despite the fact that its operational
rule does not remove anything from a queue. If, however, we look at the system
defined by the “big-step” rules fusing SELECT with the normal receiving rules,

this confusion would disappear.
Theorem 18 (Progress). If '+ E then either E — E’ to E is reactive.

Proof. By induction, reusing the proof of Theorem 8 with the slight adjustment
to handle the splitting of WF_ and WF . The cases for SEL and SELg are

treated just like other receiving rules. O

4.3.2 Related Work

A common operation (going by various names: select/poll/epoll) provided
by Unix/POSIX systems for working with file descriptors is the ability to ask
the operating system which of a collection of file descriptors can perform some
operation (e.g., which file descriptor, if any, has data ready to be read). This is
very similar to the facilities provided by the select extension (and the source of its
name), however, select provides a simpler but less powerful interface. The unix
tools allow for choosing among both read and write operations instead of just
read operations. This extra functionality is meaningless in SILL: polarization
means that well-typed programs that wish to write can always immediately do
so. Describing which file descriptors to wait on is also handled differently, epoll
creates an empty set of file descriptors and then adds to them via repeated calls
to epoll_ctl. Since we cannot manipulate channels directly in the functional
language (e.g., store them in a list) all channels that our process could possibly
select on must be statically known, and, thus, the variadic syntax is as flexible
as might ever be needed. Lastly, epoll provides a limited amount of message
filtering (e.g., to check for high priority messages preferentially). Potentially,
this might be an interesting addition to our system, however, message filtering
should be explored as an independent language feature first, as some actor
systems permit [20]. In addition to these notable differences, epoll provides a
few concerns that do not directly translate into our context (e.g., interactions

with the operating system’s powersaving features).

95

Within the session typing world, the most common way to enable racy
behavior is by using the non-deterministic accept/request primitives. Returning
to our vending machine example, the vending machine would accept a ticket
selling session twice over its lifetime and actually sell the ticket in the first of these
sessions while returning an error message in the second. Unfortunately, giving a
logical account of these instructions is an open problem and may require weaker
progress theorems. The racy extension of SILL does, however permit us to write
explicitly the non-deterministic matching that goes on during accept/request, but
the tree structure imposed by our well-typed configuration judgement prohibits
the most “interesting” (i.e., unsafe) cyclic uses of this.

Some presentations of focusing work on a non-commutative version I' in their
asynchronous rules [23]. Essentially, this fixes the focused normal form more
tightly than in section 4.2. Since these extra constraints might hurt completeness,
an extra companion lemma needs to be proven to ensure that the mandated
order is safe (e.g., by proving that all permutations of I' preserve provability).
This is similar to what select forces us to provide witnesses for, but it is stronger
in that select does not require us to show that all possible starting points would
be safe to proceed from and imposes no constraints on subproofs (i.e., they may

be unfocused).

4.4 Asynchronous Reading

So far we have seen how to incorporate asynchronous sending into SILL, but
a related notion, asynchronous receiving, is missing. This section seeks to
rectify that. Before turning to the logical basis for asynchronous receiving, let us
consider what we might want from such an extension operationally. Operationally,
asynchronous receiving should move the point where a recving process must stall
from where the receive textually occurs to just before the atomic message that
would be received is actually needed. Briefly, we can examine where each of our

message types are actually used:

e A data value, v, is used anytime that an expression from our underlying
functional language is used, namely in ¢ - e — & and send ¢ e. We could be
a bit more precise if we were willing to inspect e (i.e., we could determine
that e does not need v). For many possible choices of underlying language
this is reasonable, particluarly, since we already assume that e can use v
by substitution. If we view substitution as merely a concrete instance of
the higher level goal of “give the value v to the underlying language”, this

may be undesirable (e.g., e might be opaque, separately compiled code).

e A channel is used when it is mentioned later in the process. This could
be loosened in the case of {}F if we allowed for the transference of which
process is waiting for the channel to be received. That is, if for some

¢ < e—d, where d is a channel that will eventually be received by the

96

process containing the {} E, we would could transfer the obligation to wait
for d to the newly spawned process specified by e. This seems relatively

complicated to cooridnate, so we will not explore this option further.

e For inl or inr, these are used immediately as part of a branch. A more
permissive approach might run all branches until they try do something
irrevocable and treat that as the use point (only performing the correct
irrevocable action). This idea has been used in some security tools [8]
to ensure privacy policies are respected and in software transactional

memory [29].

e For end, the use point could reasonably be any of: never, since we gain no
information other than synchronization from it; immediately because we
gain no information other than synchronization from it and, so, that must
actually be important; or whenever the process closes or forwards, if we
want to emphasize that all children of a process must terminate before the

process does.

e For shift, the answer depends on whether we wish to reutilize our message
queues (as the previous semantics have assumed). If we plan reuse our
queues, then it must be viewed as being used before the next write on this
channel (so the queue has been emptied before being written to). If we
allocate a new queue for each round of communication, then shift is never

used.

e The message fwd®(c) is never used and has no construct that directly

receives it, thus we do not need to worry about it.

While there is no need to change SILL’s type system to accommodate
asynchronous receiving, the semantics will, unsurprisingly, change a bit. A
direct context reduction semantics for asynchronous receiving should be fairly
straightforward to define by allowing for RECV transitions contained deep within
executing processes, but this seems to make preservation significantly harder to
prove. Instead we will define the semantics by extending our existing transition
system with one new rule.

Before defining the new transition, we define a helper operation REORDER(P)
that takes a process and produces a set of programs that correspond to receive-
use dependency respecting reorderings of the process. The inductive definition of
this set is given in Figure 4.11. The members of this set are preserve the typing

of the original set. Notice that REORDER(P) is always non-empty.
Lemma 19. If U;T'F P::c: A and P’ € REORDER(P), then ¥;T'F P’ ::c: A.
Proof. By induction on the proof of P’ € REORDER(P). O

To perform a receive asynchronously we can think of asking the question

“How late can we delay this receive instruction?” and our discussion of when

o7

P € REORDER(P) Q2;Q1; P € REORDER(Q1; Q2; P)

case f of Q1;case f of
inl - @Q1; P | € REORDER inl - P;
inr—= Qq; P inr — Py

P"” € REORDER(P’) P’ € REORDER(P)
P € REORDER(P)
T 4 recv ¢, d < recv c,

where ()1 € < shift < recv ¢, ,wait ¢, send ¢ inl,
send c inr,send ¢ shift,a < e —d

y < recv f,a < recv f,
and Qs € { shift < recv f,wait f,send f inl,
send f inr,send f shift,b + ¢’ —b

Figure 4.11: Definition of REORDER

received values can be used provides guidance to answering this question. A
related question that REORDER will let us answer is “The current receive cannot
be performed, what other later operations would it be safe to do while we wait?”
This is accomplished by replacing the currently executing process P with some
P’ € REORDER(P) with the hope that P’ will be able to make progress.

REORDER,ny : exec.(P)®!(P’ € REORDER(P)) —o exec.(P")

While this rule is appealingly simple, it can introduce non-termination via
repeated cyclical uses of REORDERany even in otherwise terminating programs.
In practice, we should execute the system that fuses this general rule with each
of the applicable basic operational rules that additionally ensures that P’ can
immediately transition. As a simple example of this, consider the following fused

rule for wait:

REORDER,it: exec.(P)®!((wait a; P’) € REORDER(P)) ® que(a,end, b)
—o exec.(P’)

Notice that these rules enable the execution of deeply located, but still
REORDERable, instructions even when they are not the first such instruction.
Concretely, this can be seen by examining the execution context in Figure 4.12.
The process cannot directly execute its first instruction, but, by using REORDER,
can execute either the second or third instruction. A more obvious asynchronous
semantics might require the second instruction to execute preferentially, but this
seems to require a more complicated semantics. For instance, we could require
that all channels used between the topmost instruction of a process and the
instruction that would be REORDERed to the top be unable to react if they were
REORDERed themselves.

58

X 4 recv a;

1y < recv b;
exece | » ¢ recv ¢; | »que(a,-,a’),que(b,5,V'), que(c,8,V'), E

Figure 4.12: Out-of-order vs Asynchronous Receiving

Logically, performing a REORDER corresponds to trying to perform a com-

mutative CUT during cut elimination to convert a case into a principal cut.
Theorem 20 (Preservation). If '+ E and E — E’ then T+ E’.

Proof. Case on the transition used. For the cases for previously existing rules,
reuse the corresponding proof case from Theorem 6. In cases where one of the
new fused REORDER rules is used, reuse the corresponding case proof composed
with Lemma 19. O

Reactive is no longer a tight characterization of stuck processes, i.e., some
processes (e.g., in Figure 4.12) that are reactive are not stuck due to the possibility
of the REORDER rules being used. Unlike in subsection 4.2.1, asynchronous
receiving will only allow us to make progress more often. Thus, we do not need

a tighter definition of reactive for the progress result.
Theorem 21 (Progress). If '+ E then either: E — E’ or E is reactive.

Proof. Reuse the proof for Theorem 8. Our new rules can only enable us to

transition more readily than before. O

4.4.1 Related Work

The fusion calculus [71] provides a similar ability to perform receives asyn-
chronously, but accomplishes this in a radically different manner: the fusion
calculus uses unification to combine names across processes. This allows a receiv-
ing process that does not need to know the value of message to proceed with the
hopes that unification will have filled in a value by the time that it is required.
A realistic implementation should attempt to avoid arbitrary, potentially global,
unifications. This lends itself to implementation via Futures [10], which allow
for placeholders to be used to coordinate the final transmission of values from
senders to users. For a distributed system, this seems a bit unsatisfactory:
while there are distributed futures systems [96], these assume a mechanism for
communicating between processes in addition to channels.

The most common example of out of order execution is in processors. In
this setting, assembly instructions (or microcode microps) are reordered in an
attempt to maximize throughput when executing programs. While this is a
sufficiently different domain that it is unclear how many lessons for SILL this

has, there are a few simple ones. First, it emphasizes that REORDER may be too

99

expensive to use naively in its full generality: we may need either an algorithm
to enable faster reordering or we may wish to truncate our searches for usefully
reorderable instructions before trying all possibilities. We have already seen
one such algorithm expressed in the reduction of asynchronous receiving to
synchronous receiving with select, at a worrying code size cost. The other lesson
is that nondeterminism is important and may be unavoidable when performing

reordering [57], as we have already seen hinted at in section 4.3.

4.5 Polymorphism

For the rest of this thesis we will assume that we start extending SILL from the
version presented in section 4.1. We exclude the two alternate semantics since
neither are extensions to the base language. The exclusion of select is merely for
convenience, it would noticeably complicate the following work, but the idea of
allowing selection over invertible rules remains compatible with the rest of SILL.

To add polymorphism to SILL we will explore the addition of atomic proposi-
tions and quantification to SILL. Instead of fixing a set of atomic propostions, we
will make them explicit in the logic. Specifically, we will augment our propositions

with a set of atomic proposition names:

at, Bt oyt =, (positive atomic propositions)
a BT,y = (negative atomic propositions)
At u=... | ot
A" =0 | a”

As with AT and A~, we will omit superscripts when they are unimportant.

To ensure that these atomic proposition names are actually drawn from the
set of atomic propositions, we add two well-formed type judgements, A - 7 and
A F A, that confirm all atomic propositions used in these propositions are in A.
To do this we resuse the rules from an assumed well-formed type judgement for
7 and augment it with the following {} rule, in addition to creating the rules for

A F A (we will continue to require that propositions are contractive):

AFA foralli: A+ B; AE At
= {} —~—— ELEM — 1 7+T
AF{A«+ B} Aok« A1 AF1TA
AFA- 1 AFT AI—A+/\ AFT AI—A‘D Al AT AI—B+®
AF A~ AFTANAT AFTDA™ AFAT® BT
AR AT AI—B‘_O AR AT AI—B“‘69 AFA- AI—B_&
AFAY — B~ AFAT® Bt AFA-&B~

The full logic for this system, presented in Figure 4.13, augments each rule

with a A to track which atomic propositions can occur in its propopsitions

60

AT A A AUH{A« A} AUT,AFB

_ E nE
AU F (A A A;U;T, A+ B AT AFA P
AT THA AW T AT AU T - BT
———— 1R —— [—————— @R
AU 01 AU, 1HA AU TVHFAT® B
AU T AT, BT C © A;U: T AT - B~ R
A;W;T, AT @ BT+ C AUTHAY =B
A;U:T AT AU T, B FC AU THA- AU T B
7 + _ —o L _ — &R
AU I TV, AT - B~ (C A;U;T'HA&B
AUT A HC AU T, B~ HC
——— &1 ——— &Lo
A;U:TA—&B~ FC A;U:TVA—&B~ FHC
AU T AT OR A;U; T - Bt SR
AU:THATeoBY 7' AUTFAteBt 7
AU T AT C F,B+I—C@L AU k7T AU T AT
AU T AT BT -C AU TEHTAAT
AU, 7T AT B I AU T EA™ R
AUT 7 AATFB Y AWIFroA- ~
AU ET AU TVAEB I AU T A L AU TVA- B i
AT, TDOA B - AU T HJA™ A;U:T, AT FHB
A; ;T = AT A;U:T AT+ B 4L

A; U T = 1AT T A; U T, tAT - B
Figure 4.13: Polarized Logic with Atomic Propositions

and presuppose that all types are well-formed w.r.t. their A. Since atomic
propositions cannot be deconstructed, the meaning of atomic, we do not need
any new logical rules to handle them.

Unfortunately, this will not quite give us a useful programming language.
Instead we will want to allow for explicit quantification of session types on top
level definitions and explicit instatiation of these variables. To handle this we
will add a new kind of proposition §, which will only be used for expressing

relatively simple polymorphism for 7.
0 ==Va.r

We can then extend our existing logic by letting W be a set of § instead of T,
letting 7 abbreviate V.7, and adding the following three rules, one for well-formed
types and two logical rules:

Adbr B¢ (Ad) AFYETB/d

AFvar DEUT AU Var Top

foralli: AFA
A; U Va.r+ 7[A/d)]

TYAPP

61

empty : {queue a*} elem: {queue a™ « a';queue o™}

¢ < empty = c+elem—zx d=
case ¢ of case ¢ of
| inl = 2 <« recv ¢ | inr =y« recv ¢
e < empty; d.engq;
d<+ elem—x ¢ send d y;
c+d e+ elem—x d;
inr — shift < recv ¢; c+e
send c inr; inr — shift < recv ¢;
close ¢ send cinr;
send ¢ x;
send c shift;
c+d

Figure 4.14: Queue Example

We then add syntax for these constructs, letting G be the non-terminal for

global, i.e., top-level, definitions:

G == ...|lz:5=e (Top-level session polymorphism)

e = ... |z(A) (Session polymorphism instantiation)
which come with the following type rules:

B¢ (A A B,z (Var) k- e[B/a: T|3/a) .
AN (Var)=e or

for all i: A+ A;
> - TYAPP
AU,z Va.r b x(A): T[A/d]

4.5.1 Example: Queue of Channels

As an example of using polymorphism, let us define the type of a queue of
channels. Inspired by object oriented languages, a queue should provide the
choice between two operations: enqueuing and dequeuing an channel. Since a
queue that is requested to dequeue might be empty we will assume that the
queue will tell us whether it can successfully return an element before fulfilling
that request. Putting this together, we get the following type for a queue of

channels of type a™:
queue o = (o — a™)&T(1® (ot @ la™))

We implement this via a mutually recursive definition of two process expres-
sions (Figure 4.14). The two processes, empty and elem, represent the empty
queue and a non-empty queue consisting of an element consed onto the head of
a queue, respectively. The empty queue takes no arguments and, since it has

nothing else to do, immediately branches on the requested queue operation. In

62

the deque case, inr, there is nothing to do so the process sends inl and terminates
itself. In the enqueue case, i.e., where inl is chosen, the process receives the
new channel to store and then transforms into an instance of elem. The elem
process takes two channel arguments, one for the channel it stores and one for
the tail of the queue. In the deq case the process sends its stored channel and
then behaves as the tail of the queue. In the enqueue case, it enqueues the new

channel into the tail of the queue and recurses to itself.

4.5.2 Quantifiers

With the machinery used for atomic propositions, we can additionally add
quantification to our logic. Quantifiers extend the existing with both existential

and universal quantification (we will see why these polarities are correct soon):

At = ... | Jat. AT
A7 u= .| Yat. A~

Since we have new type constructors, we also need to extend our notion of

well-formed types to account for them:

AorbAt AakA
AF Ja. AT AF Yo A~

The new constructs have the expected type rules, either providing a concrete
type in the extensional case or showing that the proof is completable for a fresh
type variable name. Notice that our choice of how to polarize the quantifiers
agrees with the invertibiilty of their rules. In the following rules, we assume that
a, B, and C have the same polarity, so that the substitutions do not introduce

ill-formed types:

AFC AU T ATC/a] R B¢ (Aa) ABY;T,AT[B/a]F B

A; 0T - Ja AT A;W: T, Ja. AT - B 3L
B¢ (Aa) ABYTHEAT[B/q VR AFC A;U:T,A7[C/a]l+ B VI
AU T HYa.A™ AU T 'Va. A" F B

Next we extend our process syntax to add one (overloaded) construct for

each new logical rule:

P = ..
| sendc A;P (3R,VL)
| a<recv e P (VR,3L)

The typing rules for these constructs are the obvious Curry-Howard transla-

63

tions:
AFB A;UTEP:c:CT[B/a]
A;U:TFsendc B;P:c:3a.Ct
B¢ (Aa) ABY;T,a: AT [B/a]FPic:C
AU T, a: JaATFa+reeva; Pc: C
B¢ (Aa) ABY;THP:c:C[3/a]
A;U:TFa<+recv e P:ic:Va.C™
AFB AU Ta: A" [B/a]F Puc: C
A; ;T a:Va. A" Fsenda B;P::c:C

3L

VR

VL

The operational rules will require us to extend our type of messages with

types:
K:=...]A

And use this new class of messages to implement type transmission:

SENDiype: que(a, M, c) ® exec.(send ¢ A; P) —o que(a, M A, c) ® exec.(P)
RECViype: execq(a ¢ recv ¢; P) @ que(c, A M, d)
—o exec.(P[A/a]) ® que(c, M, d)

While we will not pursue it further, since it makes proving preservation
quite complicated, we could also give a type erased version of this, witnessing
that storing types at run-time might be unnecessary. On the other hand, in a
distributed system it is reasonable to want to perform runtime checks to confirm

that types are dynamically respected, which might force us to transmit the whole

type.

4.5.3 Theorems

Before we get to more interesting theorems, we need to establish some basic

properties of substitution. First substitution preserves well-formed types.
Lemma 22. If Ajak A and A+ B, then A+ A[B/q].

Proof. Take a witnessing relation for A, a = A and substitute B for « throughout.
This new relation witnesses A - A[B/q]. O

Letting ¥[B/a] and I'[B/a] stand for pointwise substitution, we also have

that substitution is truth preserving.
Lemma 23. If A,o; U;T'F A and A+ B, then A;Y[B/a);T[B/a] - A[B/«].

Proof. By induction on A, a;¥;T" = A. Other than ID, the cases are either
straightforward or follow from the inductive hypothesis. If ID does not use «, it
is straightforward. Otherwise, we the results holds due to the reflexivity of type
equality. O

64

Similarly, we can lift substitution to typing judgments.

Lemma 24. If A,a;U;TF P :ic: C and A+ A, then A;U[A/a];T[A/a]
P:c:C[A/a].

Proof. As in Lemma 23, but with typing rules rather than logical ones. O

To prove preservation, we need to update the well-formed queue judgment

with rules to handle the new type messages:

0-C FI—M::A’[C/a]wBV e FI—M::A*[C/Oz]e«»Ba
I'C M :Va.A~ « B q '-C M ::3a.At ~ B q

Notice that this requires us to only send closed types across channels. Other than
needing to use the new type judgment, the well-formed configuration judgment
is unchanged.

Unsurprisingly, queue concatenation works even with a new form message.
Lemma 25. The following rules are admissible:

'-M: At « Bt T"FM Bt «C
LM M AT «~ C

I'FM:2A" « B T'F-M B «(C
LLTVEMM A= «~ C

transt

trans—

Proof. As in Lemma 4. O
We can then prove preservation.
Theorem 26 (Preservation). If - F and E — E’, then - E’

Proof. Follow the structure of Theorem 6. Other than needing Lemma 24, the
new constructs behave like other SENDs and RECVs, but let us examine the two
right rules to confirm.

Recall that the proof of Lemma 24 cased on the transition rule used after

inducting on F FE.

Case SENDyype: By assumption we have:

E=T,I'.T"FE
P
0;0; "+ Pc: CT[A/q] M
0;0;T" Fsend c A; P ::c: 3a.CT SR I'"+M:DV « Ja.Ct &
[',d: D"+ exec.(send ¢ A; P),que(d, M, c), E

WF_,

65

We can replace it with the following to finish this case:

D -:Ct[A)a] « CT[A/q] I

agT” B 0FA:3Ja.Ct «~ CT[A/a] .
P I"FMA:D" ~ CT[A/q] trans® ¢

I',d: D F exec.(P),que(d,M A,c),F WE-
Case RECVyype: By assumption we have:
E=T,I"T"+E
M
P-C T"FM:C7[A)a] « D v
Z= TI"FAM:Va.C~ « D K
P
B#a Bi0T'FP:c:C[3/al
0:0; TV Fa+recv e Pic:Va.C™ VE Zz &
WF_

I,d: Dt exec.(« < recv ¢; P),que(c, A M,d), E

which we can replace with the following to finish this case:

P with Lemma 24
0;0; " =Puc: AT[Cla] Q &
I,d: D+ exec.(P),que(c, M,d), E

WF,_

As normal, progress remains somewhat easier.
Theorem 27 (Progress). If+ E then either E — E’ or E is reactive.

Proof. Reuse the proof of Theorem 8. The rules SENDype and RECVype are
handled like other SENDs or RECVs. O

4.5.4 Related Work

Wadler [94] introduces a Curry-Howard interpretation of classical linear logic
(also present in Caires et al. [16] with slightly different primitives) with explicit
polymorphism analogous to our explicit type-passing constructs. This provides
quantification (and, hence, polymorphism) only as part of the of the linear
propositions, a cleaner approach. Unfortunately, it does not provide a clean way
to share type variables across both sides of the arrow in types like {A < B},
which we found to be commonly needed by our examples. At the expense of
more verbose programs, the cleaner system can express many of these examples
by forcing rewriting Va*.{A + B} as the ungainly and operationally awkward
type {Va.{A <~ B} A 1}. Wadler also shows how to translate a variant of Gay

and Vasconcelos [36] into his calculus, but it does not integrate functional and

66

concurrent computation, nor does it combine the linear, affine, and unrestricted

modalities we will see later (section 4.6).

4.6 Polarized Adjoint Logic

Before discussing polarized adjoint logic, we pause to review persistence and

discuss its reflection in processes and introduce Adjoint Logic.

4.6.1 Categorical Truth

The linear logic proposition !A allows A to be used arbitrarily often in a proof—it
functions as an unrestricted resource. In the intuitionistic reconstruction of
linear logic [22], ! A internalizes a categorical judgment. We say that A is valid if
it is true, and its proof does not depend on any assumptions about the truth of
other propositions. Since we are working with a linear hypothetical judgment,
this means that the proof of A does not depend on any resources. We further
allow hypotheses T that are assumed to be valid (rather than merely true), and

these are allowed in a proof A wvalid.
T,AFC

The meaning of validity is captured in the following two judgmental rules:

T0FA Y ATEC TATARC
YTFC CuT' Y ATrC

Copry

The first, CUT!, states that we are justified in assuming that A is valid if we
can prove it without using any resources. The second, COPY, states that we
are justified in assuming a copy of the resource A if A is known to be valid
(essentially a fusion of !conrracr and 'L of section 2.4). All the purely linear
rules are generalized by adding an unrestricted context T which is propagated
to all premises.

How do we think of these in terms of processes? We introduce a new form of
channel, called a shared channel (denoted by u,w) which can be used arbitrarily
often in a client, and by arbitrarily many clients. It is offered by a persistent
process. Operationally, a persistent process offering A along w inputs a fresh
linear channel ¢ and spawns a new process P that offers A along c.

We have the following typing rules, first at the level of judgments.

Tu:AT,a:AFP:c:C
YT,u:A;TF (a<+sendu; P) ::c: C

Copry

T;0FP::a:A Tu:ATFQ:c:C
T;TFu<+!(a+recvu; P);Q:c:C

Cur

67

The CoPY rule has a slightly strange process expression,
a < send u; P

It expresses that we send a new channel a along u. The continuation P refers to
a so it can communicate along this new channel. This pattern will be common
for sending fresh channels in a variety of constructs in the remainder of this
thesis. This combined step of generating a fresh channel and sending it stands
in contrast to the v construct of more traditional session typed languages and is
a result of the intuistionistic tight association between channels and processes.

We see that the CUT! rule incorporates two steps: creating a new shared
channel v and then immediately receiving a linear channel a along u. There is
no simple way to avoid this, since P in the first premise offers along a linear
channel a. We will see alternatives in later in this section.

In the operational semantics we write lexec,, (P) for a persistent process,
offering along shared channel w. In substructural specifications [87], lexec,, (P)
on the left-hand side of a rule means that it has to match a persistent proposition.
We therefore do not need to repeat it on the right-hand side: it will continue to
appear in the state (i.e., we can use contraction to keep a spare copy). In this
section we will give a synchronous semantics, deferring the asynchronous version

until subsection 4.6.3. In this notation, the operational semantics is as follows:

CoPY: lexecy(a < recv w; P) ® exec.(b +— send w; Q)
— 3f,g. execy(P[f/a]) @ execc(Q[g/b])

Cut! : exec.(u <!(a recv u; P); Q)
—o Jw. lproc,,(a < recv w; P,) ® exec.(Qw/u])

The validity judgment realized by persistent processes offering along unrestricted
channels can be internalized as a proposition !A with the following rules. Note
that the linear context must be empty in the ! R rule, since validity is a categorical

judgment. Allowing dependence on linear channels would violate their linearity.

T:0-P:a:A
T;0F u<sendc;!(a <+ recvu; P)::c: 1A

'R

Tu: ATHEQ:c:C
T:T,a:'Aru+recva;Q ::c: C

L

Again the !R rule combines two steps: sending a new persistent channel u along

¢ and then receiving a linear channel a along u. Operationally:

BANG: exec.(u < recv d; Q) ® exec,(u+ send a; (b < recv u; P))
—o Jw. exec.(Q[w/u])®!proc,, (b < recv w; P)

As expected, the persistent process spawned by the BANG computation rule has

68

exactly the same form as the one spawned by CUT!, because a linear cut for a
proposition !A becomes a persistent cut for a proposition A.

Let’s analyze the two-step rule in more detail.

T:0-P:a:A
T;0F u <« send cl(a+ recvu; P) :c:!A

'R

The judgment A walid (corresponding to an unrestricted hypothesis u:A) is
elided on the right-hand side: we jump directly from the truth of !A to the truth
of A. Writing it out as an intermediate step appears entirely reasonable. We
do not even mention the linear hypotheses in the intermediate step, since the

validity of A depends only on assumptions of validity in I'.

T:0-P:a:A
THa+recvu; Piu: A
T;0F u+send¢;!(a+recvu; P)::c: A

VALID

'R

We emphasize that | A is positive (in the sense of polarized logic), so it corresponds
to a send, while A valid is negative as a judgment, so it corresponds to a receive.
In the next section we elevate this from a judgmental to a first-class logical step.

Revisiting the example, recall that if we are the client of a channel with
the type queue A, we must use this channel. This means we have to explicitly
dequeue all its elements. In fact, we have to explicitly consume each of the
elements as well, since they are also linear. However, if we know that each
element in the queue is in fact unrestricted, we can destroy it recursively with

the following program.

destroy : {1 + queue (!4)}

¢ < destroy—gq =
send ¢ inr;
case q of
inl — wait ¢; close ¢
inr — a < recv ¢; % obtain element a
U <— recv a; % receive shared channel u, using a

¢ < destroy—q % recurse, ignoring u

Unfortunately, this forces us to store unrestricted channels instead of the linear
channels that our queue previously stored. Instead, we can use an unrestricted
destructor process, with type (A — 1), to destroy each individually stored
queue. Since this destructor can be copied as many or few times as we wish, we
know that we will always be able to produce a destructor for each queue element,
regardless of how many there are. Notice that (A — 1) denotes a persistent

channel with type (A — 1) not a linear channel of type (A — 1).

69

destroy : {1 + queue(4);!(A — 1)}
¢ < destroy—q u =
send ¢ inl;
case g of
| none — wait g¢; close ¢
| some — a < recv g;
d < copy u;
send d a;

c < destroy—q u

4.6.2 Adjoint Logic

Adjoint logic is based on the idea that instead of a modality like !A that
remains within a given language of propositions, we have two mutually dependent
languages and two modalities going back and forth between them. For this
to make sense, the operators have to satisfy certain properties that pertain
to the semantics of the two languages. We have in fact three language layers,
which we call linear propositions A., affine propositions A, and unrestricted
propositions Ay. They are characterized by the structural properties they satisfy:
linear propositions are subject to none (they must be used exactly once), affine
proposition can be weakened (they can be used at most once), and unrestricted
propositions can be contracted and weakened (they can be used arbitrarily often).
The order of propositions in the context matters for none of them. The hierarchy

of structural properties is reflected in a hierarchy of modes of truth:
U>F>L

U is stronger than F in the sense that unrestricted hypotheses can be used to
prove affine conclusions, but not vice versa, and similarly for the other relations.
Contexts I' combine assumptions with all modes. We write > for the reflexive

and transitive closure of > and define
I' >k if m >k for every By, in T’

and
' A presupposes I' > k

We use the notation 1}' Ay for an operator going from mode k up to mode m,
and | A, for an operator going down from mode m to mode k. In both cases

we presuppose m > k.

70

Taking this approach we obtain the following language:

Modes m,k,r = U|F|L

Propositions Ay, By, = 1y | A ®m Bm | Am @m Bm | T Am Bm
| A, —om B | An&mBm | T Dm Bm
| Ay (m> k)
| A (r>m)

Because both !4 and A are linear propositions the exponential !A decomposes

into two connectives:
U u
'A = \I/L,a TL AL

Because linear and affine propositions behave essentially the same way except
that affine channels need not be used, we reuse all the same syntax (both for
propositions and for process expressions) at these two layers. Unrestricted
propositions would behave quite differently, so we specify that there are no
unrestricted propositions besides 17 A, and 15 Ay.

In the following logical rules we always presuppose that the sequent in the
conclusion is well-formed and add enough conditions to verify the presupposition

in the premises.

Fl—Ak k’Z’I’ F,AkI—CT
—F TR L
TrEpdy | TATA G,
> A, - C,
TF VA, T, A - C,

The rules with no condition on the modes are invertible, while the others
are not invertible. This means 1A is negative while |A is positive (in the
terminology of section 4.1). We already noted that processes offering a negative
type receive, while processes offering a positive type send. But what do we send
or receive? Thinking of channels as intrinsically linear, affine, or shared suggests
that we should send and receive fresh channels of different modes. Following this

reasoning we obtain, after denoting channel modalities via subscripts:

' P:ag: Ag
Dk ag < recv by P iz by, : 10 Ay,

TR

k>r Vap: A Qe :C,
Toby : M Ak b oap <—send by,; Q ¢ 2 Cy

1L

While we annotate each channel with its mode, we should note that it may not

be strictly necessary. Operationally:

UP' : exeCq, (ar sendcy,; Q) @ exece,, (by +— exec ¢p; P)
—o Jcg. execq, (Qler/ark]) @ exece, (Plek/br])

71

And for the other modality:

F'>m VYFEQs, 0m:An

T'Fap, < send by; Q = by : Ly Am R
T an,: A, FP:c. :C, L
Tobp : i Am b am < recv by; P iz ey : G
Operationally:
DOWNJ" @ exeCq, (am ¢ recv ci; P) @ exece, (b, < send ci; Q)

—o Id,,.exec,, (Pldm/am]) ® execy,, (Qdm/bm])

Since processes offering along unrestricted channels are persistent, we use here
the (admittedly dangerous) notational convention that all processes offering
along unrestricted channels ¢, are implicitly marked persistent. In particular,

we should read UP}], and DOWN]/ as

UP}, : execy, (ay + sendcy; Q)® lexece, (by, + exec cy; P)
—o Jeg,. execy, (Qler/ar]) ® exece, (Plek/bk])
DOWN} @ exeCq, (ay < recv cg; P) ® exece, (by +— send cx; Q)

—o Jdy.exec,, (Pldy/ay])® lexecy, (Q[dy /by])

At this point we have achieved that every logical connective, including the up and
down modalities, correspond to exactly one matching send and receive action.
Moreover, as we can check, the compound rules for !A decompose into individual
steps.

Returning to our queue example (Figure 4.14), we can now specify that
our queue is supposed to be affine, that is, that we can safely decide to ignore
it. We annotate defined types and type variables with their mode (U, F, or L),
but we overload the logical connectives since their meanings, when defined, are
consistent. The elements of an affine queue should also be affine. If we make

them linear, as in
Queue, A, = (17 A, — Queue A,)&(1 & (17 A, ® Queue A,))

then we could never use ay : 17 A, in a process offering an affine service (rule L)
since L 2 F, i.e., we could only define “queues” that discarded everything placed

in them. So instead we should define an affine queue as
Queue, A = (Ar —o Queue Ap)&(1 @ (4Ar ® Queue, Ar))

so that all types in the definition (including A;) are affine. Now we no longer
need to explicitly destroy a queue, we can just abandon it and the runtime
system will deallocate it by a form of garbage collection (subsection 4.6.6).

If we want to enforce a linear discipline, destroying a queue with linear

72

elements will have to rely on a consumer for the elements of the queue. This
consumer must be unrestricted because it is used for each element. Channels
are linear by default, so in the example we only annotate affine and unrestricted

channels with their mode.

destroy : {1 < Queue, A, 1 (4, — 1)}

¢ < destroy—gq uy =
send ¢ inr;
case q of
inl — wait ¢; close ¢

inr — a < recv ¢;

d <+ send uy; % obtain instance d of uy
send d a; wait d; % use d to consume a
¢ + destroy —q uy % recurse, reusing

4.6.3 Polarized Adjoint Logic

Now we are ready to combine the ideas from adjoint logic in subsection 4.6.2
with polarization in section 4.1. Amazingly, they are fully consistent. The two
differences to the polarized presentation are that (a) the modalities go between
positive and negative propositions (already anticipated by the fact that | is
positive and 1 is negative), and (b) the modalities |’ A and 17" A allow m > k
rather than presupposing m > k as before. We no longer index the connectives

(except, occasionally, for clarity), overloading their meaning at the different

layers.
Pos. props Al Bl = 1 send end and terminate
| Al ® B} send channel of type A}
| Ar @B} send inl or inr
| TAB} send value of type 7
| LAS (r > m), send shift, then receive
Neg. props A, B, == Al — B, receive channel of type A}
| A, &B.. receive inl or inr
| 728, receive value of type 7
| AL (m > k), receive shift, then send

A shift staying at the same level just changes the polarity but is otherwise not
subject to any restrictions. We can see this from the rules, now annotated with

a polarity: if m = k in 1L, then k > r by presupposition since (F,T?A;) >r.

73

Similarly, in | R, I' > m by presupposition if m = k.

A;\II;FI—Az k>r A;‘P;F,A;I—CT iL
AU T AL AT AT AR O,
r>m AW TFAD AU A FC,

R oS L

Adding process expressions in a straightforward manner generalizes the shift to
carry a fresh channel because there may now be a change in modes associated

with the shift. We have the following new syntax

P,Q := shiftay < send ¢;,,; P (send shift ag, then recv. along ay in P)
| shift ap < recv ¢;; Q (recv. shift ag, then send along ay in Q)

and the modified rules (we will allow channels with modality U to be duplicat-

ed/contracted as needed without creating variant rules):

A;U:TEP:ay: AZ‘
A; U T F shift ay, < recv byy; P it by, M0VAS
k>r A;\II;F,ak:A'k"FQ::cT:CT
A;U; T, by, o T AL shift ag, < send b5 Q 2 ¢y 2 G,
P>m AUTEEQ::am: A,
A; U T F shift a,, < send bg; Q = by : J1" AL,
AU ay, A, E P e G
AU T by 2 LA, b shift ag, < recy by Py 2 O

TR

+L

IR

1L

Operationally, we generalize the basic shift message with the following:
K == ... | shift(c)
and generalize the rules for sending and receiving it:

SENDghis : que(ag, M, c;) ® exec, (shift b, + send ¢; P)
—o Adp,, frm-que(ar, M shift(f,), dm) @ exec(P[dy, /bm)])
RECVghift: exece, (shift a., + recv cx; P) ® que(cg, shift(by,), dm)

—o que(dy, -, b) @ execy,, (Plbm/am])

As pointed out in subsection 4.6.2, we have to assume that processes that offer
along an unrestricted channel ¢, are persistent. Also, this formulation introduces
a new channel even when m = k, a slight redundancy best avoided in the syntax
and semantics of a real implementation. Even when going between linear and
affine channels, creating new channels might be avoided in favor of just changing

some channel property.

74

Once again rewriting the linear version of the example, forcing synchroniza-

tion.

quene™ A* = (AT —o 11} (quene” AT))&1H(1 @ (AT ® I} queue” A*))

empty : {queue™ AT} elem: {queue™ A" < A*;queue™ At}
c < empty = ¢4+ elem—ad=
case c of case c of
| eng — a + recv ¢; inl = b+ recv ¢
shift ¢ < recv ¢ shift ¢ < recv ¢; % shift to send
shift ¢ < send ¢ shift ¢ < send ¢; % send ack
b < empty; send d inl;
¢+ elem—a,b send d b;
| deq — shift ¢ « recv ¢ shift d <— send d; % shift to recv
send ¢ inl; shift d < recv d; % recv ack
close ¢ ¢+ elem—ux,d

inr — shift ¢ < recv ¢; % shift to send
send ¢ inl;
send ¢ a;
shift ¢ < send ¢; % shift to recv
c+d

And destroying a linear queue with affine elements:

destroy : {1 < queue ({; Ap)}

¢ < destroy —gq =
send ¢ inr;
shift ¢ «+ send q; % shift to recv
case q of
inl — wait ¢; close ¢
inr — x < recv q; % obtain element x
shift a, < recv x; % obtain affine ar, consuming x
shift g <+ send ¢; % shift to recv

¢ < destroy—q % recurse, ignoring ap

4.6.4 Theorems

Our prior well-typed configuration judgment can almost be reused by merely
letting the I's involved include mappings for our new types, but we need a few
slight changes. Since affine and persistent channels may be weakened, we want
well-typed configurations to be able to have some residual affine or persistent
processes that are “unreachable” from the important part of the configuration
(i.e., the part demanded by the initial I"). To enable this we replace WF, with

7

the following:
E>F

Ir°+-Fr

WF,

where E > F denotes that all processes and queues involved are either affine
or persistent. Additionally, we need to slightly update our well-typed queue

judgment to account for the new style of shift:

Tq q

0 b shift(cm) : 18 Az~ A 0 F shift(cy) : iﬁlA;: o~ Af

Lemma 28 (Preservation). If '+ E and E — FE’, then T+ E’.

Proof. Most of the proof can follow Theorem 26, adding uses of affine type rules
where appropriate, but we need to examine the altered SENDgphiie and RECVgpit

in more detail.

Case SENDgifi: There are two different cases corresponding to whether we use

JR or TL. For the | R case, we are given:

E=D,I"T"+E
M=T"FM:Af ~ "B,
P
r'>m 0;0;7'FP::by,: B, IR
0; 0; T+ shift by, <—send cx; P:ick : L By, M &
I ag: Aﬁ F que(ag, M, cy), exec, (shift b, < send ci; P), E

WF_,

which we replace with the following where d,,, and f,, are fresh (notice
that Pld, /by] is only well-formed due to IV > m):

ta

M D Fshift(fn) : 4B, «~ B,,
transt

m

Pldm/bn] T F M shift(fn) : A7 ~ B,
T, ax:Af F que(ag, M shift(fn), dm), execq, (Pldm /b)), E

WF_,

For 1L we are given, after using Lemma 5 (showing only the case for an

76

initial WF_,):

M=T3FM: A" « CF
Q M e
@;@;F4 = Q . dmID:n F5 = MIZD;l @ TZIBZ_ F17F2,F3,F4,F5 FE

, WF_
I'1,T9, T3, cm : T By F que(dm, M,), execq,, (Q), E
z
P
k>r (Z);(Z);Fg,bk:Bljl—P::a;:Cj 1L
0;0; 2, ¢y T3 B 1 shift by, < send c; P iz al. : CF M Z WE
TyLay: AT - que(a,, M, a;.), execys (shift by, < send cp,; P), ”
que(dm, M’ e), execq, (Q), E
which we replace with, where f; and g are fresh:
. k Tq
MO F shift(fi) : T Bi -
o) TsF D, —~Bf ™ ¢ e
Ty, o, g : B - que(dn, M’ shift(fi), o), execa, (Q), B~ *
w
Plgr/bk] M W
[gr/ bi] WF_.

que(a,, M, a’.), execq: (Plgr/bk]),

Fl,a,« : A;ﬁ_ = .
que(dy,, M’ shift(fx), gr), execq, (Q), E

Case RECVg,: There are two cases, one when the process is typed with two
for TR and two for | L. For TR we are given:

T
0 F shift(by,) : 15 Dt « DF ¢

M

P
'>m 0;0;T'FP:apy: D £
P R =T
0; 0; T F shift a,, < recv c; P iz e 1, A M T.IT'HE
T, dy, : D} que(cg, shift(bm), dm), exece, (shift a,, « recv cx; P), E

WF .

which we replace with:

Plbm/am| OF -: DF «~ D b £

T,d,, : D} + que(dn, -, bm), execy,, (P), E

WF,_

For |L we are given, after uses of Lemma 5 (showing only the initially

7

WEF_, case):

M=Tsk M:AF « CF
E=T1,T9, I3, Ty - E

Q
0;0; T4+ Q :x fr:B,,, O F shift(d,,):l;' B, «~ B,, Yo & WE
[y, 15,03, ¢p - LB, b que(c, shift(dy,), fm), execy, (Q), E
z
P
0;0;T9,by, : B, - Pal : CF iL
0;0; 0o, cr = L' B, & shift by, < recv ¢; P al. : CF M Z

WF_,
que(a,, M, a;.), execqs (shift by, « recv ¢i; P),

Fl, Qyp A;r l_ A
que(cy, shift(d,,), fm), execy, (Q), E

which we replace with:

Qmmwxmg
Pldm/bm] M T1;T2;Ts,dm : B, Fque(fm, -, dm), execy, (Q), E
que(a,, M, a;.), execq: (Pldm /bm]),
que(fm, -, dm), execy, (Q), E

WF
WF_,

Fl,a,« : A:_ F

O

Unfortunately, unlike some presentations [75], this version does not make
it easy to see when persistence is used: none of the four cases examined in the
previous proof can directly can directly contracted. However, because there are
no propositions at mode U other than |, A~ we know that after using RECVgpit
where the new channel is persistent, the channel involved must be of the form
que(ay, -, by) for some ay and by (i.e., by using inversion on «~ in the second set
of cases in the above proof). At that point, both the queue and the persistent
process can be safely contracted (i.e., copied).

A proof of T' + E is called garbage free if its use of WF, is used with -.

Lemma 29 (Progress). If T' = E and has a garbage free proof, then either
E — E' or E is reactive.

Proof. Reuse the proof from Theorem 27. O

Notice that the requirement to be garbage free is important here. Without
it we run the risk of some garbage processes either making progress while our
program make no meaningful progress or some garbage processes that are stuck
without being reactive. Additionally, by preservation, garbage generated by
a well-typed configuration cannot do anything particularly interesting to the

non-garbage portions of the configuration.

78

4.6.5 Sequent Calculus for Polarized Adjoint Logic

We summarize the sequent calculus rules for polarized adjoint logic in Figure 4.15,
omitting the uninteresting rules for existential and universal quantification.
However, we have removed the stipulation that the only unrestricted propositions
are T, A} thereby making our theorem slightly more general at the expense
of a nonstandard notation for intuitionistic connectives such as A, —o, By for
A D B. Additionally, we restrict our attention to the system without recursive
types or {}I/{}E (i.e., we use a traditional notion of cut in this section).

We have the following theorem.
Theorem 30.
1. Clut is admissible in the system without cut.

2. Identity is admissible for arbitrary propositions in the system with the

identity restricted to atomic propositions and without cut.

Proof. The admissibility of cut follows by a nested structural induction, first
on the cut formula A, second simultaneously on the proofs of the left and right
premise. We liberally use a lemma which states that we can weaken a proof with
affine and unrestricted hypotheses without changing its structure and we exploit
the transitivity of >. See [22,77] for analogous proofs.

The admissibility of identity at A follows by a simple structural induction on

the proposition A, exploiting the reflexivity of > in one critical case. O

A simple corollary is cut elimination, stating that every provable sequent
has a cut-free proof. Cut elimination of the logic is the central reason why
the session-typed processes assigned to these rules satisfy the by now expected
properties of session fidelity (processes are guaranteed to follow the behavior
prescribed by the session type) and global progress (a closed process network of
type co : 1 can either take a step will send end along ¢p). In addition, we also
have productivity (processes will eventually perform the action prescribed by the
session type) and termination if recursive processes are appropriately restricted.
The proofs of these properties closely follow those in the literature for related

systems [16,89,91], so we do not formally state or prove them here.

4.6.6 Garbage Collection

In our definition of garbage free proofs, we implicitly declared that processes
and queues left over after forming a well-typed proof were garbage. To rephrase
this in more traditional garbage collection terms, the domain of I', in I' - E | is
the root set for any collector we might build. However, within this very general
scheme we have a lot of flexibility. For example, we could, essentially, do no
collection at all, choosing only to kill all processes after the initial process has

terminated or we could garbage collect after every transition. In addition to

79

m,k,r U|F|L withu>F>L

AL B = o |1 | A, @m B | A, @ B [L, AL (r>m)
AL, B, n= oy, | AL, —om By | Ap&m B | 1AL (m > k)
AmaBmaCm = AT-"‘;1|A;’L
I>F r>m>r THA, TV A,FC. 0
T. A, F A4, 1P TT'FC, uT
I+ A R k>r T,Af+C,
T 1A LA FC,
| . };A% IR F,:};LJ—OT IL
F'_\J/k m F?\LkAml_CT
r>r o rec.
TH1,, T, 1, F C,
T'+Ar T'F Bf - I, A+ B+ C, .
T.T'F A% @ B T, AT @ BLF Gy
T, AF - B I'>m TFAY I'.B-+C,

I'F A" —.. B I.I"Af —o, BLFC,

A, TI'FB,
'~ A, &mB;,

&R

A, FC, 2 I, B, FC,
T, A-&mB-FC, =" T,A-&mBo FC,

&Lo

I+ AL I+ B
SRy ® R
I'+ A &, B '+ A &, B

I, A+ +C, T,BifFC,
I, At &, Bf + C,

All judgments I' - A,,, presuppose I' > m.
I', TV allows contraction of unrestricted A, shared between I" and I

Figure 4.15: Polarized Adjoint Logic

80

applying traditional techniques, we can, as other languages incorporating affine
types [25,54] do, also perform collection in a logically motivated way by figuring
out where use weakening are permitted (e.g., by examining the calculations of
section 5.1).

Another logically motivated way to account for affine process garbage col-
lection is by the following transformation [40] (showing only the affine cases),
where we use AT&B™ to abbreviate &{inl: A*;inr: BT}

[L:]=1. [T Ae AT = 180y (T AL [AF])
[r D¢ A7] = 1.8.u(7 Do [A]) [AF @ B = 1.8 ([AF]&[B])
[AF —oe By] = L& ([47] —. [B7])
[Be{Li : (Af)i}i] = L&y (B {Li : [(A1)il}r)
[&e{Li: (A7)iti] = 1o&u(&u{Ls : [(Ag)i]}r)
[HrAT] = L&y [AL] [TEAL] = L& ti[AL]

Additionally, the transformation leaves linear and persistent types untouched
other than to transform any affine subexpressions they may contain. This
transformation eliminates all occurrences of affine types at the cost of forcing us
to constantly answer the question “Should this channel be discarded now?” In
addition to the extra instructions needed to answer this question (which could
be implicit), this transformation has one unavoidable misfeature: it can force
communication to nearly be synchronous. Consider what happens to a positive
type. After the transformation, it would have a queue size bound of 1, exactly
the same constraint we enforced when forcing channels to be synchronous at the
type level (Definition 9). One way to sidestep this problem is to notice that we
do not need precise garbage collection, an affine process executing for a few more
instructions, while unfortunate, is unlikely to be dangerous. Thus, we could
implement these garbage collection messages via special asynchronous interrupts
and leave our main channel untouched.

Allowing some delays in garbage collection also suggests that we could insert
external choices only on negative types. This bounds our garbage collection
imprecision to the next time the process to be collected provides a negative
type (i.e., either immediately or after sending a shift), but means that we do not
artificially bound our queue sizes. To maintain garbage collecting completeness
in the face of unbounded positive types, we need either some backup garbage
collection strategy or to require boundedness for all affine types. Regardless of the
choice on where to insert garbage collection messages, this will potentially double
message traffic, suggesting that a bundled messaging semantics (section 4.2) may

be worth using here.

81

4.6.7 Related Work

Linear Logic with Subexponentials [65] is similar to the Adjoint Logic approach
to presenting substructural logics. For our purposes, it could have reasonably
formed a basis for implementing SILL, though it is unclear how it would interact
with polarization. While they examine computation enabled by the logic, it is
done by proof search and not with a Curry-Howard style connection. Additionally,
mediation through subexponentials does not produce the nice property that all
connectives are either a send or receive, rather they look closer to the combined
rule for !A.

Another recent attempt at integrating affine style weakening into session types
is that of Affine Sessions [61]. They lack a strategy for implementation or the
ability to specify linear types for sessions. The first is briefly mentioned as future
work, and the latter is likely easy to rectify. Since they take a more classical
view of Session Types, they naturally focus on channels and not processes as
the fundamental unit of garbage collection. Perhaps the most important result
of this difference is that processes can react to the channel being released by
the other process using a particular channel through a sort of error handling
mechanism.

In the broader field of using affine types to represent garbage collection
concerns SILL follows in a rich tradition of languages [25, 54, 88| that utilize
substructural logics to perform automatic garbage collection. These languages
all worry about precisely tracking the usage of resources, not just channels, and

commonly settle on affine types as the correct substructural type for doing so.

4.7 Subtyping

Choice, both internal and external, as we have seen it has a few unpleasant
limitations. For example, it is only binary forcing us to represent larger choices via
a tree of choices and an associated increase in message traffic. Since both choice
operators are associative and commutative, this tree structure is unimportant,
and we should use a variable width choice. To do this we fix a set of labels L;
and add two new proposistions that map some subset of these labels (specified

by an indexing set I) to types of the appropriate modality and polarity:

L = ... (Labels)
AL u= L

| ®m{L;: (4})i}r (Send Choice)
A, o=

| &m{Li: (4;,)i}1 (Receive Choice)

Given the risk of confusing index and modalitity subscripts we will always show
both, even when they should be discoverable from context. When the exact

indexing set is clear from context, e.g., when all cases are explity shown, we will

82

omit it.

Once we have rephrased choice in this manner we can add session subtyping
in the style of Gay and Hole [35]. Following their lead we first define a coinductive
subtyping relationship.

Definition 31 (Coninductive Subtyping Relation). A relation on session types,

~, is a coninductive subtyping relation if for A ~ B:
e IfA=1,,, then B=1,,

— and C_

.]fA:l,ZL ;L,thenB:“? m "LNDTT@
o If A=17"Cyf, then B =17'D;f and Cf ~ D;f
o If A=7 Ny Gy, then B =1 Ay D}, and Cf; ~ D

o [fA=71D>,,C,, then B=1 D, D,,

m

and C,. ~ D,
o If A=C ®,, Ct, then B = Dj @,, D, and C;t ~ D;t- and C;; ~ D,
e IfA=C} —op, Cor, then B = Cjt —o,, Do and D} ~ Ct and C;, ~ D,

o If A=®,{L;: (C})i}1, then B=®,,{L; : (D}});}; and I C J and for
i €1, (CR)i ~ (D7)

o If A=&{L;:(C,,)i}r, then B = &n{L; :(D,,);}; and J C I and for
j€J, (Crli~ (Dn)j

For two types, A and B, if there exists a coniductive subtyping relation ~ such
that A ~ B then we call A a subtype of B, denoted A T B. For two lists of

propositions, A and]§, we write AC B if they are subtypes pointwise.

While coinductive subtyping subtyping gives us a fair amount of flexibility,

it does not allow anything too crazy.
Lemma 32. If AC B, then A and B have the same polarity and modality.
Proof. By cases. O

Subtyping forms a preorder. It would form a partial order if we had the
appropriate coinductive notion of equality. Since we never need anti-symmetry,

we will omit that proof.
Lemma 33. C is reflexive.

Proof. The identity relationship is a coninductive subtyping relationship and

reflexive. O

Lemma 34. C is transitive.

83

Proof. Let AC B and B C C. These have witnessing two witnessing relations

~1 and ~5. The following relation witnesses A C C"

{(Al,A2)| for some D: A1 ~1 D and D ~9 AQ}
U{(Az, Ay)]| for some D: Ay ~o D and D ~q Ay}

O
With our subtyping relation we only need to alter a few judgmental rules:
I'>r ACB A>m>r AYH{C,+D} ACD A;V:IC,t B, 0E
AW AFB P AU ATHB,

kel A;U;TH (AR

m

~—

k foralli e I: A; ;T (A)); + B

®Ry,
AUTF @ {Li: (Af)y AT, @ {Li s (Af)i}r - B
forallie I: A;U;TF (A kel AT, (A,)k B
— &R — &Ly,
A; \I/; '+ &m{Lz : (Am)z}I A; \I]; F7 &WL{L’L : (Am)l}f HB

All judgments A; W;T' - A, presuppose ' > m.

Since we cannot implicitly denote subtyping constraints, as we do with equality
via pattern matching, the two rules that perform non-local checks on types (ID
and {}F) need to be updated to use subtyping in their checks. Notice that
Lemma 33 ensures that this is a generalization of their prior behavior.

In the following we let I' C IV denote the pointwise lifting of subtyping to
multisets of assumptions. This lets us show that the informal notion of a subtype
as something that can be used wherever its supertype is acceptable is actually

true.
Lemma 35. If A;U;T'F A and AC B and IV C T, then A; ;T + B.

Proof. By induction on A; ¥;T'F A and casing on the last rule used. Since most

cases are similar we will show only the relatively interesting ones.

Case ID: We are given:
F Z F A'"L E Bm

AT A, - B, P

and show for C,, C A,,, IV C T and B,, C D,,:

F/ZF C’!YLEDT?”LI
AU T.Cp F D, 0

which holds from Lemma 34.

Case {}E: This is similar to the case for ID but matching lists of subtypes
rather than a single subtype.

84

Case — R: We are given:

AT AR - B
AT = At —o,, B,

— R

and show for IV C T, C;f C A} and B, C D, :

AT, CF = Dy
AT - CF —,, D,

— R

which holds by the inductive hypothesis.
Case — L: We are given:

Iy >m ATy FAY ATy, B O,
A;\D;Fl,FQ,AxL —Om B;l = C,

—o

and need to show for I, C I'y, Iy C Ty, B, C B, AL C Al and
C,CC,:

Ty >m AU T AL AT, B FC,
A WY, T, Af, —om By 1= G,

— L

which holds after two uses of the inductive hypothesis and the pointwise

use of Lemma 32.
Case ®Ry,: We are given:

kel A;WTE(AR)
A; U T F @ { L (A)i}

®RL,
I
and show for I C T and ®,,,{L; : (B;},);}s, where I C J and for all j € T
we have (A}),; C (B));:

ked A;UT - (B
AT Ee{L;: (B);}s

©RL,

which holds by inductive hypothesis and I C J.
Case ®L: We are given:

for alli € I: A;W; (AL); = C,

L
A; \II,F,EBm{Ll N (A%)Z}I l_ Cr EB

and we show for IY C I', C C D, and @,,{L; : (B,;);}s, where J C I and
for all j € J we have (B;}); C (4}));:

for all j € J: A; T, (B),; FC,
AT, @ {L;: (Br)jts b Cr

85

which holds by repeated uses of the inductive hypothesis.
O
This large result can be simplified into a pair of rules that are easier to apply.
Corollary 36. The following rules are admissible:

BLC A A;\I/;FFBS ACC AU, T,CHB
AUTEA UBR AU.T,AF B

SUBL

Since we have new logical rules we need to introduce new syntax. Forwarding
and binding new processes both can reuse existing syntax, but the two choice
constructs need to be expanded to allow for more labels than just inl and inr. As

with the propositions we will add an (omittable) index set to the case contrusct.
P:=...|sendc L |casecof {L; = P;};

As typing rules:

AmEC"’YI I
AV:a:ApFcec+—ac:C, b
A>m AVUFe:{B,<+ D} ACD A U;T,b:B,+P:uc:C,
A;\P;F,ﬁzgl—b%e—(&’;P::c:Cr
kel AU THP:c: (A
ORL,
A;W:T Esend ¢ L P e @ { L (Af)i}r
ICJ forallkel: AT a: (Af)ktE Ppic:Cy

(O E

®L

case a of
AT a: &p{L; : (A))i}r b e C,
{L; — P},

ICJ foralkel: AU, FPyc: (Ch)k
case a of

e &mic (C)itr
{L; —>Pj}J>

kel AU T,a:(A))kFPuc:Cy
AU T a:&{L;: (A,,)i}rFsend ¢ Ly; Pi:c: C,

&R
AU T H (

&Ly,

Operationally, we replace the inl and inr messages with:
M:=...|L
and rules to send and receive them:

SENDchoice : €xece(send b Ly; P) ® que(a, M, b) —o exec.(P) ® que(a, M Ly, b)
case a of
{L; = P},
—o exec.(Px) ® que(a, M, b)

RECVchoice: (k€ J) ® execc<) ® que(a, Ly, M,b)

86

4.7.1 Example: Permissions

Subtyping gives us an ability to present processes at multiple types for different
users. Statically assigned permissions similarly require presenting resources
differently to different users. For example, if we have a simple centralized
automated grading system, each user, instead of being able to access grades
or submit work for all users, should only be able to interact with his or her
own work. To start with, consider only the case where students can retrieve

previously assigned grades. We can type the grading database with the following
type:

&{AliceHW1 : Int A 1;AliceHW2 : Int A 1;...;BobHW1 : Int A 1;...}

where each label corresponds requesting to see the grade for a given user’s
particular homework assignment. If we had a module system we could give each
user only a personalized subtype. For example, Alice should only be able to

access the database at its supertype:
&{AliceHW1 : Int A 1;AliceHW2: Int A 1;...}

and similarly for Bob. On the other hand, course administrators would have
access to the database at its full type (assuming there is only one course).

To allow each user to access the database independently we can allow each
user to have its own persistent copy of the database. For example, the type

signature for Alice’s process might look like this:
{1+ M &{AliceHWl : Int A 1;AliceHW2 : Int A 1;...}

allowing her to query her grades as much, or as little, as she wished.

Trying to extend this to allowing for new home work submissions is much
harder. In a traditional session typed language (section 2.2 and chapter 3) we
could use accept/request to initiate connections between user processes and a
central database process. Unfortunately, SILL does not have these constructs®
(and has simpler progress theorems as a result), so we will need to explicitly
model this matching construct ourselves. For example, we can write a general
purpose server type as one that takes some sort of client and, after interacting
with it, returns a server (with updated state) and the client. The linear version

of a server and client would have the following types:

Client o, = @©{done: 1;server: o}

Server, a;f =171 (a — F((Client o) ® |! (Servery o;)))

And then we write a process to match clients and servers (explicitly performing the

L Adding them to a logically based session typing language is a pressing open problem.

87

matching implicit in similar languages’ accept/request), here shown as appropriate

for a single client and server:

match : V o .{1 < Client a;; Server; o'}
gr, < match— a; by =
case a,, of
done — wait a,;
close ¢,
server — shift ¢, < send by;
shift ¢, < recv ¢ ;
send ¢, a;;
shift ¢, + send ¢, ;
dy, < recv cg;
shift fr < recv ¢;
g, < match—d; f;

which we can expand to include multiple servers and clients, if needed. Similarly,
we can expand the kinds of servers usable by clients, or provide special match-
level functions, by expanding the choice in the definition of Client. Once we
have fixed concrete servers types, subtyping can allow clients to be restricted to
only interacting with subsets of them, or subtypes of the servers. There is some
tension between the most general form of this example and our integration of
polymorphism and subtyping. Specifically, without bounded polymorphism, we
cannot write a version of match that takes a variety of clients that are subtypes
of an unspecified collection of servers. In practice, this does not seem to be too
burdensome, we need to write a custom match for any set of server types anyway,
to handle routing between the client choices and the appropriate server, and any
concrete match has no need for bounded polymorphism.

To see this in action, lets explore what match for a variant of the automatic
grader would look like for just Alice, Bob, and an instructor. For simplicity, we

assume there is only one assignment. First, the types:

Ml—o done : 1; submitA : Int A All; submitB: Int A All;
grade : |;(Int D Int D 17All)

Alice = ®{done : 1; submitA : Int A Alice}
Bob = ©{done : 1; submitB : Int A Bob}
Elsa = ®{done : 1; grade: | (Int D Int D 1/Elsa)}

submitA : (Int A Alice) —o T (Alice ® | Server);
Server = 1]/ & submitB : (Int A Bob) —o 1;(Bob ® |, Server);
grade : ({;(Int D Int D 1/Elsa)) —o 1} (Elsa ® |, Server)

Notice that Alice, Bob, and Elsa are all subtypes of Both. So we can implement

88

matchABE relatively easily:

matchABE : {1 < All; All; All; Server}
¢, < matchABE —a, b, e, sp =
case a,, of
done — wait a;; ¢, < matchBE—b, e sp
submitA — shift g, < send s;;
shift g, < recv g, ;
send g, submitA;
send g, a;
shift g, < send g, ;
ay, < recv gp;
shift s, < recv g ;
¢, < matchABE —b, e, a, Sp
submitB — ...
grade — ...

where matchBE is a matching process for only Bob and the instructor and we
omit the other branches due to similarity. We rotate the client channels between
recursive calls to provide some semblance of fairness.

While this example accomplishes its nominal objectives, it demonstrates a
number of weaknesses in using SILL’s subtyping to accomplish basic security
objectives. First, a more general language concern, is that this is fairly verbose.
This suggests that we should either integrate a higher level language for expressing
permissions (e.g., an authorization logic [34,84]) or some sort of template or macro
language. Second, while our servers are required to hand back a client, there is
no guarantee that the client returned is the one matchABE sent. A well-typed
program cannot discard any clients, so this risk might be ignorable depending
how willing we are to trust the server. Third, SILL has no productivity theorem
so nearly every step of matchABE can fail if the process’ counterparty does not
interact with it, either intentionally or through unfair scheduling. Extending the
language with select (section 4.3) and using it heavily can avoid this problem
at the cost of even more code. Lastly, our permissions are too static. We have
no means to either revoke permissions for students or add new students. Both
can be fixed if we have a finite number of potential students, but, again, at an
extreme cost of code size. This suggests we need a more dependent notion of
choice, allowing us to dynamically generate branches based on permissions (e.g.,

by performing a lookup in some permission database).

4.7.2 Theorems

The main subtyping result from the logic remains in the type system.

Corollary 37. If A;U:TFP:a:Aand AC B and IV C T, then A; U; TV -
P:a:B.

89

Proof. This is the Curry-Howard version of Lemma 35. O

A new message type means we need to augment our notion of a well-typed

queue:

kel TFque(a,M,b): (A, ~ B 5
T+ que(a, Ly M,b) = @p{L;: (Af)i}; & B
kel TFque(a, M,b):: (A;) «~ B
I'F que(a, Ly M,b)&m{L;: (4,,)it1 « B

&

However, we do not need to change our notion of a well-typed configuration.
Theorem 38 (Preservation). If '+ E and E — FE’, then T+ E’.

Proof. Most cases can follow the proof of Lemma 28 with uses of Lemma 35 to

adjust types. We will confirm that the new rules works.

Case SENDchoice: There are two cases, when the process is typed with @Ry,

and one for &Ly, . We show only the first due to similarity. We are given:

E=T,I',I"+E
M :FN M : A; “~r Dy {Lz : (C*)L}]

’C ’P
~ =
kel 0;0;T'FP:c:(CHr, ©R
0;0;T" Fsend ¢ Ly; P:c: ®{L; : (C)i}r o M £
WF_,

I,a: AT+ exec.(send ¢ Ly; P),que(a, M,c), E

and replace this with:

0
K OF-:CF e (Ch) °

M @" Lk . @m{Lz . (C;’;)Z}] “ (C:;)k i
P I+ M Ly : (A}) ~ (G trans®™ ¢
T,a: AT I exec.(P),que(a, M Ly, c), E

Dq

WF_,

Case RECVpoice: As normal, there are two cases, one for &R and &L. We

90

only show the first. We are given:

E=DT'T'F+E
M
kel T"+FM:(C,), «~ B
Z=T"+ Ly M:8{L;:(Cy,)i}; ~ B
P
ICJ foralliel: 0;0;T' P et (C)i

q

&R
0 0: T (CaSGJ cof) e adLi: (Co)idr z &

Lj—>Pj

WF,_

case; c of

I',b: B exec, () ,que(c, Ly M,b), E

Lj — Pj
which we replace with:

(Pfori=k) M &
T,b: BF exec.(Py),que(c, M,b), E

WF,_

We no extra changes before proving progress.

Theorem 39 (Progress). If ' - E and has a garbage free proof, then either
E — E’ or E is reactive.

Proof. Follow the proof of Lemma 29. The slightly more complicated choice
labels do not fundamentally change most cases, however two cases are worth
discussing in a bit more detail. The expanded case construct allows a process to
offer a choice over no cases, which can make no progress. There are two ways
for a process to use this construct while being well typed, as a use of &R or as a
use of L. In the first case, the channel provided by the process must be empty
to be well-typed, so the process and its channel are reactive. In the &L case, the
inductive hypothesis gives us that the channel used by the process is reactive

and thus non-empty, a contradiction with it being well-typed. O

Related Work

Perhaps the closest work on integrating subtyping for session types and a
functional language comes from Gay and Vasconcelos [36]. They investigate both
synchronous channels, implementable in but not directly present in SILL, and
asynchronous channels, which they feel presents a more realistic implementation
of real world systems. They do not tightly associate each channel to a providing
process and, as a result, both users of a channel give it a different (but compatible)
type. SILL provides both affine and linear types whereas they only provide

linear ones. The type system of SILL provides a strong stratification between

91

functional level computation and side effecting statements, whereas their work
intermingles the two. Due to this, they also assume more from their functional
language and get richer subtyping system as a result. Finally, SILL focuses more

on implementability.

4.8 Forwarding

While logically motivated, implementing forwarding is difficult. Toninho’s se-
mantics for SILL [90] implemented forwarding as a special metaoperation: a
global unification of the two channel names involved. That is, its operational

rule looked something like this:
exec.(c + d) —o [c =]

where [¢ = d] performs global unification. This is problematic, the rule is non-
local rule: in principal we need the entire execution context (omitted in the
above rule) to be able to perform a forwarding operation. In a distributed system
this clearly problematic to directly implement, but even in a shared memory
system this approach can be unsatisfactory (imagine taking O(n) time and a
global lock to execute each forward, where n is the number of active processes).

The easiest and most general forwarding technique relies on residual processes
that blindly passes messages between the forwarded channel and the channel
provided by the forwarding process. This is particularly easy to implement when
channels do not need special treatment of each type of message: we do not need
to generate a type directed forwarding process. Additionally, this means that
nothing other than the forwarding process itself needs to know how to perform
forwarding. Instead we can work directly at the operational level by introducing
a new operational proposition, fwd(c,d) which denotes that ¢ and d are to be

connected. with the following simple operational rules:

Fwp : exec.(c+ d) —o fwd(c,d)

Fwp_, : que(a, M, c)® fwd(c,d) ® que(d, K M',b)®!(K ¢ {end, shift})
—o {que(a, M K, c) ® fwd(c,d) @ que(d, M’,b)}

Fwp,_ : que(b, M,d) ® fwd(c,d) ® que(c, K M’,a)R!(K ¢ {end, shift})
—o {que(b, M K,d) ® fwd(c,d) ® que(c, M’,a)}

Fwp™f: que(a, M, ¢) ® fwd(c, d) ® que(d, shift, b)
—o {que(a, M shift, ¢) ® fwd(c,d) ® que(b, -, d)}

Fwpsh™: que(b, M, d) ® fwd(c, d) ® que(c, shift, a)
—o {que(b, M shift,d) ® fwd(c, d) ® que(a, -, c)}

FWDe_';d : que(a, M, c) ® fwd(c, d) ® que(d, end, b) — que(a, M end,c)

Fwpe™ : que(b, M, d) ® fwd(c, d) ® que(c, end, a) — que(b, M end, d)

The main complication here is the need to treat shift messages carefully so that

the ques always point in the correct direction. Since we have introduced a new

92

construct into the operational semantics, we need a new rule for well-typed
contexts before we can show that these rules are compatible with our progress

and preservation results. We replace the prior well-typed rules for forwarding
with the following:

I'+-D«~ At T'I",d:DFE
T,a: AT+ que(a, M, c),fwd(c,d), E
"D« A T,T'.d:D"+E
Tya: At que(c, M, a),fwd(c,d), E

WFwd

fwd
WE™W

Preservation is realtively straightforward.
Theorem 40 (Preservation). IfT'HFE and E — E’, then T+ FE’.

Proof. Most cases proceed as in Theorem 38. Let us then consider the new
forwarding transitions.

Case Fwd: There are two cases, one for when the inital rule is WF_ and one
for WF_,. Starting with WF_ we have:

M £
(Z);d:C‘Fc(—dl—c::C_I I'tM:C~«~A ILI'd:C " +E
' a: AF que(c, M,a),exec.(c + d), E

D

WF_

Which we replace with:

M &
T'ya: AF que(e, M,a),fwd(c,d)

fwd
E WEFY

The version for WF_, is similar.

Case FwWD_,: There are two cases, one where the inner proof is WF_, and one
for WF™4. We start with the first of these. Each possible kind of message

for K generates its own case, we only show the for Aq due to their similarity.
We are given, after uses of Lemma 5:

T M
——
DFv:T F"’I—M’:CJFWB/\
Z= I"roM :7ACt B °

P £
——— ——
M 0:r"+P:b:B Z ILI'T"T"F+E WE
I'FM: AT« 7 ACT TTd:7ACT Fque(d,v M'b),exec,(P),E
W

T,a: AT F que(a, M, c),fwd(c,d), que(d,v M’ b), execy(P), E

93

Which we replace with:

P M £ WE
Z=T,T"d: C* que(d, M’,b),exec,(P),E
0q

T 0F-:Ct « Ct
M I'FM: At «~ 7 ANCT
I'-Muv: At « CT
T,a: AT+ que(a, M v,c), fwd(c, d), que(d, M’',b), execy(P), E

q
trans®

WFd

The variant with WF'Ed is similar.

Case FwD_ : As the case for FwWD_, but reversing queues.

Case FWDih,ift: As the case for FWD_, but reversing the queue that shift was

read from.

shift,

Case FWDM™: As the case for FWD™™ but reversing the queues involved.

Case FWDi"d: As the case for FWD_, but deleting the queue that end was read

from.

Case FWD®™: As the case for Fwp®™ but reversing the queues involved.
O

Before proving progress for this version, we need to update our notion of a
reactive configuration to account for fwd(c, d). We treat these identically to a

process providing ¢ that receives when c is negative for the definition of reactive.
Theorem 41 (Progress). IfT' - E, then either E — E’ or E is reactive.

Proof. As in Theorem 39. With the altered definition of reactive, the forwarding

cases are straightforward. O

While this approach is easier to prove progress and preservation for than the
version used in the rest of this thesis, it requires keeping the residual forwarding
processes around until the combined channel is closed, potentially forever. In an
early version of the OCaml implementation of SILL (section 5.5), this caused
resource exhaustion on some examples. Additionally, every message takes an
extra step for every forwarding join that it must cross, a potentially much larger
cost than in the message based forwarding.

An alternate means of implementing this approach is to replace fwd with a
specially crafted process that realizes this repeating version of forwarding. This
corresponds, roughly, the a general result that reduces general ID to a version
that works only on atomic propositions. Unfortunately, we cannot quite do this
in a statically, due to our quantifiers. At run-time, as we saw in subsection 4.5.3,
there are no unknown types whenever a process forwards, however statically we
must deal with typing judgments like this: o ;0;d: af Fc<d:c:af. If we

were willing to keep run-time typing information around we could generate a

94

forwarding process from the type of ¢ (in ¢ + d) at run-time using the replacing
the forwarding instruction with the following definition (showing only the linear

cases and ignoring infinite types):

[1.]% = wait d;close ¢ [r A A]% =z + recv d;send c z; [AF]%

[t 2 A7]% =z « recv ¢;send d z; [A] |
[A} @ B]% = a « recv djsend ¢ a; [B]

[4F —o BI]% = a « recv c;send d a [B,]

[&{L; : (A)i}1]% = cases d of
L; — send ¢ Ly; [(A);]&

[&{Li: (A)i}1]% = case; c of
L; — send d Li; [(A])%
[Ba.Af]% = a « recv d;send ¢ a; [AF]%
[[Va.A;]]fLL = a «recv ¢;send d o [A]]
[[%”A;n]]gt = shift a,, « recv d;shift b, < sendec.; [A,, ;™

[t AL] = shift ap, < recv c;shift by, « senddy; [A)]

The second approach to doing forwarding is to immediately join the two

channels involved. After removing the forwarding messages and their rules from

our standard semantics, we add the following rules:

que(am, M, c) @ exece,, (cm < dm) @ que(dim, M’ by,)
—o que(ay,, M M’ b,,)

que(cm, M, an) ® exece,, (¢m + dpm) @ que(by, M', dy)
—o que(by,, M M, a,)

Fwp™:

Fwp™:

Theorem 42 (Preservation). IfT'+ E and E — E’ then T+ E’.
Proof. Otherwise following the proof of Theorem 38 we show the two new cases.

Case FwD™: There are two cases, one each for when the secondary queue is
used in WF_, and one for WF¢,q. In the WF_, case, we are given, after use

of Lemma 5:
P M £
¢:r"+P:=b:B I"+M :CT«~B I,I'.)I"T"+E WE
D, I,d: Ct F que(d, M',b), execy(P), E -
M

Z =

D;d:CthFc+duc:CT Ip I'-M:AY «~Ct Z WE
T,a: AT que(a, M, c), exec.(c + d),que(d, M’, b), execy(P), E -

95

which we replace with:
MM trans™
P VT FM M : At ~ B £
T,a: AT+ que(a, M M’',b),execy,(P), E

WF_,

The case when the nested subproof uses WF¢nq is similar.

Case FwWD ™ : Since there is no type to represent “receive end” we only have on

case here. We are given, after use of Lemma 5:

P M £
:1"+-Pub:B- I"FM :B «~C- L,LI'TT"FE WE
Z = I,1V.d: C~ F que(b, M’',d), execy(P), E -
M
- —Ip 7 —
d;d:C Feduc:C I'eM:C~ «~ A Z WE
Tya: Al que(e, M, a),exec.(c + d),que(b, M',d), execy,(P), E <
which we replace with:
MM trans™
P I'T""FM M:B™ « A EWF
T,a:AF que(b,M' M,a),exec,(P),E -
O

Theorem 43 (Progress). If '+ E, then either E — E’ or E is reactive.

Proof. We can mostly reuse the proof for Theorem 39, but we need to consider
what happens with the new forwarding rules. There are two cases, depending on

whether we use WF_, or WF_ on the forwarding process.

Case WF_,: There are two cases to consider, when the queue provided by the
forwaring process is empty or non-empty. In the non-empty case this is
reactive, so the inductive hypothesis finishes this case. Otherwise, the
queue that we are forwarding from must be non-empty (it is positive and,

by the inductive hypothesis, reactive) so we can transition.

Case WF_: By the inductive hypothesis the queue to be forwarded to must be

pointing in the correct direction to enable us to transition.
O

Unfortunately, in addition to being tricky to write a correct version of this
operation, this approach, depending on how redirction can be performed, may
have the major disadvantage of requiring the process performing the forward
operation be able to directly alter the state of other processes. In a shared

memory system, this might merely be expensive (e.g., if every channel use

96

requires taking an extra lock), but for a distributed system this cost can be

prohibitive.

97

Chapter 5

Implementation

In this chapter we cover a number of more practical considerations needed to
actually implement a language such as SILL. The sections of this chapter can
be broadly classified those concerned with the theoretical treatment of practical
concerns and those that provide overviews of the three (partial) implementations
of SILL itself. The rest of this chapter is structured as follows: first (section 5.1),
a discussion of how to resolve some difficulties due to underspecification of
the proofs that correspond to SILL’s concrete syntax; second (section 5.2), we
describe the type checking strategy employed by SILL’s OCaml implementation;
next (sections 5.3 and 5.4), we review some material needed to work with regular
types in practice; lastly, we finish off with a trio of sections covering the three

implementations of SILL.

5.1 Resource Management

Recall the type rules for ® R and — L:

AU TEPa: A AU T EQc: C
A; 0T, TV Fsend ¢ (a+ P);Q:c: Al @ Cf

AU TEPa: Al AT b: B, FQuc:C
AT, TV b Al — B Fsend b (a+ P);Q c: C

®R

— L

Both of these rules require splitting the substructural environment into I' and
I'” during type checking. Since we do not allow for duplicatation of resources,
except for persistent resources, there is actually interesting information contained
in how we choose to split the environment. There are a few ways we could fix
this problem. Perhaps the easiest would be to notice that {} £ has no problems
splitting its environment because the newly spawned process and we could fix
our problems by having the syntax for ® R and — L contain a list of channels.
Alternatively, we could embrace the better behaved {}F and change ® R and

98

—o L so send only existing channels:

AU T EPc: CH
A;U;T a: Al Fsendca; Pic: Al @ CF ®
AU b: B, FPc: C
AT a: AT b: Af — B, Fsendba;P:c:C

R

— L

Both of these choices are a bit undesirable: the first is much more verbose; the
second makes ® asymmetric.

Instead we explore an idea for coping with this problem developed in the
context of proof search for linear logics: Resource Management [18,97]. This
family of approaches avoids the need to guess how to split environments by
tracking, for a given subproof, which resources are actually used in the subproof
and then confirming later that all resources are consumed correctly. Informally,
this could be viewed as computing environment splits lazily. After implementing
approaches based on both a naive system that might require backtracking and
those from Cervesato et al. [18], we found the naive system to be sufficient for
our needs. To demonstrate the difference, consider trying to prove the goal
A ® Bt from a collection of resources I. We might choose to try to find a
proof starting from a use of @ R. This gives us two subgoals to prove A} and
B . In the naive system we independently try to prove both, discovering that we
needed to use subsets, I'y and I'y of our initial resources to do so. However, due
to linearity, we need to further ensure I'y and I'; are a partition of I'. If they do
not form a partition, we need to backtrack and find new proofs for the subgoals.
This is, of course, undesirable when performing proof search. Instead RM1, the
simplest system of Cervesato et al. [18], finds the used resources of one subproof
and then allows the other subproof to be formed only from the resources left
after performing the first subproof. This ensures that any proof found will not
use too many resources. After implementing a type checking algorithm that tries
to resolve enviromental splitting in the fasion of RM1 we learned two things:
first, since SILL programs correspond to proofs there is much less to be gained
from pruning environments between checking subproofs; second, providing high
quality error messages under RM1 seemed to produce something equivalent to
the naive system but with more complexity.

Another issue highlighted by the resource management is the notion of slack
consumption of resources. As mentioned in the proof of Theorem 39, &{}; and

@{}; are both perfectly legal types. The specialization of &R to this case is:

A;W;T F casey ¢ of i ¢t &m{} &R

When computing what subset of a given set of resources is needed to use this
rule, a legal answer is anything between “none of them” or “all of them”. Instead

of only considering a resource to be consumed or unconsumed, we add a third

99

classification, slackly consumed, for resources denoting that they could be, but
do not have to be, consumed by this proof. Confirming that all resources are
used correctly, then becomes simple local consistency checks when otherwise
type checking each instruction along with a final top-level check to confirm that
all linear resources are either consumed or slackly consumed.

To make this formal we introduce an ordered set of consumption annotations
to denote if a channel is guaranteed to be consumed in a proof (N), slackly

consumed (s), or guaranteed to not be consumed (C).
X =NJISLC

And denote mappings from channels to these consumption annotations by €.
Before we introduce the system that uses these annotations, we need two more
auxilary notions. First we define, pointwise, a way to combine two consumption

mappings over the same domain (n.b., the output depends on the channel

modality):

(ap:C)>(ay:8)=a,:C (a,:C)(ay, :N)=a,:C
(a :8) < (a,:C)=ay:C (ar, :N) X (ay:S) =ay:C
(a,:S) < (a,:S)=ay: S (ar :N) > (ay, :N) =ay : N
(ap:C) X (ap:S) =ap:C (ap:S)<(ap:C)=ap:C
(ap:S)<(ap:S)=ap:$S (ay:C) < (ay:S) =ay:C
(av:S)xi(ay:C)=ay:C (av:S)x(ay:8)=ay:s
(ay:C)x(ay:C)=ay:C

and a notion of when one consumption could can be used in place of another:
NLCN SCN sCs sCc cCc

We then introduce a new judgment, A; U;T'>Q F P :: ¢y, @ Cpy, saying that using
the type variables in A, type environment for the underlying language ¥, and
resources of ', the process P provides a channel ¢, with type C,,. Additionally,
the resources of I' are consumed as specified in 2. Consequentally, we presuppose
that dom(I") = dom(2) and I' > m. Lastly, we Q > x to denote that all bindings
are S or C and b,, : * to match when b,,, maps to either s or ¢. The system itself
is shown in Figure 5.1 and Figure 5.1.

We can also show that this new system is appropriately related to the system

of section 4.7.

Theorem 44 (Soundness). If A;U;T>QF P ¢y : Oy then for any TV C T,
such that Q(a,) = ¢ implies T (a,) is defined and Q(a,) = N implies that T'(a,)
s undefined, then A; ;T = P ey, 2 Cpy.

Proof. By induction on A;U:T'>Q F P :: ¢, : Cp, and then by cases on the last

100

A;\Il;c_i:f_fDQl—P::a:A QO >s
A;WF@(—{P}—(&':A(—J
A>m>r A;\I!Fe:{BmeD_'}
Egﬁ AU b: By, >Q, by, ix PO

{1

AT, G: A Q,G:Ck by < e—a P e : C) bE
Am £ Om Ip
ANy, a2 A D a2 C, (dom(T,) @ N), (dom(T|>5) : S) F ¢ 4= i it i 2 Oy
A; U T (dom(T|,) : N), (dom(T|>g) = S) b close ¢, it ¢yt 1y, LR
AU T>QF Py Cp
A;U:T>Q a,: ¢ wait ag; Pyt Cpy 1L
AUke:r AUToQFP ey C
AU T QbFsend ¢ e3P iiep : TACTE N
A;\I/,J::T;F,ak:A:DQ,ak:*FP::Cm:Cm
A;\D;F,ak:T/\AzDQ,ak:Cl—xerecvak;P::cm:Cm N
AWz ToQFPicy,:7DC0,
AU T Qb —reeve,; Pucy,:7DC, oI
AsUlke:r AU Dby B Qb :xFPricy:Cp
AT, by 7D B Qb : chsend by e; Piicy : Cpy > L
AU T EPian: AL AU T>Q Qe CF
AT Q<1 Qo Fsend ¢, (am «— P);Q et AL, @ CF wR
A;\II;F,ak:A;,bk:B;DQ,ak:*,bk:*FP::cm:C'm
A;‘II;F,bk:A;@B;»Q,bk:Cl—ak<—recvb;€;P::cm:Cm oL
kel A;UT>QFPic: (AL ©R,
AU T>QbFsend ¢ L P e @p{ L (AL)i}r g
ICJ forallkel: AyU;T am: (AF)e> Qp,am:x b Py i c:Crand Q C Q oL
AT, : @ {Li: (A1)} >Qam,:C k- <2ajsil> C}—ZL of> e C
ICJ forallkel: AU Qp b Pyiic: (C)r and Q T Q
AU T>QF (Zajs:] j;j 0f) Sem &mic (C)itr
kel AU am: (A)k>Qam :%xFPic:Cy
&Ly,

AU T &{L; : (4;,)itr>Q,am : ¢Fsend ¢ Li; P ey : C,
Presuppposes for A; ¥;T'>Q F P i ¢y, : Cp, that dom(T) = dom(Q) and T > m

Figure 5.1: Naive Resource Tracking

101

AFA AU T>QFP e, : CllA A
AT >QFsend ¢ A; P i eyt Ja.CF
B¢ (A) A,ﬁ;\I/;I‘,ak:Ag[ﬂ/a]bﬂ,ak:C%P::cm:Cm
A;\II;F,ak:Ha.AzDQ,ak:*I—a(—recvak;P::cm:Cm
B¢ (Aa) ABYT>QF Py, :CLlB/]
AU T > QF a <= recv e Pt oyt Va.Cf,
AFA AW by B o Qb ixE Py, :Cp
AW T by : Vo B, > 8, b, : ¢k send by, A; P ey, Cpy
A;\I/;FDQ}—P::ak:Az
A;U;T > Q Fshift ay, — recv by,; P o by, t 1A
k>r A;\P;F,ak:A;fDQ,ak:*}—Q::CT:CT

JR

JL

VR

VL

1R

A; U T, b, :T?Azbﬁ,bm : €k shift ax < send b,,,; Q :: ¢, : Cy T
F>m AUTeQFQam: A, IR
A;U;T > Q& shift ay, < send by; Q = by 2 LA
AU T ay, A0 Qam ik P ey Cy
L

A;UT b s LA > Qb 2 C F shift a, < recv by Pz ey : Gy
Presuppposes for A; ¥;I'>Q F P i ¢y, : Cp, that dom(T") = dom(2) and T' > m

Figure 5.1: Naive Resource Tracking (cont.)

rule used in the proof. Most cases are straightforward, so we only show a few

here.

Case ID: The channel we forward from is marked as consumed, so IV must
include it. Any channel that is marked s must be either F or U. Together

these mean we can use ID to complete this case.

Case ®R: We are given I'' and the following:

P Q
AU T Q) - Poay,: AL A;\II;FDQQI—Q::cm:C;Z R
AT Q<1 Qg Fsend ¢, (@, P);Q et AL, @ CF ®

and show:

Inductive Hyp. w/ P and I'1 Inductive Hyp. w/ Q and I'y

AU T P ay AL AU T Qe CF R

AU Ty, Ty send ¢, (am < P);Q e A @ CF ®
where I'j C IV and I'y C IV are constructed follows:
I'(b,) if b, € dom(T") and Q4 (b,) = C
Ly(b:) = { T'(b,) if b, € dom(I"”) and Q;(b,) = s and Qa(b,.) # C

undefined otherwise

102

and

I'(b,) if b, € dom(I") and Q2(b,) = C
La(b:) = { T'(b,) if b, € dom(I") and Q2(b,) = s and Q4(b,) # N

undefined otherwise

Case &R: We are given IV and the following:

ICJ forallkel: A;U;T>Qp b Pyic: (Cr)r and Qp T Q

casey ¢, of

AU T QR () tem &mici 1 (Cn)itr

Lj — Pj
and show the following by repeated use of the inductive hypothesis:
ICJ forallkel: Ay U;TFPc: (Co)k

f) em &mic (Cr)itr

&R

AT - casej ¢, O
T Lj-)Pj

O
Before proving completeness, we need an ability to weaken our environment.

Lemma 45. If A;U:;T'>Q F P ¢, : Cp, then for a,. with v > m we have
AU ar s Ar>pQyar : x B P eyt Cp where x =N ifr =L and x =S

otherwise.
Proof. By induction on A;¥:;I'>QF P ¢y : Chp. O

Theorem 46 (Completeness). If A; ;T - P :: ¢, 2 C, then there exists 2
such that A;U:T'>QF P ¢y, : Cp and N is not in the range of Q).

Proof. By induction on A;U; '+ P :: ¢, : Cp,. Use Lemma 45 to accommodate
the splitting in ® R and —o L. 0

5.2 Bidirectional Checking

Recall from section 2.6 that creating a bidirectional version of a type system,
hopefully suitable for mechanization, involves defining two different judgments,
one for types we can synthesize and one for which we can merely check. While it
appears that it is possible [5,17,44,85] to infer session types, we use a bidirectional
system where we only check the types of process expressions. Since most rules
only require switching a use of “::” for “<”, lets look at the more interesting
ones in a bit more detail.

First, the rule for {}I assumes that we have a bidirectional system for our

underlying language as well and then merely initiates checking the process

103

expression.
AU;d: AbQFP<a:A Q>s
AUFa—{Pl<d<=A«A

{1

For {}E, we are forced to synthesize the type of the bound process expression

since the existing type does not give us any information about it.

>m>r AUFe= {By,+ D}

A
ACD A;ULb:BpoQby,:xk P <c:C,
U:T,d

(1£

cAbQ,@: Gk by, «— e—d;P<=c.:C,

The two remaining rules that interact with the underlying functional language

can both check their subexpressions.

AUFesr AU TeQFP<<cy: CF
AT Qbsend ¢y e; P <= ¢y i TACH
AU kes=T AU b, B, >Q by :xEP<=cp:Cp
AU Dby 7D B Qb :chsend b, e; P <= cpy : Oy

AR

DL

This gives any easy accounting of where we might need type annotations,
whenever we try to synthesize the type of a process expression. Given the size
of process expressions, in practice, explicit ones are top-level definitions and,
thus, writing a type annotation is non-intrusive. However, there is one way even
fairly boring programs might try to synthesize the type of a process expression:
syntactic sugar (subsection 4.1.6). Specifically, SILL’s syntactic sugar generates
large amounts of process expressions utilizing tail-bindings. Corollary 37 suggests
suggests a solution: introduce a custom tail-bind rule that fuses {} E and ID by

checking the bound expression at its “most general” type:

AU ke <= {CM—A‘}
AT, G: AbQ,3:Ck e ¢ e—d<=c,: C,

TAIL

This almost works. Unfortunately, due to the lack of subtyping at the underlying

functional level following example would fail if we tried to use TAIL:
O;2: &{inl: 1};0p0F ¢, + z < ¢, : &{}
but its desugaring is typeable (by using {}F and ID):
Oz : &{inl : 11000 F a, < x50, + a, <= ¢ &{}

One reaction to this would be to force subtyping on the underlying functional
language (which would be challenging for the Haskell version of SILL). Instead
we pursue the simpler route of saying “If the underlying language can synthesize

a type, let it,” i.e., only try to provide extra guidance when it is truly needed.

104

Formally, this is accomplished by using the judgment A; ¥ I e # to denote that
there is no proof of A; W I ¢ = 7 for any 7 and slightly altering TAIL:

A;UEeA EET A;\Ill—e<:{0r<—/f}
= TAIL
,d

AU, G: AbQ,@:CF e ¢+ e—ad<c : C,
If this rule is inapplicable, we fall back to checking on the desugared syntax.
Due to the prevalence of tail-binds we generally want to execute in a system

that operationally optimizes them:

TAILgtep : €xeCc(c +— e —@)R!(e — €') —o exec.(c + €' —a)

TBIND : exec.(c < (b + {P} —b)—a) —o exec.(P]c,d/b,b])

which have no impact on progress or preservation.

5.3 Coinductive Subtyping Algorithm

In this section, we follow the presentation of Gay and Hole [35] to produce
an algorithm for checking the coinductive notion of subtyping (Definition 31).
Nothing in this section is innovative, but it is needed for a complete picture of
how the various SILL implementations work. To see why this can be challenging
in our situation, consider the following example. Suppose, we wished to show
that pz.int A z is a subtype of py.int A int A y. In some sense, this should
be easy because these two types are equal (both are an infinite stream of int),
however since the types are not syntactically indentical, this equality can be
tricky to discover algorithmically. Specifically, we will see in the remainder of
the section how to unfold these p-presented regular types in the right way to
allow fully algorithmic checking.

We define a proof system that gives us an obvious algorithm. The system
will consist of a set of pairs on which the relation is assumed to hold and a goal
pair. These pairs will be suggestively written as (A C B), and the judgment
is 2+ A C B, where Z is a set of assumptions. The rules are presented in
Figure 5.2. These rules can be split into the recursion enabling REC rule and the
remaining rules which enforce the local requirements of coinductive subtyping
relations. The initial goal for AC Bis) - A C B. To get an algorithm from
this system we preferentially use REC.

To ensure termination of our algorithm we restrict to working with regular
types. Additionally, we will handle ps implicitly throughout the rest of this

section.

Definition 47 (Regular Type). The subterms of a type A, denoted SUB(A),
are given by the following inductively defined set:

e Ac SuB(A)

e If T A B € SUB(A), then B € SUB(A)

105

REC =1 ———— ATOM

(A C Bn),EF A, C B, EF 1, C L, EF am C am
(tANALCTAB,),EF A, C B, (trD2AnC7D>Bp),EF A, CB,
EF7AA,CrABy, A EF7CA,C7oB, -
(A® By © Coy @ D), EF Ay © Cy (A® By © Cry @ Dip),EF By & Dy,
=F A, ©B, CCp,®D, ®
(A, = B ECp — D), EFCp, C Ay,
(Am—oBmECm—oDm),El—Bm cCD,,
=F A, — B, CC,, — D,, —
ICJ forallkel: @{Li:(An)it C{L; : (Bw);} s 2F (Am)k T (Bu)k
EF B{Li: (Am)its CBLL; (B);}s @
JCI forallkeJ: &{L;: (An)itr E &{Lj: (Bn)j}s,EF (An)k C (Bm)k
=F &{L: (An)i}r C&db : (Bu)sls “
(tF A, C1* B,), 2+ A, C B kA, C kB, 2+ A, C By
Sk 1 Am C 1B Sk 1 Am C 1B

Figure 5.2: Coinduction for Subtyping

e I[f 7 D A€ SUuB(A), then B € SUB(A)
e If B C € SuB(A), then B € SUB(A) and C' € SUB(A)
e If B— C € SUB(A), then B € SUB(A) and C € SUB(A)
o If&{L;: (Cp)i}1 € SUB(A), then for all i € I we have (Cy,); € SUB(A)
o If&{L;: (Cp,)i}1 € SUB(A), then for alli € I we have (Cy,); € SUB(A)
e Ift* B,, € SUB(A), then B,, € SUB(A)
e If |'B,, € SUB(A), then By, € SUB(A)
A type A is called regular if SUB(A) is finite.

From here on we will assume that all our types are regular. Notice, that for
the types we us we have used throughout this thesis we can only ever generate
regular types. We mention this quirk for two reasons, to be explicit in a secion
that deals more with the quirks of regular types and to minimize confusing
with our implicit treatment of us. Returning to the example at the start of this
section, we can see that the subterms of both types is, after a-conversion, the

singleton set {ux.int A z}.
Lemma 48. If A and B are regular, then the algorithm terminates for A C B.

Proof. Notice that when starting from § = A C B, the intermediate Zs used by
the algorithm must be a subset of SUB(A) x SUB(B), thus E is always finite. At
every rule, we either terminate that branch of the proof search or recurse on a

strictly larger Z. This means that we will eventually either find a mismatched

106

node (i.e., we can report that A # B) or be able to complete our proof with one
of REC, 1, or ATOM. O

We use a notion of a sound goal to denote one which should have a proof.

Definition 49 (Sound Circular Subtyping Goal). A goal 2+ A C B is sound
if AC B and for all (CC D)€ Z, CC D

Lemma 50. If a subtyping goal is sound, then its immediate subgoals are sound

and a rule is applicable.

Proof. Let 2+ A C B be a sound goal. If REC is applicable, the lemma holds.
For the other rules, there are either no subgoals, or soundness follows from
the applicable rule and the definitions of subterms and equality. If no rule is
applicable, then there is a labeling mismatch at the root and thus A Z B, a

violation of our assumption that =+ A C B is sound. O

Lemma 51. If the algorithm returns a proof starting from =+ A C B, then it

will return a proof starting from Z' = A C B, where 2 C Z'.

Proof. A larger set of assumptions can only allow us to use REC more readily, it

will not prohibit any of the rules used in the originally returned proof. O
Lemma 52. If A C B, then the algorithm returns a proof of =+ A C B.

Proof. By Lemma 51 it is sufficient to consider the case of) H A C B, which
is sound. Thus, by Lemma 50 we have that a rule is applicable and that all
the subgoals are sound, thus the algorithm can proceed. Since the algorithm
terminates (Lemma 48) and we cannot get stuck we must return a proof of
) = A C B, which by Lemma 51 means we can return a proof of =+ AC B. O

Corollary 53 (Completeness). If AC B, then) AC B.

Lemma 54. If)+ AC B and (AC B) - C C D is an immediate subgoal of
0-ACB, then) C C D.

Proof. If the proof of (A C B) - C C D does not use REC, we are done.
Otherwise, find the use of REC for (A C B) and replace it with the proof of
¢ + A C B, adjusting via Lemma 51 as needed. O

Theorem 55 (Soundness). If)+ AC B, then AC B.

Proof. The relation given by R = {(A4, B)|0 + A C B} is a coinductive subtyping
relation. The proof by cases of A is are all similar, so we show only the case for
A= Tf;Cm. Consider a proof of @) - TfnCm = B. Since REC is inapplicable, the
proof must start with . Thus B = Tanm as needed. To see that (Cy,, Dy,) € R,
notice that it is a subgoal of) = A = B and then apply Lemma 54. U

107

5.4 Working With Infinite Equirecursive Types

Throughout this thesis we have assumed that types are equirecursive, i.e., im-
plicitly allowing them to be infinite (if regular). An implementation cannot work
with infinite types directly, so we will need some finitary representation. Two
that have been used in the various implementations are pointer based graphs
(section 5.5) and p-based explicit fixed points (section 5.6 and section 5.7).

Notice that the proofs of section 5.3 work even if we have multiple distinguish-
able copies of types in SUB(A), so long as we maintain finiteness. As an example,
imagine a slightly odd version of SUB that had the returned a finite multiset
instead: SUB(Int A1) = {Int A 1,1,1’} where 1 and 1’ are only accidentally
distinguished (e.g., because an implementation might wish to use cheap pointer
equality to approximately distinguish terms). When proving equality using a
multiset of subterms, we may require a larger proof (i.e., REC will be harder
to apply) but will not give up termination. This observation will free us from
needing to come up with either minimal or canonical representations of types,
and, in particular, means that we can use a finer grained notion of equality on
types to perform the search implicit in prioritizing the use of REC. In particular,
we wish to avoid requiring a fully functioning implementation of regular type
equality to define regular type equality, but, rather, only something easy to
provide (e.g., purely syntactic equality on terms).

The first mechanism for representing types is to store every subterm in a
reference. Since pointers can form cycles in memory and our types are regular,
this allows us to replace multiple occurrences of a subterm with a reference back
to some previous definition of that subterm (possibly introducing a cycle). Since
memory is finite, a value of that form must have a finite number of subterms.
Since we do not need canonicity, we do not even need to take care to reduce this
representation, we may have multiple instances of the same abstract subterm
(like 1 and 1’). The set of assumptions we search when trying to apply REC then
contains references to subterms and we can use cheap pointer equality tests to
determine whether a match as been found.

A purer alternative to pointer based representations is to leave us explicit.
This does not give up on equirecursivity, but will require us to potentially unfold
our types to reach a non-p connective. As with any u-based representation this
introduces the ability to have non-contractive types. We will assume, as usual,
that such illformed types are prohibited. Syntactic equality on the p-based
representation will be taken as our fine grained notion equality. Preserving
finiteness of sets of subterms is slightly trickier. To see one issue that arises,
consider the type p x.Int A z. By itself, this can be represented in an infinite
number of ways, e.g., the y can be unfolded an arbitrary number of times. This
can be avoided by considering our coinductive proof search more carefully. There
is nothing more to be gained from examining REC, but consider trying to decide

which of the remaining rules to apply to a pair of u-based terms. If neither is of

108

the form px.A, then we can apply the appropriate rule directly. However, if either
type starts with a g, we must first unfold the type at least once. Fortunately,
there is no need to unfold more than is needed to remove any ps at the top of
the type or to unfold inside the topmost connective. Thus we can see that the
circular coindutive results still hold when using the following slightly altered

notion of SUB.

Definition 56 (SuB,). The p-subterms of a type A, denoted SUB,(A), are
given by the following inductively defined set:

e AcSuB,(A)

e If px.B € SuB,(A), then Blux.B/z] € SuB,(A)

o If T AN B € SuB,(A), then B € SuB,(A)

e If 7D A€ SuB,(A), then B € SUB,(A)

o If B®C € SuB,(A), then B € SUB,(A) and C € SUB,(A)

e If B— C € SuB,(A), then B € SUB,(A) and C € SuB,(A)

o If ©{L;: (By)i}r € SUBL(A), then for allk € I, (B,,); € SUB,(A)
o If &{L;: (Bm):} € SUB,(A), then for all k € I, (By,); € SUB,(A)
o If1)'B,, € SuB,(A), then B,, € SUB,(A)

o If |} B € SuB,(A), then B,, € SUB,(A)

5.5 0OCaml

The main implementation of SILL is an OCaml interpreter supporting the
features discussed in chapter 4, excluding bundled messaging (section 4.2), select
(section 4.3), and asynchronous receiving (section 4.4). Since this is the main
implementation of SILL, it follows the presentation of SILL in this thesis fairly
closely (e.g., we use the bidirectional system of section 5.2), with a few syntactic
quirks to ease parsing and fixing a concrete underlying functional language. The
underlying language is an extremely basic functional language with algebraic
datatypes, mutually recursive functions, the minimal required extras to support
SILL, and like the one in section 2.6, requires more type signatures than might
be strictly neccessary. Additionally, we provide an ability to ignore polarization,
when not moving between modes, by default (automatically polarizing via
Figure 4.6). This can be disabled with the -strict-polarity option to the
interpreter.

The full syntax of this version of SILL is presented in section A.4. The
primary changes from the syntax used through the rest of this thesis are: sending

a choice is handled as though accessing a field record (e.g., c.L; ...) due to an

109

overlap between our syntactic class of labels and that of data type constructors;
no mode subscripts, instead session type declarations have a modality prefix
(1type for L; atype for F; utype for U) and subscripts on type variables are

replaced with a prefix, ’> for L, @ for F, and ! for U; the two arrows (Tk and

m
1) are replaced with the modality tags for their target mode k (we can always
determine m from context). Additionally, we provide an abort construct that

halts all execution (if possible), typed with the following rule:

A;U; T dom(T) : SF abort :: ¢, : C ABORT

The OCaml implementation of SILL offers a pluggable framework for inter-
pretation backends: by defining a small set of functions (roughly six of which
are interesting) we can radically change our evaluation strategy. While not all of
them are currently maintained, we have implemented backends that: implement
the semantics as a shared memory system using OCaml’s user level threads;
explore the different styles of forwarding presented in section 4.8; implement
synchronous communication in the style of Toninho et al. [90]; implement chan-
nels as unix pipes between separate processes; implement channels via ssh
connections; and an backend based on mpi. Some technical limitations made the
last two of these not as exciting as hoped, however they did reveal that SILL
does not have a good accounting of how to distribute processes (e.g., we should
study a hybrid version [14, 15] of polarized adjoint logic). In addition to being
obviously profitable, the tail-bind optimization (section 5.2) turns out to be
suprisingly important in some backends, critically helping to avoid the bumping
into caps on the maximum number of simultaneously live processes.

To guide our explorations and help determine what language optimizations
might be worth pursuing the SILL intepreter collects a variety of performance
statistics. The simplest statistic gathered is the total number of processes created
over the lifetime of the program (i.e. number of times SENDchan, BIND, or
BIND_ execute). When using the tail-bind optimization we track the number of
processes whose creation is avoided (i.e., the number of times TBIND executes).
Similarly, we track the number of times forwarding is used. The last two statistics
are less broadly applicable. First, we gathered the number of times a process sent
two consecutive messages along the same channel occured without an intervening
usage of another channel. The optimization we thought this showed would be
interesting to investigate ultimately transformed into the bunlded semantics of
section 4.2.

The last and most complicated statistic that SILL gathers, requires some
extra background knowledge. Vector Clocks [32,55] are a technique for tracking
the progress of time in concurrent systems that allows for more accurate causal
relations in asynchronous behavior than with purely global notions of time.
Every process keeps an estimate of how much time has elapsed for each process

(generally discretized to the natural numbers) and updates its estimates as it

110

discovers more information. To make this more formal, we let II,, represent the
time estimate map for process p and order two such maps by the pointwise lifting
of the ordering on time (i.e., II, < II, if for all processes r, IL,(r) < IL,(r)).
Whenever a message is sent between processes, the sender updates its time
estimate for itself (generally by incrementing it) and sends its time estimates
along with the real message. The receiving process, upon reception, updates its
estimates to the pointwise maximum of the estimates passed with the message
or its own and then increments its time estimate for itself. This allows us to
guarantee that events in a single process are ordered and that time respects
causal relationships between processes as well. In the context of SILL, the top
level process’s estimate for when it sends its end message provides an abstract
notion of how long all processes took to execute. We hope that by contrasting
this time to the overall number of operations used during an exeuction (i.e., its
purely sequential execution time) we can develop a useful type-directed notion

of how much parallelism is available in a program.

5.6 Haskell

Thanks to the relatively rich features of Haskell’s type system we can reflect
the typing rules of the fragment of SILL presented in section 4.1 in Haskell.
The basic approach is to create an embedded domain specific language [43]
that represents the constructs of SILL as an Abstract Syntax Tree (AST) with
relatively complicated phantom typing constraints and then interpret these ASTs
at run time to execute the desired communication side-effects. This approach
will allow us to use Haskell as our underlying functional language, a much
more expressive language than the toy system used in the OCaml interpreter
(section 5.5). Since working directly with an AST will end up being relatively
unpleasant, we also explore an indexed monadic approach that will allow us
to use Haskell’s do-notation. Lastly, we will see how we can perform type
directed optimizations of our implementation using the notion of boundedness
(Definition 9).

Generalized Algebraic Datatypes (GADTS) [45] are a type extension that
allows for the resulting type of each constructor to vary (e.g., by utilizing different
phantom types). GADTs also allow for easy existential quantification over types
by mentioning type parameters which do not appear in the resulting type. Using
GADTs we can create a representation of SILL’s session types (Figure 5.3).
Notice that we use existential quantification here: the a parameter of the SendD
and RecvD constructors do not occur in the resulting parameterless Session type.
Since we need a finitary representation of our types, we utilize an explicit u
and a variable (section 5.4), which treats each variable as bound by the most
recent enclosing p. This representation could be enriched by indexing each u
and Var to enable complicated nested bindings, but this limited representation

will be sufficient for the examples in this section. The other constructors directly

111

data Session where
Mu :: Session -> Session
Var :: Session
One :: Session
SendD :: a -> Session -> Session
RecvD :: a -> Session -> Session
SendC :: Session -> Session -> Session
RecvC :: Session -> Session -> Session
External :: Session -> Session -> Session
Internal :: Session -> Session -> Session
SendShift :: Session -> Session
RecvShift :: Session -> Session

Figure 5.3: GADT for SILL Types

subst :: Session -> Session -> Session
subst One = One
subst (Mu x) = Mu x

subst x Var = x

subst x (SendD a s) = SendD a (subst x s)

subst x (RecvD a s) = RecvD a (subst x s)

subst x (External sl1 s2) = External (subst x s1) (subst x s2)
subst x (Internal sl1 s2) = Internal (subst x s1) (subst x s2)
subst x (SendShift s) = SendShift (subst x s)

subst x (RecvShift s) = RecvShift (subst x s)

unfold :: Session -> Session

unfold (Mu x) = subst (Mu x) x
unfold s = s

Figure 5.4: Unfolding SILL Session Types

correspond to their logical connectives: One for 1; SendD for A; RecvD for D;
SendC for ®; RecvC for —o; External for &; Internal for @; SendShift for
J; and RecvShift for 1. Our finitary representation of SILL session types will
require us to be able to unfold the p-bindings in our types (for contractive types).
To accomplish this we define a simple substitution function and then utilize it
to perform unfolding (Figure 5.4).

While the type of Figure 5.3 is sufficient to represent types in a Haskell
interpreter for SILL, we aim for a Haskell DSL for SILL in this section (to make
this more than just a reimplementation of section 5.5). In particular, we want to
be able to report type errors at compile time and not only when a particular DSL
AST is interpreted. To enable this we will need one extra functional programming
technique, phantom types, and a type extension, DataKinds

Phantom Types [24] are a way to add additional type level information to
algebraic data types by including a type parameter not actually constrained by
any of the data types constructors. As a simple example, we might work with

strings tagged as safe or tainted as seen in the following code listing:

112

data TagString a = TagString String

data Safe = Safe

data Tainted = Tainted

readInput :: I0 (TagString Tainted)

validate :: TagString Tainted -> Maybe (TagString Safe)

Notice that the type of TagString does not utilize the type parameter a within
its constructor, thus we are free to instantiate it with either of our two tag types.
The SILL DSL will use phantom types to statically track the typing environment
used in typechecking SILL programs. However, we still need a way to promote
our session data types to be usable at the type level.

By default, Haskell only allows us to express kind constraints on type pa-
rameters from a relatively limited class of kinds generated by the following

grammer:

Eo=x|k—k

where x is the kind of data types and k — k allows for type level functions.
The DataKinds extension [98] enriches these constraints by allowing data types!
to be promoted to kind constraints while treating their constructors as types
that satisfy the constraints. To see this in action, notice that the tagged string
example allows for nonsensical phantom types such as TagString Int. The
DataKinds extension will allow us to create a type to hold both Safe and
Tainted and then, after promotion, us this to constrain the phantom type to

only legal values. The code is shown in the following listing:

data Tag = Safe | Tainted

data TagString (a::Tag) = TagString String

readInput :: I0 (TagString Tainted)

validate :: TagString Tainted -> Maybe (TagString Safe)

Notice that the functions for working with our tagged strings have not changed
their types.

Using DataKinds we now have the tools needed to represent the proofs in
SILL’s type system in Haskell’s type system. Specifically, we will transform
U:T'F+ P :c: C into an AST where I" and C' are phantom types and ¢ will
be left implicit (i.e., left and right rules will be distinguished directly in the
AST’s constructors and not by channel names). To do this we need to answer
two questions: What will our phantom typing environment look like (beyond
involving promoted session types)? How do we decide session type equality at
the type level? The first question is relatively easy to answer, we will use lists of
Maybe Session to track the type of each channel, ordered by channel binding
textual order (i.e., newer bindings are at the end of the list). This representation

has two important features to constrast to the explicitly named representation

ITechnically, only promotable data types. We will only promote promotable data types, so
we will not discuss the restrictions.

113

utilized by SILL’s typing rules: first, we do not need to figure out how to promote
variable names to the type level; second, since channels can become unusable
throughout a computation without becoming textually invisible (e.g., 1L), we
wrap our Session type in a Maybe to enable unusable channels to be marked
with Nothing. The second question, deciding type-level session type equality,
requires a new type extension: Type Families.

Type families [21] provide a mechanism for specifying type level functions
directly in Haskell. Type families work well with DataKinds, allowing us to
compute with phantom types , and when specifying closed type families,? even
permit overlapping cases that are resolved by textual order. As an example
consider the following type family that computes whether a type-level list of
Maybes is composed entirely of Nothings, returning a promoted Bool. To
distinguish between data-level and type-level lists Haskell uses > [1 and ’: for

the type-level version of nil and cons, respectively.

type family AllNothing (1::[Maybe a]) :: Bool where
AllNothing ’[] = True
Al1Nothing (Nothing ’: xs) = AllNothing xs
AllNothing ys = False

In practice, we use the Singletons package of Template Haskell functions to
automatically generate these type family definitions from data-level functions.
We now have the tools to examine some of the simple SILL DSL constructs
in detail. Each type rule will correspond to a construct in a Process AST GADT.
Due to the size of this GADT, we will examine its constructors incrementally.
The top level declaration of the Process GADT takes in a list of Maybe Session,

its typing environment, and a Session for the type of the channel it provides:
data Process :: [Maybe Session] -> Session -> * where

The easiest rule to implement, 1R, will be named Close and takes no arguments.
However, it comes with two side conditions. First, the type that the process
provides, t, may include some amount of Mu constructors before the One con-
structor we need, thus, we use a type-family based type-level version of unfold,
called Unfold, to assert that the unfolded version of this type is equal to One.
Second, since we never shrink our environment but the typing rule requires an
empty environment, we confirm that the environment has been entirely marked

as unusable.

Close :: (Unfold t ~ One

,Al1Nothing env ~ True) => Process env t

The other rules are similar in how they manipulate types (i.e., using Unfold to
confirm the expected type is present and possibly using a type-level function

to check some side condition), however many of them are complicated by a

2All of our uses of type families are closed.

114

need to refer to channels that are in the environment. To avoid the possibility
duplication of channels by the DSL user, we will refer to channels by reference
(which will be safe to duplicate) rather than directly. Since we have chosen to
represent the environment as a list, we use natural number indices into this list
as references. To avoid creating a specialized version of the left rules for each
possible channel name (i.e., natural number) each might use, we need a way to
link concrete runtime channel values to our phantom type. Happily, there is a
relatively convenient way to do that via the singletons library.

The singletons library [31] is a template Haskell library that provides a
limited form of dependent types by generating singleton versions of datatypes and
mapping them to type level representatives. In more detail, every value of a data
type is turned into its own singleton type with exactly one constructor, giving
us a tight connection between data-level values and their type-level equivalents.
This is somewhat inconvenient to work with since every value is its own type
and functions over this type need to be just polymorphic enough to allow these
values but no unindended arguments. With careful, i.e., via singletons generated
automatically with Template Haskell, usage of type classes these singleton values
can be uniformly treated as values whos type contains a phantom type that
is guaranteed to be the promoted value that the singleton represents. As an
example, consider trying to write the Process AST constructor for 1L. This
must take an argument specifying which channel to wait on and the subprocess
to continue as. Notice that, if we knew the type of the argument channel, this
would be no harder than the case for 1R. The singleton version of the Nat
datatype (data Nat = Z | S Nat) has two constructors, SZ and SS, one for
each of the constructors of Nat. At the type level the Nat represented by this
is bound as a type parameter of SNat, the type of singleton natural numbers.
Generating this singleton data type is done via the following call to Template
Haskell:

singletons [d| data Nat = Z | S Nat |[]

The constructor for 1L, called Wait, is given by the following listing, where
Inbounds, Index, and Update are three utility functions that ensure our index
is inbounds, returns the result of indexing into a list, and updates a list at a

given index, respectively:

Wait :: (Inbounds n env ~ True
,Index n env ~ Just t
,Unfold t ~ One)
=> SNat n
-> Process (Update n Nothing env) s

-> Process env s

Notice, that in the environment of the continuation process we have updated

the channel that was waited on to be marked as unusable (i.e., Nothing). This

115

ensures that we cannot use a channel after it is closed. To see this in action, the
following example shows a process that waits on a terminated channel and then

terminates itself.

foo :: Process ’[Just One] One
foo = Wait SZ Close

As mentioned before, the remaining constructors are all straightforward
adoptions of their respective typing rules, possibly with a few extra type-level
utility functions (e.g., session equality via circular coinduction). While this gives
us a technically working solution, the syntax is quite ugly: explicitly writing
SNats, even after providing a Num type class instance, is a far cry from the
named channels seen in the formal syntax; and writing down an AST directly is
much uglier than the do-notation-like used in the formal syntax. Both of these
limitations are solvable, but will require a bit more infrastructure.

Monads have the kind x — %, which means that the type of a monadic
expression can only vary by changing the * kinded type parameter. If we are
interested in tracking information via phantom types as our computation runs,
this can be too limiting. One approach to deal with this problem is indexed
monads [56]. This typeclass allows for instances that have an input and output
(phantom) type index in addition to the normal return type of the expression. The
class definition is given by the following listing and, with the RebindableSyntax

extension, can be used directly with do-notation.

class IxMonad m where
return :: a ->mk k a
(>>=) ::mkl k2a->(a->mk2k3Db) ->mklk3b
(>>) ::mkik2a->mk2k3b->mkl k3b
fail :: String -> m k1 k2 a

m>>mn =m >>= const n

fail = error

With this we can, for straightline process code, use the do-notation to provide
a clean interface to the DSL. Unfortunately, this requires us to always provide
both an input and output phantom type for each process, which is ill-defined
in the case of a completed process (i.e., one that ends in ID or 1R). To work
around this we define a new wrapper, PState, that indicates whether a process is
terminated or running with a particular typing environment and type of provided

channel:

data PState where
Term :: PState

Running :: [Maybe Session] -> Session -> PState

Before providing an indexed monad instance we also need to determine what

information we need at run time to execute a process. We will defer this until

116

subsection 5.6.1 and assume that it fits into a placeholder ExecState type. We
then define the indexed state of a process, IState, as the following, where the

prelude imported qualified as P:

newtype IState (kl1::PState) (k2::PState) a
= IState {runIState :: (ExecState -> I0 (a,ExecState))}
instance IxMonad IState where
return a = IState (\s -> P.return (a,s))
v >>= f = IState (\i -> runIState v i P.>>=
\ (a,m) -> runIState (f a) m)

The individual operations inside the IState indexed monad have very similar
types to the previous DSL, however process continuations become output type
indicies instead of arguments to an AST constructor. To see some simple
examples consider the type declarations for the functions coresponding to 1R
and 1L:

close :: (AllNothing env ~ True
,Unfold s ~ One)

=> IState (Running env s) Term ()

wait :: (Inbounds n env ~ True
,Index n env ~ Just t
, Unfold t ~ One)
=> SNat n
-> IState (Running env s)
(Running (Update n Nothing env) s) ()

These have almost identical types. The two major differences is that close
uses Term as its output type, indicating that a process ending in close is fully
defined, and that wait has an output type instead of a continuation subprocess.
The other definitions are straightforward adaptions of our AST to the indexed
monadic presentation.

In the original AST, the channel reference SNats were directly inserted into
the AST. With our monadic presenation we can hide the details of SNat references
via Haskell’s existing monadic binders. As a result, rules that need to refer to
channels can refer to them via some pleasant name (e.g., ¢) instead of a natural
number. In the case of — R (and ®L and {}E) this is accomplished by having
the monadic expression return the appropriate SNat, which can then be bound
as normal for a monadic return value. For example, the type of the operaton for

—o R is:

recvcer :: (Unfold u ~ (RecvC sl s2))
=> IState (Running env u)
(Running (env :++ ’[Just s1]) s2)
(SNat (NatLen env))

117

which in addition to doing the expected unfolding, ensures that the continuation
process will have one more channel in its environment (:++ is the type-level list
append function) and returns the SNat that corresponds to the newly inserted
environment binding.

The two rules that take two possible continuation proccesses, &R and &L, do
not cleanly fit into do-notation. Instead they directly take subprocess arguments
(extchoir for EXTernal CHOIce Right and exthoil for EXTernal CHOIce
Left):

extchoir :: (Unfold u ~ (External sl s2))
=> IState (Running env sl1) t a
-> IState (Running env s2) t a

-> IState (Running env u) t a

extchoil :: (Inbounds n env ~ True
,Index n env 7 Just u
,Unfold u ~ (Internal si s2))
=> SNat n
-> IState (Running (Update n (Just sl1) env) t) k a
-> IState (Running (Update n (Just s2) env) t) k a
-> IState (Running env t) k a

The last bit of syntactic clean up is to simplify the treatment of process
declarations by creating a type family to expand a Process type expression
into a function with an appropriate number of SNat arguments. This enables
us to write top level bindings that directly use function arguments instead of
needing initial let or where bindings to name the initial channels in a process’s
environment. As an example, consider this start of a declaration for process that

has two argument processes:

binary :: Process ’[Just (Bag Nat), Just (Bag Nat)]
(Bag Nat)

binary 1 r = ...

Ignoring the definition of Bag Nat, this shows how easy working with environ-
ments can be with the Process type family. More formally, the Process type
family takes in an initial session environment and session type of channel provided
by that process and returns a function with a number of SNat arguments equal
to the size of the environment and that results in an IState with a Running
process with the given environment and provided channel type as its input type
index and Term as its output type index. This is defined via two type families,
VarArgs, which provides the function arrows, and Process, which initializes

VarArgs and hides the Running/Term details.

type family VarArgs (n::Nat) (argsl::[a]) (base::b) :: *

where VarArgs n ’[] base = base

118

VarArgs n (x ’: xs) base = SNat n

-> VarArgs (S n) xs base

type Process env s = (AllWellformed env ~ True) =>

VarArgs Z env (IState (Running env s) Term ())

5.6.1 Execution

As in the SILL semantics (subsection 4.1.5), we will implement the monadic
operations in terms of directed, reversible when empty, queues. To do this we will
utilize Haskell’s Software Transactional Memory and perform type directed code
generation to ensure that queues point in the correct direction. Before describing
the details of ExecState and our channels’ queues, we need to determine the mes-
sages that can be sent. We will take a messaging view of forwarding (section 4.8),
so our messages can be defined, with one constructor per message kind, by the
following GADT, where ExtDiQueue a polymorphic channel implementation we

will describe later:

data Comms where

COne :: Comms

CShift :: Comms

CDhata :: a -> Comms

CChoice :: Bool -> Comms

CChan :: (ExtDiQueue Comms) -> Comms
CForward :: (ExtDiQueue Comms) -> Comms

During execution we will associate an ExtDiQueue with each channel used
or provided by a process. To allow CForwarding messages to update channel
bindings we store each of these queues in a mutable I0Ref. Thus, ExecState
is defined as a list of queues for those channels in its environment and a single

queue for the channel that it provides:

data ExecState = ExecState [IORef (ExtDiQueue Comms)]
(IORef (ExtDiQueue Comms))

Software transactional memory (STM) [29,38,86] allows for the easy design
of race free programs by structuring potentially racy portions of programs
as transactions. GHC provides an easy to use monadic interface to its STM
implementation. Three different STM types will be of particular interest to us:
TVar, TQueue, and TMVar. A TVar is a transactional variable and can be read or
written like a normal reference. The interesting feature of a TVar is that reads
or writes during a transaction occur atomically w.r.t. that transaction. Thus,
even a program that accesses multiple TVars from multiple processes can ensure
race freedom. The TQueue type provides a standard queue interface but with a
transactional flavor. Lastly, the TMVar type provides a transactional combination

of a mutex and a TVar (similar to a TVar holding a Maybe), where the TMVar is

119

empty if some process has taken the TMVar and is full if after a process puts a
value in it. Transactions can be aborted early by using the retry function and,
when efficiently implemented, will wait until some used transactional variable
has changed before rerunning (i.e., what one might do with wait/notify).
Using STM we define a DiQueue type class that provides a directed queue
with two distinguished ends (C for client, P for provider) and the ability for the
client or provider to read, write, wait to write, or swap the direction of the
queue. Attempting to perform an operation incompatible with the current queue
direction may temporarily block the process, but, if our type system is correct,
this will never introduce deadlock. The signatures for the DiQueue operations

are given by the following:

class DiQueue a where

safeReadC :: a b -> STM b
safeReadP :: a b -> STM b
safeWriteC :: a b -> b -> STM O
safeWriteP :: a b -> b -> STM ()
waitToC :: a b -> STM (O

waitToP :: a b -> STM (O

swapDir :: a b -> STM ()

The first, most general, instance of our DiQueue type class, unbounded
DiQueues (UDiQueue) is is implemented in terms of a data-type for the queue

direction, a TQueue, and a TVar to track the direction of the queue:

data Dir = ToC | ToP deriving (Eq, Show)
invertDir :: Dir -> Dir

invertDir ToC = ToP

ToC

invertDir ToP

data UDiQueue a = UDQ { dirU :: TVar Dir
, queU :: TQueue a }

-- Bool indicates to start pointing at Client or Provider
newUDiQueue :: Bool -> I0 (UDiQueue a)
newUDiQueue b = do q <- newTQueuelO
d <- newTVarIO (if b then ToC
else ToP)
return (UDQ 4 q)

The other operations are implemented in terms of a function that waits for

the UDiQueue to point in the correct direction and then performs the operation:

-- Wait until the queue is pointing the specified
-- direction and then modify the TQueue
withDirU :: Dir -> (TQueue a -> STM b) -> UDiQueue a

120

-> STM b
withDirU d £ q = do qd <- readTVar (dirU q)
if d == qd
then f (queU q)

else retry

instance DiQueue UDiQueue where
safeReadC = withDirU ToC readTQueue
safeReadP withDirU ToP readTQueue
safeWriteC q x = withDirU ToP ((flip writeTQueue) x) q

safeWriteP q x = withDirU ToC ((flip writeTQueue) x) q
waitToC = withDirU ToC (_ -> return ())

waitToP = withDirU ToP (_ -> return ())

swapDir q = modifyTVar’ (dirU q) invertDir

The second instance of the DiQueue type class, BDiQueue, encodes directed
queues that know an upper bound on the number of elements they will store.
This is done by replacing the TQueue of UBiQueues with an Array of TMVars
and a pair of Ints to track the position of the next array location to read and
write. These TMVars start empty and are filled in by the process writing to the
queue. The reading process blocks whenever it encounters an empty TMVar and
takes the TMVar when it finds a full TMVar. Because the reading process takes
each TMVar as it reads it and the type system guarantees all written values will
be read before a swapDir is needed, we do not need to walk the entire array
and empty it during a swapDir. The complete definition of BDiQueue is the

following:

data BDiQueue a = BDQ { dirB :: TVar Dir
, readPos :: TVar Int
, writePos :: TVar Int

, queB :: Array Int (TMVar a) }

-- Wait until the queue is pointing the specified
-- direction and then modify the queue
withDirB :: Dir -> (TVar Int -> TVar Int
-> Array Int (TMVar a) -> STM b)
-> BDiQueue a -> STM b
withDirB d f q =
do qd <- readTVar (dirB q)
if d == qd
then f (readPos q) (writePos q) (queB q)

else retry

-- Bool indicates to start pointing at Client or Provider

121

newBDiQueue :: Bool -> Int -> I0 (BDiQueue a)
newBDiQueue b i =
do q <- mapM (_ -> newEmptyTMVarIO) [0..i-1]
rp <- newTVarIO O
wp <- newIVarIO O
d <- newTVarIO0 (if b then ToC else ToP)
return (BDQ d rp wp (listArray (0,i-1) q))

instance DiQueue BDiQueue where
safeReadC = withDirB ToC
(\rp _ q -> do i <- readTVar rp
writeTVar rp (i+1)
takeTMVar (unsafeAt q i))
safeReadP = withDirB ToP
(\rp _ q -> do i <- readTVar rp
writeTVar rp (i+1)
takeTMVar (unsafeAt q i))
safeWriteC qr x = withDirB ToP
(_ wp q -> do i <- readTVar wp
writeTVar wp (i+1)
putTMVar (unsafeAt q i) x) qr
safeWriteP qr x = withDirB ToC
(_ wp q -> do i <- readTVar wp
writeTVar wp (i+1)
putTMVar (unsafeAt q i) x) qr
waitToC = withDirB ToC (_ _ _ -> return ()
waitToP = withDirB ToP (_ _ _ -> return ()
swapDir qr = do modifyTVar’ (dirB qr) invertDir
writeTVar (readPos qr) O

writeTVar (writePos qr) O

Lastly, we define a type class instance of DiQueue, ExtDiQueue, that existen-

tially quantifies over both of our other instances. This allows us to store either

type of DiQueue in an ExecState, which is needed since a process may make

use of both bounded an unbounded channels. Of the three instances, this is the

most boring:

data ExtDiQueue a where

ExtDiQueue :: DiQueue q => q a -> ExtDiQueue a

instance DiQueue ExtDiQueue where
safeReadC (ExtDiQueue q) = safeReadC q
safeReadP (ExtDiQueue q) = safeReadP q
safeWriteC (ExtDiQueue q) x = safeWriteC q x

122

forward n = IState (\ (ExecState env self) ->

if polarity

then myWaitToReadC (index (fromSing n) env) P.>>
readIORef (index (fromSing n) env) P.>>= \ q ->
myWriteP self (CForward q) P.>>
P.return undefined

else myWaitToReadP self P.>>
readIORef self P.>>= \ q ->
myWriteC (index (fromSing n) env) (CForward q)
P.>> P.return undefined)

where polarity :: Bool
polarity = fromSing (sing :: SBool (IsPos s))

Figure 5.5: Indexed Monadic Forwarding

safeWriteP (ExtDiQueue q) x = safeWriteP q x

waitToC (ExtDiQueue q) = waitToC q

waitToP (ExtDiQueue q) = waitToP q

swapDir (ExtDiQueue q) = swapDir q

Since any newly created channel can either a positive or negative type we need
some mechanism to allow us to pass information from the session types known
at the type level to the data level. A similar issue arise when forwarding, we
need to send the forwarding message in the correct direction. The singletons
package provides a solution to this: it can generate singleton values at a specified
type. To see this in action, let us consider the forwarding operation and, in

particular, its polarity local binding. First we show its type signature:

forward :: forall env n s t.
(Inbounds n env ~ True
,A11ButNothing n env ~ True
,Index n env ~ Just t
,RTEq s t 7 True
,SingI (IsPos s))
=> SNat n -> IState (Running env s) Term ()

The type constraints on forwarding are fairly standard, InBounds checks whether
the provided channel is defined, A11ButNothing checks that only the forwarded
from channel is usable, Index returns the type of the forwarded channel, RTEq
performs a circular coinductive check for session type equality, and SingT is an
ignorable quirk of the singletons library. Since forwarding is the last instruction
in a process the output type index is Term.

The definition of forward (Figure 5.5) makes use of a few new functions:

e myWaitToReadC, myWaitToReadP, myWriteC, and myWriteP all wrap the
DiQueue type class to preform an read of the I0Ref holding the relevant

queue and then perform the transactional operation specified

123

e index takes a natural number and a list and returns the value in the

specified position
e fromSing takes a singleton and converts it to its corresponding basic value

Focusing on the polarity binding, this says that if the type level IsPos function
(which returns whether a given Session is positive) returns true on the channel
the process is forwarding from, we create the singleton SBool True value and
then immediately convert that to a normal Bool, True. Similarly, if we forward
from a negative type, polarity will be False. In the remainder of the definition
we then case on the polarity and wait for both queues to point in the same
direction before sending a forwarding message to the queue waiting to be written
to.

To actually make use of our, hopefully more efficient, bounded queues the
definition for the {} F operation has an additional local binding bounds that
uses a type level implementation of Definition 9 to determine what if any bounds

the type of channel guarantees:

where polarity :: Bool
polarity = fromSing (sing :: SBool (IsPos t))
bounds :: Maybe Nat
bounds = fromSing (sing :: SMaybe (GlobalBounds t))

The rest of the operation defintion is a bit long, so we omit it, but this local
binding demonstrates how easy the combination of type families and singletons

make performing even relatively complicated type-directed optimizations.

5.6.2 Prime Sieve Example

Before consider an example we need the ASCII names of each of our type rules:

Rule ASCII Rule ASCII

1R close 1L wait

AR senddr AL recvdl

DR recvdr DL senddl

QR sendcr QL recvcl

— R recvcr — [, sendcl

DR, intchoirl ®L extchoil

DRs intchoir2

&R extchoir &L1 intchoill
&L, intchoil2

™R recvsr TL sendsl

IR sendsr JL recvsl

{}E cut Ip forward

{}E+Ip tailcut

124

The primes example (subsection 4.1.7) then is a straightforward translation
into these indexed monadic operations (passing arguments to cut as a singleton
list):

type Stream a = (Mu (External (RecvShift One)
(RecvShift (SendD a (SendShift Var)))))

printstream :: (Show a) => Nat
-> Process ’[Just (Stream a)] One
printstream Z ¢ = do intchoill c
sendsl c
wait ¢
close
printstream (S n) c =
do intchoil2 c
sendsl c
x <- recvdl c
recvsl c
1iftI0 $ putStrLn ("Got "++show x)
b <- cut (printstream n) (SCons c SNil)

forward b

countup :: Nat -> Process ’[] (Stream Nat)
countup n = extchoir
(do recvsr
close)
(do recvsr
senddr n
sendsr
a <- cut (countup (S n)) SNil

forward a)

silter :: (a -> Bool)
-> Process ’[Just (Stream a)] (Stream a)
silter f ¢ = extchoir
(do recvsr
intchoill ¢
sendsl c
wait c
close)
(do recvsr

intchoil2 c

125

sendsl c
x <- recvdl c
recvsl c
b <- cut (silter f) (SCons c SNil)
case f x of
True -> do senddr x
sendsr
forward b
False -> do intchoil2 b
sendsl b
forward b)

natsub :: Nat -> Nat -> Nat
natsub n Z = n

natsub (S n) (S m) = natsub n m

divisible :: Nat -> Nat -> Bool
divisible n Z = True

divisible n m = (n <= m) && (divisible n (natsub m n))

sieve :: Process ’[Just (Stream Nat)] (Stream Nat)
sieve c¢ = extchoir
(do intchoill ¢
sendsl c
wait c
recvsr
close)
(do intchoil2 ¢
sendsl c
x <- recvdl c
recvsl c
recvsr
senddr x
sendsr
b <- cut (silter (not . divisible x))
(SCons ¢ SNil)
tailcut sieve (SCons b SNil))

top :: Process ’[] One
top = do a <- cut (countup (S (S Z))) SNil
b <- cut sieve (SComns a SNil)
¢ <- cut (printstream (S (S (S (S (S Z))))))
(SCons b SNil)

126

wait c

close

5.6.3 Related Work

The most closely related work is the, apparently unmaintained, sessions pack-
age.® This library implements a classical session typing system without the
benefit of several more years of advanced type system feature development. In
some cases, this means that the library replicates functionality we utilize by
hand, e.g., manually creating singleton types. Session types are represented as
type level programs, which are incrementally executed by the type checker. Our
pu-based representation could be viewed similarly, but seems considerably cleaner.
An interesting choice of the library’s design is that it has less need for type
annotations, but the ones it does use are supplied via ugly type annotations on

undefined values.

5.7 Idris

Idris [11] is an eager dependently typed language (section 2.5) that attempts to
focus on practical programmability, e.g., it features type classes, compilation,
and a good type erasure algorithm. This version of SILL, the least feature com-
plete, provided guidance in designing the Haskell implementation (section 5.6).
Specifically, it allowed for experimentation in a Haskell-like language without
any of the clunkiness present in the various advanced type features used in the
Haskell implementation, while occasionally introducing some challenges of its
own. Since we have already discussed how the Haskell, this section will primarily
focus on the differences between the two implementations. Unfortunately, while
the Idris version allowed for a cleaner system in some ways, some limitations
of Idris presented the choice of investing much more time submitting patches?
or abandoning this as a successful prototype that informed the Haskell SILL
implementation.

The Idris version of SILL only aims to produce an abstract syntax tree rather
than the more pleasant syntax allowed by the indexed monadic approach of
section 5.6, but otherwise proceeds along broadly similar lines. This choice is
not fundamental, Idris provides most of the functionality of indexed monads,
with some generalization enabled by a fully dependently typed language, in its
effect system [13]. Additionally, Idris provides a much more general syntactic
extension system [12] beyond that provided by Haskell’s RebindableSyntax, so
we might be able to even encode the syntactic sugar for top-level SILL process
defintions (subsection 4.1.6).

Session types are represented via regular trees labeled with elements of the

Shttps://hackage.haskell.org/package/sessions-2008.7.18
4Some of which would not be acceptable to the maintainers.

127

https://hackage.haskell.org/package/sessions-2008.7.18

set {TA, 7 C,®, —,®, &, T,,}. Notice that since 7 is infinite, this set of letters
is not finite, though the set of labels used in any particular regular tree will be.
Since we are working in a dependently typed language, we can, and did, write
a regular tree library and freely use it at the type level, whereas the Haskell
version of type equality is specific to the session type type and only available at
the type level. Unfortunately, circular coinduction (section 5.3) requires us to
decide equality on all our letters. In Haskell, since we are stuck working at the
type level, we can write a non-linear pattern as needed to check for equality of
the two letters that use 7. Since Idris requires parametericity of polymorphic
functions, enabling “Theorems for Free” [92], this means that we cannot directly
check for type equality while performing circular coinduction. Instead, we rely
on an approach inspired by DeBruijn indexing. By attaching a list of types as
a phantom type parameter to each regular tree we can replace occurrences of
types generated by 7 with natural number indices, which feature a decidable
equality relation, into this list.

Before looking at the code listing for labels we need two types from Idris’s
standard library: the type Vect k t is the type of lists with length k and elements
of type t and the type Fin k is the type of natural numbers less than k. We
define a type of labels using Idris’s GADTs-like syntax, where {v:Vect k Type}

indicates that the kind vector is passed implicitly (i.e., determined by unification):

data SType : (Vect k Type) -> Type where

SOne : SType v
SExternal : SType v
SInternal : SType v
SSendC : SType v
SRecvC : SType v
SSendS : SType v
SRecvS : SType v
SSendD : {v:Vect k Type} -> Fin k -> SType v
SRecvD : {v:Vect k Type} -> Fin k -> SType v

With the exception of needing the index into the kind list for SSendD and SRecvD
these all merely state that they are labels and nothing more. To use these
labels with the general regular tree library, we additionally provide an arity
for each label (where {v=v} helps the unifier fill in the implicit argument of

STypeArities):

STypeArities : {v:Vect k Type} -> (SType v) -> Nat
STypeArities (SSendD _) 1
STypeArities (SRecvD _) 1

STypeArities SOne = 0
STypeArities SExternal = 2

Il

STypeArities SInternal
STypeArities SSendC = 2

128

STypeArities SRecvC = 2

SessionType : Vect k Type -> Type
SessionType v = RegularTree (STypeArities {v=v})

With this we can define a session typing environment as a list of session types
with some channels marked as unavaible. As before (section 5.6), this enables us
to store channel references, which are safe to duplicate, in the AST rather than

store the linear channels directly:

SesEnv : (k:Nat) -> (v:Vect m Type) -> Type
SesEnv k v = Vect k (Maybe (SessionType v))

We then can define an AST that takes session environments and a session
type for the provided channel with one constructor per rule in our type system

(a full listing is available in section B.3):

data Process : (SesEnv k v) -> (SessionType v) -> Type where
Close : {k:Nat} -> Process (replicate k Nothing) One

Two constructors, coresponding to ID and {}F, are complicated by the need
to use type equality and not just local checks (modulo unfolding). While this
is easy enough to encode in the constructors’ types via a feature that allows
default values to be passed to implicit arguments (here, the default value is
the proof generated by the type equality algorithm), a flaw in the way bound
variables in default arguments are treated means that this proof will only be
successfully generated if we manually fill in the algorithms arguments. This
makes forwarding exremely verbose and is quite tedious. After encountering and
confirming this bug with Idris’s developers, we stopped work on this version of
SILL and used the lessons learned for the Haskell implementation.

With our AST complete, we then implemented a simple sequential interpreter
that manually multiplexed the processes’ threads. This is, of course, not the end
goal of such a project, but, since Idris’s concurrency primitives do not include
thread-safe queues, this was an easy first pass (which became the only pass after

hitting the default argument bug).

129

Chapter 6

Conclusion

This thesis described an exploration in concurrent programming language design,

focusing on session types. Our aim was to study logically motivated session typing

systems which have received increasing research attention recently [16, 28,72, 89,

94]. The main result of this investigation was SILL, a language that demonstrates

the compatibility of a number of interesting and practically important language

features with a logical basis.

The main claims of this thesis were the following:

Polarization provided a natural way to describe a logically based session
typing language with asynchronous communication while retaining a se-
mantics that is reasonably implementable. Additionally, polarization gave
us a way to smoothly integrate synchronous channels into SILL without

needing a semantic extension.

Polarization and Adjoint Logic combine very cleanly, giving SILL an ability
to incorporate a variety of modalities with relatively little work. From a
practical perspective, this gave SILL access to persistent processes and

garbage collection for processes.

We explored a trio of loosely related language extensions, and their logi-
cal connections, inspired by the above results: bundled message passing
to reduce the number of communications performed by processes; racy
programs, enabled by a select/epoll-like mechanism; and asynchronous

receiving, a generalization of the basic asynchronous semantics.

We descirbed three different implementations of SILL: a simple but rela-
tively full featured interpreter written in OCaml; a fragment of SILL as an
embedded domain specific language in Haskell; and a cleaner version of

the same in Idris.

We showed that Liquid Types and Session Types are compatible. This

gives us one notion of a dependently session typed language.

Overall, we contend that our theory, implementation, and examples show

that concurrent programming based on logical principles is a promising way to

structure programs in the functional context. Compared to traditional languages

such as Concurrent Haskell [73] and Concurrent ML [69] where channels are not

130

linearly typed, many additional properties of communication can be statically
expressed and enforced. Moreover, the presence of internal and external choice
combined with forwarding gives rise to new programming patterns that are not
easily supported in prior languages. This thesis demonstrates that these new
forms of expressions and types are compatible with many features found in
modern languages such as type inference, first-class functions, polymorphism,

and data abstraction.

6.1 Future Work

Although this work has accomplished much of what it set out to do, there are a
number of interesting avenues for further investigation.

Perhaps the most straightforward direction would be to integrate the LiquidPi
work with SILL. As in chapter 3, we expect this to work cleanly at the most
basic level but to run into difficulties with the ability to arbitrarily unfold types.
Additionally, there is some tension between the type inference of dependent
types but no inference of basic session types in SILL. Optimistically, this tension
is the same as shows up in many dependently typed languages where some
arguments to functions can be elided. An alternative approach is to embrace
non-inference and incorporate some dependent types directly into the user visible
type descriptions. The main attraction of this approach would be that it avoid
the unfolding ambiguity problem by forcing users to deal with it.

With the integration of adjoint logic into SILL (section 4.6), a natural question
to ask is, “Can we integrate the modal split between data and processes into
the adjoint framework?” There are two obvious ways one might approach this
problem (assuming they are not equivalent after a deeper investigation). The
first is to note that process reification in SILL looks like staged computations, so
trying to integrate a logical treatment [27] of that into SILL may be successful.
Alternatively, one could try to directly account for data’s behavior by creating a
new mode above U, that allows the use of a logical accounting of the functional
language. The rule {}I, should then become an instance of tR. Similarly,
we should hope that {}E becomes 1L. Unfortunately, this naive arrangement
presents some problems. Since TR and 7L do not have a notion of argument
channels, {} F needs to be broken into multiple steps: first initializing the process
and then passing its argument channels in one-by-one (essentially, all processes
would be given in a Curried form). In theory, this is no worse than splitting ! (and
can be hidden via syntactic sugar) but needs practical confirmation. In particular,
this makes the tail-bind optimization less obvious. Optimistically, this might
motivate a more general optimization for processes providing a channel expecting
to receive multiple channels (e.g., a variant of the focusing of section 4.2).

While our existing test cases, and the ability to actual execute them, were
critical for guiding development of various features, they are still not as extensive

as one might hope. In particular, while we have demonstrated the utility of select,

131

it is unclear if larger examples will require a more complete logical incorporation
of accept/request and the ability to create cycles of processes. Similarly, subtyping
is another language feature that needs more testing, given that our original use
case, permissions, worked less well than hoped. Lastly, the theorems could be
tested more thoroughly by incorporating them into a theorem prover, with some

inspiration from the dependently typed Idris implementation.

132

References

[1] The coq proof assistant reference manual, 2009.

[2] Andreas Abel, Thierry Coquand, and Peter Dybjer. Verifying a semantic
Bn-conversion test for Martin-Lof type theory, 2008.

[3] Gul A Agha. Actors: A model of concurrent computation in distributed
systems. Technical report, DTIC Document, 1985.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1988.

[5] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. Techni-
cal Report 62, Digital Equipment Corporation, Systems Research Centre,
January 1990.

[6] Joe Armstrong, Robert Virding, Claes Wikstrém, and Mike Williams. Con-
current programming in erlang. 1993.

[7] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico
Tassi. A bi-directional refinement algorithm for the calculus of (co)inductive
constructions.

[8] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-
Lezama. Faceted execution of policy-agnostic programs. In Prasad Naldurg
and Nikhil Swamy, editors, Proceedings of the 2018 ACM SIGPLAN Work-
shop on Programming Languages and Analysis for Security, PLAS 20183,
Seattle, WA, USA, June 20, 2013, pages 15-26. ACM, 2013.

[9] David Baelde and Dale Miller. Least and greatest fixed points in linear
logic. In Nachum Dershowitz and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, volume 4790 of Lecture
Notes in Computer Science, pages 92-106. Springer Berlin Heidelberg, 2007.

[10] Henry C. Baker, Jr. and Carl Hewitt. The incremental garbage collection
of processes. SIGPLAN Not., 12(8):55-59, August 1977.

[11] Edwin Brady. Idris: general purpose programming with dependent types. In
Matthew Might, David Van Horn, Andreas Abel, and Tim Sheard, editors,
Proceedings of the Tth Workshop on Programming languages meets program
verification, PLPV 2018, Rome, Italy, January 22, 2013, pages 1-2. ACM,
2013.

133

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

Edwin Brady. The idris programming language - implementing embedded
domain specific languages with dependent types. In Viktoria Zsok, Zoltan
Horvath, and Lehel Csato, editors, Central Furopean Functional Program-
ming School - 5th Summer School, CEFP 2013, Cluj-Napoca, Romania,
July 8-20, 2013, Revised Selected Papers, volume 8606 of Lecture Notes in
Computer Science, pages 115-186. Springer, 2013.

Edwin Brady. Programming and reasoning with algebraic effects and
dependent types. In Greg Morrisett and Tarmo Uustalu, editors, ACM
SIGPLAN International Conference on Functional Programming, ICFP’13,
Boston, MA, USA - September 25 - 27, 2013, pages 133-144. ACM, 2013.

Torben Braiiner and Valeria de Paiva. Intuitionistic hybrid logic. J. Applied
Logic, 4(3):231-255, 2006.

Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Logic-
based domain-aware session types. Technical report, Carnegie Mellon
University, 2014.

Luis Caires, Frank Pfenning, and Bernardo Toninho. Linear logic proposi-
tions as session types. Mathematical Structures in Computer Science, 2013.
To appear. Special Issue on Behavioural Types.

Felice Cardone and Mario Coppo. Type inference with recursive types:
Syntax and semantics. Inf. Comput., 92(1):48-80, May 1991.

Iliano Cervesato, Joshuas. Hodas, and Frank Pfenning. Efficient resource
management for linear logic proof search. In Proceedings of the 5th In-
ternational Workshop on Extensions of Logic Programming, pages 67-81.
Springer-Verlag LNAI, 1996.

Iliano Cervesato and Andre Scedrov. Relating state-based and process-
based concurrency through linear logic. Information and Computation,
207(10):1044-1077, October 2009.

Francesco Cesarini and Simon Thompson. ERLANG Programming. O’Reilly
Media, Inc., 1st edition, 2009.

Manuel M. T. Chakravarty, Gabriele Keller, Simon L. Peyton Jones, and
Simon Marlow. Associated types with class. In Jens Palsberg and Martin
Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2005, Long Beach,
California, USA, January 12-14, 2005, pages 1-13. ACM, 2005.

Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmen-
tal analysis of linear logic. Technical Report CMU-CS-03-131R, Carnegie
Mellon University, Department of Computer Science, December 2003.

Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical characteri-
zation of forward and backward chaining in the inverse method. J. Autom.
Reasoning, 40(2-3):133-177, 2008.

James Cheney and Ralf Hinze. First-class phantom types. Technical report,
Cornell University, 2003.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Reference counting
as a computational interpretation of linear logic. J. Funct. Program.,
6(2):195-244, 1996.

134

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Luis Damas and Robin Milner. Principal type-schemes for functional
programs. In Richard A. DeMillo, editor, POPL, pages 207-212. ACM
Press, 1982.

Rowan Davies and Frank Pfenning. A modal analysis of staged computation.
J. ACM, 48(3):555-604, 2001.

Henry DeYoung, Luis Caires, Frank Pfenning, and Bernardo Toninho. Cut
reduction in linear logic as asynchronous session-typed communication. In
P. Cégielski and A. Durand, editors, Proceedings of the 21st Conference on
Computer Science Logic, CSL 2012, pages 228-242, Fontainebleau, France,
September 2012. Leibniz International Proceedings in Informatics.

Anthony Discolo, Tim Harris, Simon Marlow, Simon L. Peyton Jones, and
Satnam Singh. Lock free data structures using STM in haskell. In Masami
Hagiya and Philip Wadler, editors, Functional and Logic Programming, Sth
International Symposium, FLOPS 2006, Fuji-Susono, Japan, April 24-26,
2006, Proceedings, volume 3945 of Lecture Notes in Computer Science, pages
65—80. Springer, 2006.

Joshua Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidi-
rectional typechecking for higher-rank polymorphism. In Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’13, pages 429442, New York, NY, USA, 2013. ACM.

Richard A. Eisenberg and Stephanie Weirich. Dependently typed program-
ming with singletons. In Proceedings of the 2012 Haskell Symposium, Haskell
12, pages 117-130, New York, NY, USA, 2012. ACM.

C. J. Fidge. Timestamps in message-passing systems that preserve the
partial ordering. Proceedings of the 11th Australian Computer Science
Conference, 10(1):564AS366, 1988.

Dov M Gabbay and Ruy JGB De Queiroz. Extending the curry-howard
interpretation to linear, relevant and other resource logics. Journal of
Symbolic Logic, pages 1319-1365, 1992.

Deepak Garg and Frank Pfenning. Stateful authorization logic - proof theory
and a case study. Journal of Computer Security, 20(4):353-391, 2012.

Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi
calculus. Acta Inf., 42(2-3):191-225, 2005.

Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous
session types. Journal of Functional Programming, 20(1):19-50, January
2010.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1-102,
1987.

Tim Harris, Simon Marlow, Simon L. Peyton Jones, and Maurice Herlihy.
Composable memory transactions. Commun. ACM, 51(8):91-100, 2008.

Matthew Hennessy. A distributed Pi-calculus. Cambridge University Press,
2007.

Joshua Hodas. Logic programming with multiple context management
schemes. In Fourth International Workshop on Extensions of Logic Pro-
gramming, page 360. Springer-Verlag LNCS, 1993.

135

[41] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language
primitives and type discipline for structured communication-based program-
ming. In Chris Hankin, editor, ESOP, volume 1381 of Lecture Notes in
Computer Science, pages 122-138. Springer, 1998.

[42] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. ACM SIGPLAN Notices, 43(1):273-284, 2008.

[43] Paul Hudak. Building domain-specific embedded languages. ACM Comput-
ing Surveys, 28, 1996.

[44] Trevor Jim and Jens Palsberg. Type inference in systems of recursive types
with subtyping, 1997.

[45] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Ge-
offrey Washburn. Simple unification-based type inference for gadts. In
John H. Reppy and Julia L. Lawall, editors, Proceedings of the 11th ACM
SIGPLAN International Conference on Functional Programming, ICFP
2006, Portland, Oregon, USA, September 16-21, 2006, pages 50-61. ACM,
2006.

[46] Dimitrios Kouzapas, Ramunas Gutkovas, and Simon J Gay. Session types
for broadcasting. arXiv preprint arXiw:1406.3481, 2014.

[47] Joachim Lambek. The mathematics of sentence structure. Americal Mathe-
matical Monthly, 65:154-170, 1958.

[48] Olivier Laurent. Polarized proof-nets: Proof-nets for LC. In J.-Y. Girard,
editor, Proceedings of the 4th International Conference on Typed Lambda
Calculi and Applications (TLCA 1999), pages 213-227, L’ Aquila, Italy, April
1999. Springer LNCS 1581.

[49] Olivier Laurent. A proof of the focalization property of linear logic, 2004.

[60] Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic
logic. In Jacques Duparc and ThomasA. Henzinger, editors, Computer
Science Logic, volume 4646 of Lecture Notes in Computer Science, pages
451-465. Springer Berlin Heidelberg, 2007.

[61] Jean marc Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2:297-347, 1992.

[62] Simon Marlow, Patrick Maier, Hans-Wolfgang Loidl, Mustafa K Aswad,
and Phil Trinder. Seq no more: better strategies for parallel haskell. In
ACM Sigplan Notices, volume 45, pages 91-102. ACM, 2010.

[63] Per Martin-Lof. Intuitionistic type theory, 1984.

[54] Nicholas D. Matsakis and Felix S. Klock, II. The rust language. Ada Lett.,
34(3):103-104, October 2014.

[65] Friedemann Mattern. Virtual time and global states of distributed systems.
In PARALLEL AND DISTRIBUTED ALGORITHMS, pages 215-226.
North-Holland, 1988.

[56] Conor Mcbride. Kleisli arrows of outrageous fortune, 2011.

136

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Daniel S. McFarlin, Charles Tucker, and Craig B. Zilles. Discerning the dom-
inant out-of-order performance advantage: is it speculation or dynamism?
In Vivek Sarkar and Rastislav Bodik, editors, Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’13, Houston,
TX, USA - March 16 - 20, 2013, pages 241-252. ACM, 2013.

Sean McLaughlin and Frank Pfenning. Imogen: Focusing the polarized
inverse method for intuitionistic propositional logic. In Iliano Cervesato,
Helmut Veith, and Andrei Voronkov, editors, Logic for Programming, Ar-
tificial Intelligence, and Reasoning, 15th International Conference, LPAR
2008, Doha, Qatar, November 22-27, 2008. Proceedings, volume 5330 of
Lecture Notes in Computer Science, pages 174-181. Springer, 2008.

Robin Milner. Calculi for synchrony and asynchrony. Theoretical computer
science, 25(3):267-310, 1983.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, i. Inf. Comput., 100(1):1-40, 1992.

Dimitris Mostrous and VascoThudichum Vasconcelos. Affine sessions. In
Eva KAijhn and Rosario Pugliese, editors, Coordination Models and Lan-
guages, Lecture Notes in Computer Science, pages 115-130. Springer Berlin
Heidelberg, 2014.

Dimitris Mostrous and Nobuko Yoshida. Two session typing systems for
higher-order mobile processes. In SimonaRonchi Della Rocca, editor, Typed
Lambda Calculi and Applications, volume 4583 of Lecture Notes in Computer
Science, pages 321-335. Springer Berlin Heidelberg, 2007.

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze,
Simon Kahan, and Mark Oskin. Latency-tolerant software distributed
shared memory. In 2015 USENIX Annual Technical Conference (USENIX
ATC 15), pages 291-305, Santa Clara, CA, July 2015. USENIX Association.

Nicholas Ng, Nobuko Yoshida, Olivier Pernet, Raymond Hu, and Yiannos
Kryftis. Safe parallel programming with session java. In Proceedings of
the 13th International Conference on Coordination Models and Languages,
COORDINATION’11, pages 110-126, Berlin, Heidelberg, 2011. Springer-
Verlag.

Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with
subexponentials. In Anténio Porto and Francisco Javier Lopez-Fraguas,
editors, Proceedings of the 11th International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming, September 7-9,
2009, Coimbra, Portugal, pages 129-140. ACM, 2009.

Ulf Norell. Dependently typed programming in agda. In In Lecture Notes
from the Summer School in Advanced Functional Programming, 2008.

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian
Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Sten-
man, and Matthias Zenger. An overview of the scala programming language.
Technical report, 2004.

C-HL Ong and Charles A Stewart. A curry-howard foundation for functional
computation with control. In Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 215-227.
ACM, 1997.

137

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

Prakash Panangaden and John Reppy. The essence of concurrent ml. In
Flemming Nielson, editor, ML with Concurrency, chapter 1. Springer-Verlag,
1997.

Francesco Paoli. Substructural logics : a primer. Trends in logic. Kluwer
Academic, cop. 2002 (impr. aux Pays-Bas), Dordrecht, Boston (Mass.),
2002.

J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry
in mobile processes. In Proceedings of the 13th Annual IEEE Symposium on
Logic in Computer Science, LICS '98, pages 176—, Washington, DC, USA,
1998. IEEE Computer Society.

Jorge A. Pérez, Luis Caires, Frank Pfenning, and Bernardo Toninho. Linear
logical relations for session-based concurrency. In Helmut Seidl, editor,
Programming Languages and Systems - 21st European Symposium on Pro-
gramming, ESOP 2012, Held as Part of the Furopean Joint Conferences
on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March
24 - April 1, 2012. Proceedings, volume 7211 of Lecture Notes in Computer
Science, pages 539-558. Springer, 2012.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
haskell. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’96, pages 295-308, New
York, NY, USA, 1996. ACM.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark
Shields. Practical type inference for arbitrary-rank types. J. Funct. Program.,
17(1):1-82, January 2007.

Frank Pfenning and Dennis Griffith. Polarized substructural session types. In
Andrew M. Pitts, editor, Foundations of Software Science and Computation
Structures - 18th International Conference, FoSSaCS 2015, Held as Part
of the Furopean Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9034 of
Lecture Notes in Computer Science, pages 3—22. Springer, 2015.

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans.
Program. Lang. Syst., 22(1):1-44, January 2000.

Jason Reed. A judgmental deconstruction of modal logic. Unpublished
manuscript, 2009.

James Reinders. Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. " O’Reilly Media, Inc.", 2007.

John H Reppy. Concurrent ml: Design, application and semantics. In Func-
tional Programming, Concurrency, Simulation and Automated Reasoning,
pages 165—198. Springer, 1993.

John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Annual IEEE Symposium on Logic
in Computer Science, LICS 02, pages 5574, Washington, DC, USA, 2002.
IEEE Computer Society.

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types.
In Rajiv Gupta and Saman P. Amarasinghe, editors, PLDI, pages 159-169.
ACM, 2008.

138

[82]

[83]

[84]

[85]

[36]

[87]

[83]

[89]

[90]

[91]

[92]
193]

[94]

[95]
[96]

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Low-level
liquid types. In Manuel V. Hermenegildo and Jens Palsberg, editors, POPL,
pages 131-144. ACM, 2010.

Andrew William Roscoe. A mathematical theory of communicating processes.
PhD thesis, University of Oxford, 1982.

Fred B. Schneider, Kevin Walsh, and Emin Giin Sirer. Nexus authorization
logic (NAL): design rationale and applications. ACM Trans. Inf. Syst.
Secur., 14(1):8, 2011.

Tatsurou Sekiguchi and Akinori Yonezawa. A complete type inference system
for subtyped recursive types. In Masami Hagiya and JohnC. Mitchell, editors,
Theoretical Aspects of Computer Software, volume 789 of Lecture Notes in
Computer Science, pages 667-686. Springer Berlin Heidelberg, 1994.

Nir Shavit and Dan Touitou. Software transactional memory. Distributed
Computing, 10(2):99-116, 1997.

Robert J. Simmons. Substructural Logical Specifications. PhD thesis,
Carnegie Mellon University, November 2012. Available as Technical Report
CMU-CS-12-142.

Nikhil Swamy, Juan Chen, Cedric Fournet, Pierre-Yves Strub, Karthikeyan
Bharagavan, and Jean Yang. Secure distributed programming with value-
dependent types. In The 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2011). ACM SIGPLAN, September 2011.

Bernardo Toninho. A Logical Foundation for Session-based Concurrent
Computation. PhD thesis, Carnegie Mellon University and New University
of Lisbon, 2015. In preparation.

Bernardo Toninho, Luis Caires, and Frank Pfenning. Higher-order processes,
functions, and sessions: A monadic integration. In Proceedings of the 22Nd
FEuropean Conference on Programming Languages and Systems, ESOP’13,
pages 350-369, Berlin, Heidelberg, 2013. Springer-Verlag.

Bernardo Toninho, Luis Caires, and Frank Pfenning. Corecursion and non-
divergence in session-typed processes. In Proceedings of the 9th International
Symposium on Trustworthy Global Computing (TGC 2014), Rome, Italy,
September 2014. To appear.

Philip Wadler. Theorems for free! In FPCA, pages 347-359, 1989.

Philip Wadler. Monads for functional programming. In Johan Jeuring and
Erik Meijer, editors, Advanced Functional Programming, First International
Spring School on Advanced Functional Programming Techniques, Bastad,
Sweden, May 24-30, 1995, Tutorial Text, volume 925 of Lecture Notes in
Computer Science, pages 24-52. Springer, 1995.

Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384-418,
2014.

Philip Wadler. Propositions as types, 2014.

E.F. Walker, R. Floyd, and P. Neves. Asynchronous remote operation
execution in distributed systems. In Distributed Computing Systems, 1990.
Proceedings., 10th International Conference on, pages 253-259, May 1990.

139

[97]

98]

[99]

Michael Winikoff and James Harland. Deterministic resource management
for the linear logic programming language lygon. Technical report, The
University of Melbourne, 1994.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon L. Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhaes. Giving haskell a promotion.
In Benjamin C. Pierce, editor, Proceedings of TLDI 2012: The Seventh ACM
SIGPLAN Workshop on Types in Languages Design and Implementation,
Philadelphia, PA, USA, Saturday, January 28, 2012, pages 53-66. ACM,
2012.

Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language primitives
and type discipline for structured communication-based programming revis-
ited: Two systems for higher-order session communication. FElectr. Notes
Theor. Comput. Sci., 171(4):73-93, 2007.

140

Appendix A

Supplementary Listings

A.1 SILL Logic

A;\II;A'I—Aq 0r A>m>r A;\I/F{C’mel?} ACD A;U:T,CptF B, 0E
A; U {A+A} A;U:ATEB,
I'>F ACB I'>F A;U:THA
awnars P Kwrel M xwrara th
AT HAY AT BT AU T AT, BT+ C
AU T T - AT @ BT AU T, AT@BTFC ©L
A;U:T AT - B™ AU T AT AT B O

AU TF AT B
kel AT (AL,
AU T @ {Ls - (Af)idr

foralli e I: A;U;TF(A);
A;UTF &m{L;i : (4;,)itr
AT - A
L>m AWT AL
AT = AL
AU AU TEAT

@Ry,

AU THTAAT
AU, T'E A
AU T'HT D A™ -
AFC AU T ATC/a]
A;U:T FJa. AT
B¢ (Aa) ABYTEA[B/a]
AU T HVYa. A~

—o

AU T T/, AY B~ +C
forallie I: A;¥;T,(A}); + B
AU, @ { L (A)idr B

kel AT, (A,)+ B
— &LLk
AU T, & {Li : (An)iti = B
k>r A;\I';F,AzI—CT
A; W T AL
AT AS = C
oL
A;\Ij;Fka Am - CT
AU, 7T, AT+ B
AU T, TANAT B 4
AT AU TATEB

L

AU T DA FB
B¢ (Aa) AT AT[5/a]F B
A;U: T, Ja. AT - B
AFC AU T, A7[C/a)t- B
AU T Va. A"+ B

3L

VL

All judgments A; U;T'+ A, presuppose ' > m.

141

A.2 SILL Type System

A;\I/;d’:/YDQI—P::a:A Q>s
AUta+—{Pl—d:A« A
A>m>r A;\Ill—e:{BmeD_'}
Egﬁ AU b: B, >Q, by, i x PO

{H

{E

AUT,G: A Q,@:Ck by — e—a P e : Oy
A7YL E Cm
N U T, Gyt Ay > Ay C, (dom(T]y) = N), (dom(T|>5) :) b i <= am i 6 2 Oy
1R

A; U T (dom(T|,) : N), (dom(T|>g) = S) b close ¢, it ¢yt 1y,
AU T > QP ey 2 Oy
AU T > Q ag - ¢ wait ag; P eyt Cpy
AUke:r AUToQFP ey, :CF
AU T QbFsend ¢ e; Piiep : TACTE
A;\I/,J::T;F,ak:A:DQ,ak:*FP::Cm:Cm
A;\D;F,ak:T/\Az\>97ak:Cl—xerecvak;P::cm:Cm
AW x> QFPcy,:mDC,,
AU T > Qb xzrecv ey Piicy 7D C,,
AsUhke:r AW b,: B, Qb :xEPricy, :Cy
AU T by 7D B by s chsend by, e; P iicpy : Oy
AU T EPan: AL AU T>Q Qe CF
AU T Qa0 Qa Fsend ¢, (am — P);Q et A @ CF
A;\II;F,ak:A;,bk:B;DQ,ak:*,bk:*FP::cm:Cm
A;\D;F,bk:A;@B;»Q,bk:Cl—ak<—recvb;€;P::cm:Cm
kel A;UT>QFPic: (AL
A;U:TeQbsend e Ly P @m{L; : (A))i}r

1L

AR

AL

O R

DL

®R

®L

@Ry,

ICJ forallkel: A;UiT am: (AN > U, amixt Py i c:Cr and Qf E Q oL

m of
case; am of| e C,

ICJ forallkel: AU T Qp b Pyic: (C))r and Q T Q

AT ap, s &m {Li: (A1)} >Qam:CF <

A;U:T>QF <caseJ Cm Of> em &mic (Ch)itr
L; — P;
kel AU am: (A)k>Qam :%xFPic:Cy &L,
AU T a c &{L; : (4;,)iti>Qam : CFsend ¢ Li; P ey : Cy .
AFA AU TeQFP ey, :CllA/q)
AT e QFsend ¢ A; P ey, 3a.C Ik
B¢ (Aa) ABY;T,ap: Af[B/a]bQar:CHP ey Cy o;

A;\II;F,ak:Ela.AzDQ,ak ixbFa<recvag; P ey Cp

142

BéE(Aa) ABUT>QRP ey CL[B/A
AU T > QF a < recv ep; P it oyt Ya.Cf,
AFA AU by B o Qb ixb=Picy: Cp
AW T by : Vo B, > 8, b, : ¢k send by, A; P ey, : Cpy
A;\II;FDQ}—P::ak:Az
A;\II;FDQFshiftak.erecvbm;P::bm:TkmA;
k>r A;\P;F,ak:AZDQ,ak:*FQ::CT:CT
AU, by, T AL > Q, by, 1 CF shift ag, < send b5 Q 2 ¢ 2 G,
F>m AUT>QFQanm: A4,
A;U;T > Q& shift ay, < send by; Q = by = LA
AT a AL > Qan i xE P Cy
A;UT by s LA > Qb 2 C F shift ay, < recv by Pz ep : Gy

VR

VL

1R

+L

IR

1L

Presuppposes for A; U:T'>Q F P :: ¢, : Cpy, that dom(T) = dom(Q) and T' > m

A.3 SILL Semantics

BINDgtep : exec.(a < e—a; P)®!(e — €') —o exec.(a +— €' —d; P)
DATAgep : exec.(send b e; P)®!(e — €’) —o exec.(send b ¢’; P)
SENDgata : exec.(send b v; P) ® que(a, M,b) —o exec.(P) @ que(a, M v,b)
RECVqata : exec.(z < recv a; P)®que(a,v M,b)

—o exec.(P[v/x])®que(a,M,b)
SENDeng : exec.(close ¢) ® que(a, M, c¢) — que(a, M end, ¢)
RECVend : exec.(wait a; P) ® que(a, end, b) —o exec.(P)
SENDchan : exec(send b (d + P); Q) ® que(a, M, b)

—o 3f, g.exec.(Q) ® que(a, M g¢,b) ® execs(P[f/d]) ® que(g, -, f)

RECV¢han : exece(d < recv a; P) @ que(a, f M, b)

—o exec.(P[f/d]) ® que(a, M, b)
SENDchoice : €xecc(send b Ly; P) ® que(a, M, b) —o exec.(P) ® que(a, M Ly, b)
RECV hoice: €Xece (caseJ ¢ Of> ® que(a, Ly, M, b) —o exec.(Py) ® que(a, M, b)

L; — P

SENDghise : que(ag, M, cx) ® exec, (shift by, < send c; P)

—o Idy,, fm-que(ak, M shift(f,), dm) @ exec(P[dy, /bm])
RECVghift : exece, (shift a,, < recv c; P) ® que(cg, shift(by,), dpm)

—o que(dy, -, by) @ execy,, (Pby /am)])
SENDiype : que(a, M, c¢) ® exec.(send ¢ A; P) —o que(a, M A, c) ® exec.(P)
RECVyype : exec.(a « recv ¢; P) ® que(c, A M, d)

—o exec.(P[A/a]) ® que(c, M, d)

A.4 OCaml SILL Syntax

lowcase ::= [a-z]([a-zA-Z0-9°_])*
uppcase ::= [A-Z]([a-zA-Z0-9°_])*

143

linchan ::= ’<lowcase>

affchan ::= @<lowcase>
shrchan ::= !<lowcase>
subchan ::= <linchan> | <affchan>
anychan ::= <linchan> | <affchan> | <shrchan>
data_type
::= { <session_type> <- <’;’-separated list of <session_type>> }

| { <- <’;’-separated list of <session_type>> }

| <uppcase> <’ ’-separated list of <either_type>>
| <lowcase>

IO

| (<data_type>)

| (<data_type> , <data_type>)

| [<data_type>]

| <data_type> -> <data_type>

session_type
:= (<session_type>)
<uppcase> <’ ’-separated list of <either_type>>
<anychan>
1
> <session_type>
Q@ <session_type>
! <session_type>
<data_type> /\ <session_type>
<data_type> => <session_type>
<session_type> * <session_type>
<session_type> -o <session_type>
+{ <’;’-separated list of <session_type_mapping>> }
&{ <’;’-separated list of <session_type_mapping>> }
forall <anychan> . <session_type>

exists <anychan> . <session_type>

session_type_mapping ::= <lowcase> : <session_type>
either_type ::= <data_type> | <session_type>
any_type_var ::= <lowcase> | <anychan>

var_list ::= <’ ’-separated list of <any_type_var> >

144

ctor ::= uppcase <’ ’-separated list of <data_type>>

typedec
1:= type <uppcase> <var_list> = <’|’-separated lists of <ctor>>

| 1type <uppcase> <var_list> = <session_type>

| atype <uppcase> <var_list> = <session_type>

| utype <uppcase> <var_list> = <session_type>

pat_var ::= lowcase

1:= (<exp>)
| <integer literal>
| <float literal>
| <string literal>
| <built_in>
IO
| [<’;’-separated list of <exp>>]
| <lowcase>
| <uppcase>
| <exp> <exp>
| (<exp> , <exp>)
| <exp> || <exp>
| <exp> && <exp>
| <exp> < <exp>
| <exp> > <exp>
| <exp> <= <exp>
| <exp> >= <exp>
| <exp> = <exp>
| <exp> :: <exp>
| <exp> + <exp>
| <exp> - <exp>
| <exp> +. <exp>
| <exp> -. <exp>
| <exp> * <exp>
| <exp> / <exp>
| <exp> *. <exp>
| <exp> /. <exp>

| <exp> = <exp>

| <exp> ** <exp>

145

| let <’ ’-separated list of <pat_var>> : <data_type>
= <exp> in <exp>
| fun <’ ’-separated list of <pat_var>> -> <exp>
| if <exp> then <exp> else <exp>
| <lowcase>’<’<’,’-separated list of <either_type>>’>’
| case <exp> of <’ ’-separated list of <case_exp>>
| <exp> : <data_type>
| <anychan> <-{ <proc> }
| <anychan> <-{ <proc> }-< <’ ’-separated list of <anychan>>
| _ <-{ <proc> }

| _ <-{ <proc> }-< <’ ’-gseparated list of <anychan>>

case_exp
::= 7|’ <uppcase> <’ ’-separated list of <pat_var>> -> <exp>
[21> [1 -> <exp>
| >|’ <pat_var> :: <pat_var> -> <exp>
| »1” (<pat_var> , <pat_var>) -> <exp>
case_proc
1:= 7|’ <uppcase> <’ ’-separated list of <pat_var>> -> <proc>
| >1> [1 -> <proc>
| ?|’ <pat_var> :: <pat_var> -> <proc>
| »1> (<pat_var> , <pat_var>) -> <proc>
built_in ::= assert /* Bool -> () */
| sleep /* Int -> (O */
| print /* Int -> () */
| print_str /* String -> () */
| flush /% O > O */
| i2s /* Int -> String */
| sexp2s /* a -> String */
branch ::= ’|’ <lowcase> -> <proc>
proc
::= (<proc>)
| abort

| close <subchan>

| wait <subchan> ; <proc>

| <anychan> <- <exp; <proc>

| <anychan> <- <exp -< <’ ’-separated list of <anychan>> ;
<proc>

| _ <- <exp>; <proc>

146

| _ <- <exp> -< <’ ’-geparated list of <anychan>>; <proc>

| send <subchan> <exp> ; <proc>

| <pat_var> <- recv <subchan> ; <proc>

| send <subchan> <subchan> ; <proc>

| send <subchan> (<subchan> <- <proc>) ; <proc>

| <subchan> <- recv <subchan> ; <proc>

| <subchan> <- send <anychan> ; <proc>

| send <subchan> (<anychan> <- <proc>)

| <subchan> <- <subchan>

| if <exp> then <proc> else <proc>

| case <exp> of <’ ’-separated list of <case_proc>>

| case <subchan> of <’ ’-separated list of <branch>>

| <exp> ; <proc>

| let <lowcase> <’ ’-separated list of <pat_var>> =
<exp> ; <proc>

| send <subchan> < <session_type> > ; <proc>

| < <subchan> > <- recv <subchan> ; <proc>

| send <subchan> shift; <proc>

| shift <- recv <subchan>; <proc>

ses_quant_list ::= ’<’ <’,’-separated list of <anychan>> ’>’

topsig ::= <lowcase> : <data_type> ;;
| forall <ses_quant_list> . <data_type>;;

topdef
::= <topsig> <lowcase> <ses_quant_list>
<’ ’_separated list of <pat_var>> = <exp>
| <topsig> <subchan> <- <lowcase> <ses_quant_list>
<? ’_-geparated list of <pat_var>> = <proc>

| <topsig> <subchan> <- <lowcase> <ses_quant_list>

<’ ’_separated list of <pat_var>> -<

<’ ’_separated list of <anychan>> = <proc>
topproc ::= <linchan> <- <proc>
code ::= <typedec> ;;

| <’and’-separated list of <topproc>> ;;

147

Appendix B

Code Listings

This chapter contains the location of the various implementations of SILL.

B.1 OCaml

For the OCaml implementation of SILL see https://github.com/ISANobody/
sill

B.2 Haskell

For the Haskell implementation of SILL see the Haskell files at https://github.
com/ISANobody/SILL-Idris

B.3 Idris

For the Idris implementation of SILL see the Idris files at https://github.com/
ISANobody/SILL-Idris

148

https://github.com/ISANobody/sill
https://github.com/ISANobody/sill
https://github.com/ISANobody/SILL-Idris
https://github.com/ISANobody/SILL-Idris
https://github.com/ISANobody/SILL-Idris
https://github.com/ISANobody/SILL-Idris

	List of Figures
	Chapter 1 Introduction
	Motivation
	Types
	Concurrency
	Logically Based Languages

	Claims
	Outline of Thesis

	Chapter 2 Background
	Pi-calculus
	Session Types
	Curry-Howard Connections
	Substructural Logics
	Dependent Types
	Bidirectional Type Checking

	Chapter 3 Value-Dependent Session Types
	Basics
	Inferencing
	Simple Types
	Constraints
	Solving

	Chapter 4 Curry-Howard Session Types
	Polarization
	Polarized Intuistionistic Linear Logic
	Cutting Apart Cut
	Syntax
	Typing Rules
	Semantics
	Syntactic Sugar
	Example: Prime Sieve
	Well-typed Polarized Configurations
	Theorems
	Related Work

	Focusing
	Theorems
	Focused Logics
	Related Work

	Racy Programs
	Theorems
	Related Work

	Asynchronous Reading
	Related Work

	Polymorphism
	Example: Queue of Channels
	Quantifiers
	Theorems
	Related Work

	Polarized Adjoint Logic
	Categorical Truth
	Adjoint Logic
	Polarized Adjoint Logic
	Theorems
	Sequent Calculus for Polarized Adjoint Logic
	Garbage Collection
	Related Work

	Subtyping
	Example: Permissions
	Theorems

	Forwarding

	Chapter 5 Implementation
	Resource Management
	Bidirectional Checking
	Coinductive Subtyping Algorithm
	Working With Infinite Equirecursive Types
	OCaml
	Haskell
	Execution
	Prime Sieve Example
	Related Work

	Idris

	Chapter 6 Conclusion
	Future Work

	References
	Appendix A Supplementary Listings
	SILL Logic
	SILL Type System
	SILL Semantics
	OCaml SILL Syntax

	Appendix B Code Listings
	OCaml
	Haskell
	Idris

