
On the Complexity Analysis of Static Analyses

DAVID MCALLESTER

AutoReason.com

Abstract. This paper argues that for many algorithms, and static analysis algorithms in particular,
bottom-up logic program presentations are clearer and simpler to analyze, for both correctness and
complexity, than classical pseudo-code presentations. The main technical contribution consists of two
theorems which allow, in many cases, the asymptotic running time of a bottom-up logic program to
be determined by inspection. It is well known that a datalog program runs inO(nk) time wherek is
the largest number of free variables in any single rule. The theorems given here are significantly more
refined. A variety of algorithms are presented and analyzed as examples.

Categories and Subject Descriptors: D3 [Programming Languages]; D.1.6 [Programming Tech-
niques]: Logic Programming; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming
Languages—program analysis; F.1.1 [Computation by Abstract Devices]: Models of Computation;
I.1.2 [Symbolic and Algebraic Manipulation]: Algorithms; F.2 [Analysis of Algorithms and Prob-
lem Complexity]

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Algorithms, complexity analysis, logic programming, models of
computation, program analysis, programming languages

1. Introduction

This paper presents two theorems that place upper bounds on the running time of
bottom-up logic programs. The association of a running time with a logic program
allows the program to be viewed as specifying a particular algorithm. This paper also
argues that the ability to easily assign running times to bottom-up logic programs
makes logic programs a useful general framework for expressing and analyzing
static analysis algorithms. This position is supported through a variety of examples
of static analysis algorithms expressed and analyzed as logic programs.

1.1. LOGICPROGRAMS ASALGORITHMS. In many cases bottom-up (or forward
chaining) logic programs are clearer than programs involving classical iteration and
recursion control structures. Consider transitive closure. A bottom-up logic program
for transitive closure can be given with the single ruleP(x, y)∧P(y, z)→ P(x, z).
We can view this rule as a program where the input is a “graph” represented as a
set of assertions of the formP(c, d) and the output is the set of assertions derivable
from the input using the rule, that is, the transitive closure of the input. The inference

Authors’ address: AutoReason.com, 85 Magnolia Dr., New Providence, NJ 07975, e-mail:
mcallester@autoreason.com.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permission and/or a fee.
C© 2002 ACM 0004-5411/04/0700-0512 $5.00

Journal of the ACM, Vol. 49, No. 4, July 2002, pp. 512–537.

Complexity Analysis of Static Analyses 513

rule is arguably the clearest and most concise possible definition of the notion of
transitivity—the program itself is arguably the clearest possiblespecificationof the
desired output.

More generally, given an initial databaseD of ground atomic formulas and a set
R of first-order Horn clauses, we consider the deductive closureR(D), that is, the
set of all ground atomic formulas derivable from the “premises” inD using the
“rules” in R. In general we think of a given rule setR as a program, the premise
setD as the input to that program, and the deductive closureR(D) as the output.

One of the most fundamental properties of an algorithm is its running time. Here
we are interested in the time required to compute the outputR(D) as a function of
the size (or other proerties) of the inputD. There is one well-known result on this
running time for the special case whereR is range-restricted and datalog, that is,
every variable in the conclusion of a rule appears in some antecedent of that rule and
no rule inR involves function symbols other than constants. IfR is range-restricted
and datalog thenR(D) is always finite (for finiteD) andR(D) can be computed in
O(nk) time wheren is the number of terms inD andk is the maximum over all rules
in R of the number of variables in that rule. In the range-restricted datalog case,
one can computeR(D) in the time given by this variable counting bound simply
by constructing all instances of all rules over the terms inD and then applying the
well-known linear time algorithm for the deductive closure of a set of ground Horn
clauses [Downing and Gallier 1984]. The transitivity rule above is range-restricted
and datalog. So the variable counting bound implies that transitive closure can be
computed inO(n3) time wheren is the number of nodes in the input graph.

Although the variable counting bound gives an approriate analysis for the single
transitivity rule, it turns out that variable counting is too crude for most algorithms.
A more efficient transitive closure algorithm for sparse inputs consists of the two
rules EDGE(x, y)→ PATH(x, y) and EDGE(x, y) ∧ PATH(y, z)→ PATH(x, z).
Note that the more efficient program has fewer ways of instantiating the antecedents
of the transitivity rule. Lete be the number of input edges andn be the number of
nodes. In the more efficient program there aree instances of the first antecedent of
the transitivity rule and, for each such instance, at mostn ways of filling in the final
variable. This gives at mostenways of filling in the left-hand side of the rule. The
run time theorem given in Section 3 implies that the more efficient program runs
in O(en) time rather than theO(n3) time predicted by variable counting.

As another example consider context free parsing. We can take the input to be a
context-free grammar in Chomsky normal form and a string of terminal symbols.
The grammar can be represented by a set of assertions of the formA ⇒ BC and
A⇒ a whereA, B, andC are nonterminal symbols anda is a terminal symbol. We
can represent the string by a set of assertions of the formsi =a, which states that
the i th symbol in the string is the terminal symbola. Now consider the following
program for context-free parsing:

X ⇒ y
si = y

X ⇒ si,i

X⇒YZ
Y⇒ si, j

Z ⇒ sj+1,k

X ⇒ si,k

This program computes all assertions of the formA⇒ si, j where the nonterminal
X generates the stringsi · · · sj . As in the case of transitive closure, it can at least be

514 MCALLESTER

argued that the rules themselves are the clearest possible formal specification of the
desired output. Note that if|G| is the number of productions in the grammar and
n is the length of the input string then there are onlyO(|G|n3) provable instances
of the triple of antecedents in the second rule. The run time complexity theorem in
Section 3 implies that the run time of this algorithm isO(|G|n3). Note that simple
variable counting would yieldO(n6) since the second rule involves the six variables
X, Y, Z, i , j , andk. This is a logic program presentation of the Cocke-Kasimi-
Younger (CKY) algorithm for context-free parsing.

1.2. APPLICATIONS TOSTATIC ANALYSIS. After presenting the general run time
theorems, this paper focuses on the application of these thoerems in the area of static
analysis—analysis done by compilers or other tools for manipulating software that
determines properties of the computer program being manipulated. For example, an
optimizing compiler can often determine that, at a certain point in the program, the
current value of a certain variable will not be used again. If the value of a variable is
being stored in a register, and that value is no longer needed, then the register can be
overwritten without storing its current value back into memory or onto the program
stack. Determining that the value of a variable is no longer needed is calledliveness
analysis. Liveness analysis is “static” in the sense that it is performed at compile
time rather than run time—liveness is determined by examining the (static) text
of the program without relying on any (dynamic) execution. This paper presents a
variety of static analysis algorithms as bottom-up logic programs. In most cases the
programs (inference rules) are arguably the clearest possible specification of the
computed output. Furthermore, the running time associated with these programs by
virtue of the general run time theorems is either the best known or within a polylog
factor of the best known.

1.3. OVERVIEW. Section 2 surveys related work from a variety of fields.
Section 3 presents the first run time theorem and some basic examples. Sections 4, 5,
and 6 present, respectively, liveness analysis, data flow analysis, and flow analysis
(both data and control) in the lambda calculus. Section 7 presents a run time theo-
rem for an extended bottom-up programming language incorporating the union-find
algorithm. Sections 8 and 9 present unification and congruence closure algorithms,
respectively. Section 10 presents a variant of Henglein’s algorithm for typability in a
version of the Abadi-Cardelli object calculus [Henglein 1999]. This last example is
interesting for two reasons. First, the algorithm is not obvious—the first published
algorithm for this problem used anO(n3) dynamic transitive closure algorithm
[Palsberg 1995]. Second, Henglein’s presentation of the quadratic algorithm uses
classical pseudo-code and is fairly complex. Here we show that the algorithm can
be presented naturally as a small set of inference rules whose running time is easily
derived from a general run time theorem for logic programs.

2. Related Work

Bottom-up logic programming has been widely studied in the context of deductive
databases [Vardi 1982; Ullman 1989; Naughton and Ramakrishnan 1991; Ullman
and Ramakrishnan 1995]. The basic idea in deductive databases is to extend the
notion of a database query to include recursion. For example, given a database
with a parent relation one might ask for all ancestors of a given person where

Complexity Analysis of Static Analyses 515

an ancestor is either a parent or an ancestor of a parent. The recursive definition
of “ancestor” can be viewed as the rules PARENT(x, y) → ANCESTOR(x, y)
and PARENT(x, y) ∧ ANCESTOR(y, z) → ANCESTOR(x, z). To evaluate the
recursive query, one can compute the “intentional” ancestor relation from the “ex-
tensional” parent relation stored in the database. Computing the intensional relation
is formally equivalent to computing a deductive closure as discussed in the introduc-
tion. Various optimizations for computing deductive closures have been developed
in the database literature. There are three basic differences between the work pre-
sented here and optimization methods developed for deductive databases. First,
databases are typically stored in large disk files and much of the work on optimiza-
tion for deductive databases assumes that the deductive closure is to be computed
using “set-based operations” that optimize the data access-time, that is, the time
spent waiting for the disk head to reach the position on the disk where the data is
held. Here we assume that data is stored in memory so that all data can be accessed
efficiently. A second difference is that many of the deductive database optimizations
involve rewriting the deductive rules into logically equivalent rules which are in
some way more efficient. For example, rearranging the order of the antecedents of a
rule can dramatically change the size of the intermediate relations representing the
various prefixes of the antecedents. In the terminology used here, the number of pre-
fix firings is sensitive to the order of the antecedents. Here we assume that the rules
are being used to express analgorithmand that the algorithm designer is aware of the
running time implication of the particular way the rules are written. Here we focus on
providing the programmer with a clear conceptual model of the running time of a set
of rules and then rely on the programmer to write efficient rules. A final difference is
that much of the work in deductive databases concerns constructing indexes to make
certain forms of data access more efficient. Here indexing is hidden in the proofs of
run time theorems—the theorems provide the programmer with a model of running
time which frees the programmer from having to think about indexing issues at all.

Bottom-up logic programming is also closely related to “memoing” or “tabling”
for prolog programs [Tamaki and Sato 1986; Sagonas et al. 1994; Chen and Warren
1996]. In tabled prolog, inference rules are still run in a backward chaining manner
but subgoals are placed in a “memoing table” so that, for example, a backward
chaining interpretation of the transitivity rule is still guaranteed to terminate. It
is well known that the tabled top-down execution of logic programs is closely
related to the bottom-up execution of logic programs. The so-called magic-sets
transformation can convert any given “top-down” logic programP into a logic
programP′ such that the bottom-up execution ofP′ simulates the tabled top-down
execution ofP [Bancilhon et al. 1986; Rohmer et al. 1986; Ullman 1989]. As in the
case of deductive databases, the research on tabling methods for prolog execution
has focused on methods for optimizing the execution of programs, while here we
assume that programmers can write efficient programs provided that they have a
clear model of execution time.

In addition to work in the general area of bottom-up logic programming, there
is considerable work related to the particular example algorithms given in this
paper. The relation between inference rules and parsing algorithms has been noted
by a variety of researchers [Pereira and Warren 1983; Shieber et al. 1995; Rocio
and Lopes 1998; Eisner and Satta 1999]. By providing a simple model of the
running time of logic programs, the run time theorems presented here simplify the
complexity analysis of a variety of parsing algorithms. The use of bottom-up logic

516 MCALLESTER

programming for program analysis has also been noted by several program analysis
researchers [Ullman 1989; Reps 1994]. The contribution of this paper lies in the
two run time theorems which provide a simple characterization of the running time
of logic programs.

Two paradigms other than logic programming have achieved wide recognition
as useful general frameworks for static analysis—abstract interpretation [Cousot
and Cousot 1977] and set constraints [Aiken et al. 1994; Heintze and Jaffar 1990a,
1990b]. In all cases the frameworks are sufficiently flexible that it is often possible to
view a single analysis, such as liveness analysis, within each of the frameworks, that
is, as a special case of abstract interpretation, as a special case of set constraints, or
as an algorithm expressed as a logic program. It does not seem possible to formally
prove that one of these frameworks is superior to the others. As a Turing complete
programming language, logic programs can in principle subsume any other pro-
gramming formalism. But as a practical matter it is not immediately obvious what
fraction of useful static analysis algorithms are best viewed as logic programs. This
paper makes a case for bottom-up logic programs as a useful foundation for static
analysis by presenting a series of examples.

3. A First Run Time Theorem

Formally, a bottom-up logic program is simply a set of inference rules where an
inference rule is simply a first-order Horn clause, that is, a first-order formula of
the formA1 ∧ · · · ∧ An→ C whereC and eachAi is a first-order atom, that is, a
predicate applied to first-order terms (a first-order term is either a constant symbol,
a first-order variable, or a function symbol applied to first-order terms). Here we
consider only range-restricted rules, that is, rules in which every variable in the
conclusionC appears in some antecedentAi . We will use the termassertionto mean
a ground atom, that is, an atom not containing variables, and use the termdatabase
to mean a set of assertions. For any setR of inference rules and any databaseD, we
let R(D) denote the set of assertions that can be proved from assertions inD using
rules inR. This can be defined more formally with some additional terminology. A
ground substitution is a mapping from a finite set of variables to ground terms. For
any ground substitutionσ defined on all the variables in an atomA, we letσ (A)
be the result of replacing each variablex in A by σ (x). We say that a databaseE is
closed under ruleA1 ∧ · · · ∧ An → C if for any ground substitutionσ defined on
the variables in the rule, ifσ (A1) ∈ E, . . . , σ (An) ∈ E thenσ (C) ∈ E. The output
R(D) can be defined as the least database containingD and closed under all rules
in R. We view the setR as a program mapping inputD to outputR(D).

An inference rule can be viewed as nested iterations. Consider the following:

P(y) ∧ Q(y, x) ∧ R(x)→ H (x, y). (1)

Consider the case where the input is a database consisting only of assertions involv-
ing the predicatesP, Q, andR. The output consists of the input plus all derivable
applications of the predicateH . Intuitively, the rule iterates over assertions of the
form P(y) and, for each such assertion, iterates over the values ofx such thatQ(y, x)
holds and, for each suchx, checks thatR(x) holds and, if so, assertsH (x, y).

As the nested loop view might suggest, the order of the antecedents is important
when viewing inferences rules as algorithms. For example, consider the following

Complexity Analysis of Static Analyses 517

rule which is logically equivalent to (1):

P(y) ∧ R(x) ∧ Q(y, x)→ H (x, y). (2)

Rule (2) iterates over the assertions of the formP(y) and then, for each such
instance, iterates over allx such thatR(x) holds, and for each suchx checks that
Q(y, x) holds. Now suppose there aren values ofy satisfying P(y) and alson
values ofx satisfyingR(x), but for anyy there is at most onex satisfyingQ(y, x).
In this case we might expect rule (1) to takeO(n) time and the logically equivalent
rule (2) to takeO(n2) time. If there were only onex such thatR(x) but for anyy
there weren values ofx satisfyingQ(y, x) (and stilln values ofy satisfyingP(y)),
then (1) would takeO(n2) time while rule (2) would takeO(n) time.

Note that for rule (2) the total number of iterations of the second loop equals
the number of values ofx andy such thatP(y) andR(x) are given in the input. In
general, any inference rule can be viewed as a set of nested loops where the number
of iterations of thenth loop corresponds to the number of ways of instantiating the
variables in the firstn antecedents. This leads to the following general definition:

Definition. We define aprefix firing in databaseE to be a triple〈r, σ, i 〉 where
r is a ruleA1 ∧ · · · ∧ An → C, 1 ≤ i ≤ n, and whereσ is a ground substitution
defined on (only) the variables inA1, . . . , Ai such thatσ (Aj) ∈ E for 1 ≤ j ≤ i .
We let PR(E) be the set of all prefix firings inE of rules inR.

Inference rules can be recursive—it is possible that a rule derives an assertion
that leads to a new antecedent of that same rule. The algorithms in the introduction
are all recursive in this sense. While it is natural to view nonrecursive rules as nested
iterations, it is less obvious that this view is appropriate for recursive rules. The
first run time theorem can be viewed as stating that the nested iteration view applies
to recursive rules as well. Recall that a rule is range-restricted if every variable in
the conclusion appears in some antecedent. All rules discussed in this paper are
range-restricted.

THEOREM 1. For any range-restricted rule set R there exists an algorithm for
mapping any finite D to R(D) which runs in time O(|D| + |PR(R(D))|) assuming
unit time hash table operations.

The theorem allows for the possibility that the rules do not terminate, that is,
R(D) is infinite. For range-restricted rules, the only wayR(D) can be infinite is if
PR(R(D)) is also infinite. So ifR(D) is infinite, the theorem holds vacuously. The
more interesting case is whenR(D) is finite. Note that by counting prefix firings,
rather than just full firings, the run time theorem captures the difference in efficiency
between rules (1) and (2) above.

Before proving Theorem 1 we show how it can be used to establish the run-
ning time of some particular logic program algorithms. Consider the transitive
closure algorithm defined by the inference rules EDGE(x, y) → PATH(x, y) and
EDGE(x, y) ∧ PATH(y, z)→ PATH(x, z). SupposeR consists of these two rules
andD consists ofeassertions of the form EDGE(c, d) involvingn constants. There
aree (prefix) firings of the first rule. For the second rule there aree prefix firings
for the first antecedent, and for each such firing there are at mostn firings of the of
the next antecedent. So the total number of prefix firings isO(en). Theorem 1 now
implies that the algorithm runs in timeO(en).

518 MCALLESTER

As another example, consider the CKY parsing algorithm. In the following for-
mulation we assume that the input has been augmented with assertions of the form
SUCC(i, i + 1) for each 1≤ i ≤ n − 1 wheren is the length of the input string.
Logic programming and the run time theorem can be extended to handle arithmetic,
although we will not formally consider arithmetic here.

X ⇒ y
s(i) = y

X ⇒ s(i, i)

X⇒YZ
Y⇒ s(i, j)
SUCC(j, j ′)
Z ⇒ s(j ′, k)

X ⇒ s(i, k)

Let Rbe the above set of two rules, letG be a grammar in Chomsky normal form,
and letSbe an input string of lengthn. Let D(G, S) consist of the assertions of the
form A⇒ BC and A⇒ a in G plus the assertionss(i) = a and SUCC(i, i + 1)
for 1 ≤ i ≤ n corresponding to the inputS. We have thatR(D(G, S)) consists of
D(G, S) plus a set of assertions of the formA⇒ s(i, j) with A a nonterminal inG
andi, j ∈ [1, n]. To determine the running time of this algorithm it suffices to bound
the number of prefix firings. Consider the left-hand rule. There are at most|G|ways
of instantiating the first antecedent. Each such instantiation fixes the value ofy,
and there are then at mostn ways of continuing with an instantiation ofi . So there
areO(|G|n) prefix firings of the left-hand rule. Now consider the right-hand rule.
Again there at most|G| ways of instantiating the first antecedent. An instantiation
of the first antecedent fixes the values ofX, Y, andZ. Given an instantiation ofY,
there are at mostn2 ways of instantiatingi and j . An instantiation ofj determines
the instantiation ofj ′. Finally, there are at mostn possible instantiations ofk, and
hence the total number of prefix firings isO(|G|n3).

Theorem 1 is proved in two stages. First the original program is transformed to
a simpler program with only a constant factor expansion in the number of prefix
firings. This simpler program consists of rules with only a single antecedent, plus
rules of the formP(x, y) ∧ Q(y, z) → C, wherex, y, andz are variables. After
performaning this transformation, an algorithm is given for computing deductive
closures of rule sets in this restricted format.

We first consider the transformation of an arbitrary program into a program in the
restricted form. Ifr is a ruleA1∧A2∧· · ·∧An→ C then we define the binarization
B(r) to be the following set of rules whereP1, P2, . . . , Pn are fresh predicate
symbols andx1, . . . , xki are the variables occurring in the firsti antecedents. The
predicatePi represents the relation defined by the firsti antecedents.

A1 → P1
(
x1, . . . , xk1

)
,

P1
(
x1, . . . , xk1

) ∧ A2 → P2
(
x1, . . . , xk2

)
,

...
Pn−1

(
x1, . . . , xkn−1

) ∧ An → Pn
(
x1, . . . , xkn

)
,

Pn
(
x1, . . . , xkn

) → C.

For a rule setRwe defineB(R) to be the union of the setsB(r) for r ∈ R. We assume
that the predicate symbols introduced by transformations form a distinct class of
symbols and we letπ (E) denote the subset ofE not involving symbols introduced

Complexity Analysis of Static Analyses 519

by transformations. The following lemma states the semantic correctness of the
binarization transformation:

LEMMA 2. If π (D) = D, that is, the input does not use the “fresh” predicates,
then R(D) = π (B(R)(D)).

The proof of the above lemma can be done by two inductions on the length of
logic program derivations—the first showingR(D) ⊆ π (B(R)(D)) and the second
showingπ (B(R)(D)) ⊆ R(D). The details are omitted here.

A more interesting property of the binarization transformation is that it preserves
the number of prefix firings up to a multiplicative factor. More specifically, we have
the following:

LEMMA 3. If π (D) = D then we have the following:

|PB(R)(B(R)(D))| = 2|PR(R(D))|.
PROOF. The assertions of the formPi (x1, . . . , xki) are in one-to-one corre-

spondence withPR(R(D)). For each assertionPi (x1, . . . , xki) there are exactly
two prefix firings ofB(R)—the firing of all antecedents in the rule that generates
Pi (x1, . . . , xki) and the prefix firing of the first antecedent when this assertion is
used as an antecedent. All prefix firings inB(R) are either generations of, or uses of,
some assertion of the formPi (x1, . . . , xki). Hence there are exactly twice as many
prefix firings ofB(R) as there are ofR.

Lemmas 2 and 3 imply that without loss of generality we can assume that all
rules inR contain at most two antecedents. Now assuming thatR is binary in this
sense, we define an “indexing transformation” as follows. For any ruler with two
antecedentsA1 ∧ A2 → C we defineI (r) to be the following set of rules where
x1, . . . , xn are all variables occurring inA1 but notA2, y1, . . . , ym are all variables
that occur in bothA1 and A2, andz1, . . . , zk are all variables that occur inA2 but
not A1. The predicatesP1, P2, andQ, and the function symbolsf , g, andh are
all fresh.

A1 → P1(f (x1, . . . , xn), g(y1, . . . , ym)),
A2 → P2(g(y1, . . . , ym), h(z1, . . . , zk)),

P1(x, y) ∧ P2(y, z)→ Q(x, y, z),

Q(f (x1, . . . , xn), g(y1, . . . , ym), h(z1, . . . , zk))→ C.

For a rule setR in which no rule has more than two antecedents, we defineI (R) to
consist of all single-antecedent rules inR plus the union of all rule setsI (r) where
r is a two antecedent rule inR. We first have the following correctness lemma,
whose proof we omit:

LEMMA 4. If π (D) = D and all rules in R have at most two antecedents, then
R(D) = π (I (R)(D)).

More significantly, we also have the following:

LEMMA 5. If π (D) = D, and R is range-restricted, then then we have the
following: ∣∣PI (R)(I (R)(D))

∣∣ ≤ 2|R||D| + (2|R| + 3)|PR(R(D))|.

520 MCALLESTER

Algorithm to Compute R(D):

Initialize E to be the empty set. Mark every element ofD and initialize the queueQ to containD.

While Q is not empty:

1. Remove an element8 from Q.
2. Add8 to E.
3. For each single-antecedent ruleA→ C in R determine whether there is a substitutionσ such

thatσ (A) = 8. If so, assertσ (C) as described below.
4. For each two-antecedent ruleP1(x, y) ∧ P2(y, z)→ C do the following:

4a. If 8 has the formP1(t1, t2) then for eacht3 such thatE containsP2(t2, t3) assertσ (C)
whereσ mapsx to t1, y to t2, andz to t3.

4b. If 8 has the formP2(t2, t3) then for eacht1 such thatE containsP1(t1, t2) assertσ (C)
whereσ is defined as in 4a.

Procedure for Asserting9:

1. If 9 is already marked do nothing.

2. Otherwise, mark9 and add9 to Q.

FIG. 1. The algorithm underlying Theorem 1.

PROOF. Each prefix firing ofI (R) is either a firing of a single-antecedent rule,
and hence is also a firing of a rule inR, or is a firing of a rule of the form given
above in the definition of the transformationI . There can be at most 2|R||R(D)|
firings of the rules that generate assertions of the formP1(x, y) andP2(y, z). The
rules that generateQ(x, y, z) have two antecedents. A firing of the first antecedent
corresponds to a firing of the first antecedent in the original rule inR and a firing of
both antecedents corresponds to a firing of both antecedents in the original rule in
R. Hence there can be at most|PR(R(D))| prefix firings of the rules that generate
the assertionsQ(x, y, z). Finally, each firing of a rule that uses an assertion of the
form Q(x, y, z) as an antecedent corresponds to a firing of an original rule. Hence
the total number of prefix firings can not be larger than 3|PR(R(D))|+2|R||R(D)|.
For range-restricted rules, we have that|R(D)| ≤ |D| + |PR(R(D))|, which now
yields the lemma.

Lemmas 4 and 5 now allow us to assume without loss of generality thatR
consists of single-antecedent rules plus rules of the formP1(x, y)∧ P2(y, z)→ C.
Under these assumptions, we can use the algorithm shown in Figure 1 to compute
R(D). Theorem 1 now follows from the following two lemmas:

LEMMA 6. If R is range-restricted and R(D) is finite then the algorithm ter-
minates with E equal to R(D).

PROOF. SinceR is range-restricted, andD contains only ground atoms, the
algorithm never asserts an open atom, that is, one containing variables. The algo-
rithm maintains the invariant that all assertions inE or on Q are in R(D). Since
the algorithm never places the same assertion onQ twice, if R(D) is finite then the
algorithm must terminate. When the algorithm terminates, the final value ofE must
be a subset ofR(D). The algorithm also maintains the invariant that every atom in
D or derivable in one step fromE is either inE or on Q. This implies that when
Q is emptyE containsD plus all derivable assertions. Hence, when the algorithm
terminates,E containsR(D).

Complexity Analysis of Static Analyses 521

LEMMA 7. If R is range-restricted, and R(D) is finite, then the algorithm
can be run to completion in O(|D| + |PR(R(D))|) time assuming unit time hash
table operations.

PROOF. Throughout the proof we assume that all terms and atoms are
interned—the same expression is represented by a data structure at the same loca-
tion in memory—and that equality testing can be done in unit time by checking
pointer equality. This allows one to determine whether a given ground term matches
a given “pattern” term, possibly with repeated variables in the pattern term, in time
proportional to the size of the pattern term. Interning also supports unit time mark-
ing and checking for the presence of marks. We assume constant time hash table
operations so that applying a substitution to a pattern term can be done in time
proportional to the size of the pattern term.

The initialization step takes time proportional to|D|. For range-restricted rules
we have|R(D)| ≤ |D|+ |PR(R(D))|, so it suffices to show that the running time is
O(|R(D)|+ |PR(R(D))|). There is one execution of steps 1 and 2 for each element
of R(D), and each execution takes unit time. Step 3 involves an iteration over rules
in R. For a given ruleA→ C and a given ground atom9, one must determine if
there exists aσ such that9 = σ (A). As mentioned above, this can be done in time
proportional to the size of the atomA. If such aσ exists, it can be computed in time
proportional to the size ofA. The size ofA is a constant determined by the rule set
and independent of|D| or |PR(R(D))|. As mentioned above, under the assumptions
used here computingσ (C) takes time proportional to the size ofC and hence is
also O(1). The time spent in a single call to the assert procedure is alsoO(1).
Hence the time to process a given rule in step 3 isO(1). The time spent iterating
over the rules in step 3 is alsoO(1). So the total time spent in step 3 isO(|R(D)|).
By a similar argument, the time in step 4 outside of inner loops in 4a and 4b is
alsoO(|R(D)|). Finally, we must consider the inner loops in steps 4a and 4b. We
assume that for each termt and predicateP used in an antecedent of a binary rule
we maintain a list of all the termst ′ such thatE containsP(t, t ′). This list must
be extended each time a new assertion of the formP(t, t ′) is added toE. The total
time spent building these lists isO(|R(D)|). There is an analogous list for each
term t and predicateP of the termst ′ such thatE conatinsP(t ′, t). Given these
lists, the inner loops in 4a and 4b can each be executed in time proportional to the
number of iterations. It now suffices to show that the total number of iterations of
the inner loops in 4a and 4b isO(|PR(R(D))|). It suffices to show that each of these
loops only considers a given triple〈t1, t2, t3〉 once. When such a triple is considered
in step 4a, the assertionP1(t1, t2) must equal8. Hence this triple cannot be visited
again in a later invocation of step 4a. A similar statement applies to 4b.

4. Liveness Analysis

We now turn to applications of run time theorems in static analysis. Our first
example is a very simple static analysis—liveness analysis. As mentioned in the
introduction, most compilers rely on the ability to determine that the value of
a given variable is no longer needed so that a register being used to store the
variable can now be used for other purposes [Aho and Ullman 1986]. To present a
simple example of liveness analysis, we first define a simple programming language.
We take a program to be a sequence of instructions where each instruction has
one of the following forms wherex, y, andz are variables, op is an operation,

522 MCALLESTER

L1 l : x = op(y, z)

LIVE(y, l), LIVE(z, l)

L2 l : x = op(y, z)
SUCC(l , l ′)
LIVE(w, l ′)
DISTINCT(w, x)

LIVE(w, l)

L3 l : gotol ′

LIVE(w, l ′)

LIVE(w, l)

L4 l : ifxgotol ′

LIVE(w, l ′)

LIVE(W, L)

L5 l : ifxgotol ′

SUCC(l , l ′′)
LIVE(w, l ′′)

LIVE(w, l)

FIG. 2. A liveness analysis algorithm.

for example, addition, multiplication, or boolean comparison, andl i and l j are
instruction labels—a number unique to the labeled instruction:

l i : x = op(y, z);
l i : if x gotolk;
l i : gotolk;
l i : halt.

We assume a successor relation on labels—each label that labels an instruction
other than a halt instruction has a successor label which is the next instruction to be
executed. A program state is a pair〈l , σ 〉 wherel is the instruction label of the next
instruction to be executed andσ is a “store” mapping variables to values. A single
step of computation converts a given program state into the next program state. For
example, ifl labels the instructionx = +(y, z) then a single execution step converts
the the state〈l , σ 〉 to the successor state〈l ′, σ ′〉 wherel ′ is the successor label ofl
andσ ′ is identical toσ except thatσ ′(x) is σ (y)+ σ (z). We say that an instruction
of the formx = op(y, z) writesx and readsy andz. We say that a variablex is live
in state〈l , σ 〉 if the computation starting in that state readsx without having written
x in an earlier instruction. For example, ifl labels the instructionx = +(x, y) then
x is live at 〈l , σ 〉 because it is about to be read. Ifl labelsx = +(y, z) and〈l , σ 〉
has successor state〈l ′, σ ′〉, and a variablew different fromx is live at〈l ′, σ ′〉, then
w is live at〈l , σ 〉.

It is undecidable to determine whetherx is live at〈l , σ 〉—in the general case this
would require determining if a given loop halts, which is equivalent to deciding the
halting problem. A static analysis generally computes a conservative approximation
to an undecidable problem. An algorithm for liveness analysis is defined by the
rules shown in Figure 2. The rules are conservative in the sense that, for any state
〈l , σ 〉 and variablex, if x is live at 〈l , σ 〉 then the rules derive LIVE(x, l). This
can be proved by induction on the number of steps of computation it takes for the
computation starting at〈l , σ 〉 to readx. This implies that if the rulesdo notderive
LIVE(x, l) thenx is not live at any state of the form〈l , σ 〉. So if the rules do not
derive LIVE(x, l) then the compiler can reuse the register storing the value ofx
when it reaches program labell .

Complexity Analysis of Static Analyses 523

The rules assume that for each pair of distinct variablesx and y the database
contains the assertion DISTINCT(x, y). In practice the predicate DISTINCT can
be computed on demand rather than stored in the input database. One can prove that
Theorem 1 holds with computed predicates in rule antecedents provided that two
conditions are satisfied. First, antecedents involving computed predicates must be
of the formP(x1, . . . , xn), where eachxi is a variable. Second, in any computed-
predicate antecedent, either allxi occur in some earlier antecedent (as is the case
in Figure 2) or the bindings for the variables not occurring in earlier antecedents
can be computed in time proportional to the number of such bindings.

We now analyze the running time of the algorithm given in Figure 2. LetN be the
number of instructions in the program and letV be the number of variables. Since
all derived assertions are of the form LIVE(x, l), we have that|R(D)| is O(N V).
Rule L1 is actually an abbreviation for two rules—one concluding LIVE(y, l) and
one concluding LIVE(z, l). These rules each have at mostN prefix firings. Now
consider rule L2. The first antecedent determines all bindings other thanw. There
are at mostN ways of instantiating the first antecedent and at mostV ways of
instantiatingw so we getO(NV) prefix firings. A similar analysis holds for rules
L3, L4, and L5. So the algorithms runs inO(NV) time.

Actually a tighter analysis is possible. LetL be the total number of assertions
of the form LIVE(x, l) contained inR(D). Let V be L/N. Intuitively, V is the
average over all instructions of the number of live variables at that instruction. It is
possible to show that the algorithm actually runs in timeO(N + NV). In practice
V remains bounded even for very large programs and so, in practice, the analysis
runs in time linear in the size of the program. To see that the algorithm runs in time
O(N + NV) note thatN + NV equalsN + L. To show that this bound holds, it
suffices to divide the prefix firings into two sets, one of which has sizeO(N) and
one of which has sizeO(L). There are onlyO(N) prefix firings of L1. We divide
the prefix firings of L2 into those in whichw is x and those in whichw andx are
distinct. There areO(N) prefix firings of the first type. Each prefix firing of the
second type generates a distinct assertion of the form LIVE(w, l). So the number
of prefix firings of this sort can be no larger than the number of assertions of the
form LIVE(w, l) which is, by definition, the quantityL. Hence there are onlyO(L)
prefix firings of the second type. By a similar argument, each firing of the rules L3,
L4, and L5 generates a distinct conclusion, and hence the number of firings of each
of these rules isO(L).

5. Data Flow Analysis

Some programming languages, such as Common Lisp and Scheme, use type tags on
data values and generate graceful run time exceptions if a run-time type violation
occurs, for example, if an attempt is made to extract a slot from a nonstructure.
Such languages do not use static-type checking but are still guaranteed never to
segment-fault. In some cases it is possible for the compiler to statically determine
that a particular pointer variable is guaranteed to be a structure of a certain type
[Shivers 1991]. In that case the run time safety check can be omitted from the
compiled code. Data flow analysis provides one way of determining that a vari-
able is guaranteed to be a structure of a certain type. More generally, data flow
analysis intuitively determines what kind of values a given variable can have at a
given program point. Data flow analysis has a variety of applications in compilers

524 MCALLESTER

D1 x = k

x⇒ INT

D2 x = 〈y, z〉

x⇒ 〈y, z〉

D3 y = 5 j (x)
x⇒ 〈z1, z2〉

y⇒ zj

D4 u⇒ w, w ⇒ v

u⇒ v

FIG. 3. A data flow analysis algorithm. The rule involving5 j is an abbreviation for two rules—one
with 51 and one with52.

[Aho and Ullman 1986; Appel 1997]. As in most static analyses, data flow analysis
is a conservative approximation to an undecidable problem.

Here we formulate data flow in a simple abstract setting. We extract from the
program the assignment statements of the formx = e. Here we consider only
assignments of the formx = k, x = 〈y, z〉, x = 51(y), andx = 52(y), where
k is an integer constant,〈x, y〉 is the abstract pair ofx and y, 51(x) is the first
component of the pairx, and52(x) is the second component of the pairx. We
take a store to be a mapping from a finite subset of the variables to values where
a value is either an integer or a pair of values. In many programming languages
(e.g., Scheme), it is syntactically impossible to write a program that uses a variable
before assigning it some initial value. In such languages an assighmentx = e is
guaranteed not to be executed until all variables ine have values. An assignment
x = e will be calledexecutable in storeσ if σ assigns a value to all variables in
e ande is not of the form51(x) or 52(x) whereσ (x) is not a pair. Ifx = e is
executable inσ thene has a well-defined value inσ which we denote asσ (e). A
set of assignment statements define a nondeterministic transition relation on stores.
We say thatσ ′ is a possible successor ofσ if there is an executable assignment
x = e such thatσ ′ is identical toσ except thatσ ′(x) = σ (e). We say thatσ ′ is
reachable fromσ if either it isσ or there is a possible successorσ ′′ of σ such that
σ ′ is reachable fromσ ′′. A store is calledreachableif it is reachable from the empty
store (the store that does not assign any values to any variables). We are interested
in the set of values assigned tox in reachable stores. If the value ofx is guaranteed
to be a pair, then the run time safety test can be omitted from the compilation of an
instruction of the formy = 51(x).

Figure 3 gives a simple data flow analysis algorithm. The analysis algorithm
generates assertions of the formx ⇒ e, wherex is a program variable ande is
either INT (as in rule D1), an expression〈y, z〉 that occurs somewhere in the right-
hand side of some assignment statement (as in rule D2), or a program variable
(as in rule D3). If there areN input assignment statements then there are only
O(N2) possible assertions of the form x⇒ e.

The derivable assertions of the formx⇒ INT andx⇒ 〈y, z〉 should be viewed
as defining a grammar for generating values. We writex ⇒∗ v to mean either
that v is an integer andx ⇒ INT is generated by the rules, orv is a pair〈u,w〉
where the rules derivex ⇒ 〈y, z〉 and we havey ⇒∗ u andw ⇒∗ w. We now
prove that if a storeσ is reachable (in the sense defined above) then for anyx
assigned a value byσ we have thatx ⇒∗ σ (x). The proof is by induction on the
number of assignments needed to reachσ starting from the empty store. The result
is immediate for the empty store. Now assume the result forσ and letσ ′ be the

Complexity Analysis of Static Analyses 525

result of executingx = k. We need to show the result forσ ′(y) for all y on whichσ ′
is defined. Ify is x then the result follows by rule D1. Ify is notx, the result follows
by the induction hypothesis. A similar analysis holds whenσ ′ is generated by an
execution ofx = 〈y, z〉 where the argument relies on the existence of rule D2. In
the case whereσ ′ is generated byy = 5i (x), the argument involves a combination
of rules D3 and D4. Note that if the rules fail to generatex⇒ INT thenx must be
a pair and run time checks can be omitted from the compilation ofy = 5i (x).

By counting prefix firings, one can show that the running time of the algorithm in
Figure 3 is dominated by the number of prefix firings of D4, which isO(N3). It is
possible to show that determining whetherx⇒ INT is derivable from a given set of
assignments using the rules in Figure 3 is 2NPDA complete [Heintze and McAllester
1997b; Melski and Reps 1997]. 2NPDA is the class of languages recognizable by
a two-way nondeterministic pushdown automaton. A languageL will be called
2NPDA-hard if any problem in 2NPDA can be reduced toL in n polylog n time.
We say that a problem can be solved insubcubic timeif it can be solved inO(nk)
time for k < 3. If a 2NPDA-hard problem can be solved in subcubic time then
all problems in 2NPDA can be solved in subcubic time. The data flow problem is
2NPDA-complete in the sense that it is in the class 2NPDA and is 2NPDA-hard.
No subcubic procedure is known for any 2NPDA-complete problem.

Cubic time is impractical for many applications. However, if we only consider
programs in which the assignment statements are well typed using types of a
bounded size, then a more efficient algorithm is possible [Heintze and McAllester
1997a]. This more efficient algorithm can also be stated and analyzed as a set of
inference rules, although we will not do so here.

6. Flow Analysis in the Lambda Calculus

As a final example of an application of Theorem 1, we consider flow analysis in the
lambda calculus with pairing. This flow analysis includes control flow analyses,
that is, determining what program points a given jump instruction can branch to.
A jump instruction corresponds to a procedure call in the lambda calculus. Control
flow analysis in the lambda calculus corresponds to determining what procedures
are possible values of a given procedure variable. The flow analysis algorithm for
the lambda calculus given here is very similar to the data flow analysis given in
the previous section. However, lambda calculus formulations are common in the
literature, and it seems important to give an example of a static analsysis phrased
directly as inference rules on the lambda calculus.

The lambda calculus can be viewed as an abstract functional programming lan-
guage where a program is a term and executing the program corresponds to com-
puting the value of a term. The terms of the pure lambda calculus with pairing are
defined by the following grammar:

e ::= x | 〈e1, e2〉 | 51(e) | 52(e) | (e1, e2) | λx.e.

We define the operational semantics of the lambda calculus in Figure 4. The
semantics is itself written as a bottom-up logic program evaluator. The evaluation
rules manipulate assertions of the form compute(e, σ) and〈e, σ 〉 ⇒∗ v. Intuitively,
the assertion compute(e, σ) states that the evaluator should compute the value of
terme under the variables bindings given byσ . The assertion〈e, σ 〉 ⇒∗ v states
that v is the resulting value. The initial database consists of a single assertion

526 MCALLESTER

E1 compute((f w), σ)

compute(f, σ), compute(w, σ)

E2 compute(λx.e, σ)

〈λx.e, σ 〉 ⇒∗ 〈λx.e, σ 〉

E3 compute(x, σ)

〈x, σ 〉 ⇒∗ σ (x)

E4 compute((f w), σ)
〈 f, σ 〉 ⇒∗ 〈λx.e, σ ′〉
〈w, σ 〉 ⇒∗ v

〈(f w), σ 〉 ⇒ 〈e, σ ′[x := v]〉

E5 p⇒ q

compute(q)

E6 p⇒ q
q⇒∗ v

p⇒∗ v

E7 compute(〈e1, e2〉, σ)

compute(e1, σ), compute(e2, σ)

E8 compute(〈e1, e2〉, σ)
〈e1, σ 〉 ⇒∗ v1

〈e2, σ 〉 ⇒∗ v2

〈〈e1, e2〉, σ 〉 ⇒∗ 〈v1, v2〉

E9 compute(5 j (u), σ)

compute(u, σ)

E10 compute(5 j (u), σ)
〈u, σ 〉 ⇒∗ 〈v1, v2〉

〈5 j (u), σ 〉 ⇒∗ vj

FIG. 4. An algorithm for evaluating lambda terms.

of the form compute(e, ∅), wheree is a closed term and∅ is the empty binding
environment. Rules E4 and E5 derive other assertions of the form compute(w, σ).
The expressionσ (x) in the conclusion of E3 represents the term derived by applying
the subsitutionσ to the termx (with renaming of bound variables inx to avoid the
capture of free variables inσ). The expressionσ ′[x := v] in the conclusion of
rule E4 represents the substitution that is identical toσ ′ except that it mapsx to
the valuev. Note that the rules maintain the invariant that in all derivable assertions
of the form compute(w, σ) we have thatw is a subterm of the original top-level term.
We can think of the termw as the program counter and theσ as the program store.

Figure 5 gives an algorithm for both control and data flow analysis for the
λ-calculus with pairing. The rules are numbered so as to suggest alignment with
the rules in Figure 4. The input to the analysis is a single assertion of the form
compute(e), wheree is a closed term. Rules F1, F2, F7, and F9 derive all assertions
of the form compute(w), wherew is a subterm ofe. The rules also derive assertions
of the forme ⇒ w ande ⇒∗ w, wheree andw are subterms of the input. All
assertions of the forme⇒∗ v have the property that the “value”v is either a lambda
expression or a pairing expression.

To verify that the analysis in Figure 5 is conservative, that is, to establish its
correctness, we view each assertion of the forme ⇒∗ w as a production in a
grammar for generating values. To maintain consistency with Figure 4, we define
a value to be either a pair〈λx.e, σ 〉, whereσ maps the free variables ofλx.e to

Complexity Analysis of Static Analyses 527

F1 compute((f w))

compute(f), compute(w)

F2 compute(λx.e)

λx.e⇒∗ λx.e, compute(e)

F4 compute((f w)), f ⇒∗ λx.u

x⇒ w, (f w)⇒ u

F6 u⇒ w, w ⇒∗ v

u⇒∗ v

F7 compute(〈e1, e2〉)

compute(e1), compute(e2),
〈e1, e2〉 ⇒∗ 〈e1, e2〉

F9 compute(5 j (u))

compute(u)

F10 compute(5 j (u))
u⇒∗ 〈e1, e2〉

5 j (u)⇒ ej

FIG. 5. Flow analysis for the lambda calculus with pairing.

values, or a pair of values. Note that the base case is given by closed lambda
expressions and empty substitutions. The rules in Figure 4 generate assertions of
the form compute(e, σ), wheree is a subterm of the input term andσ maps variables
to values, plus assertions of the form〈e, σ 〉 ⇒∗ v, wherev is a value. We now
formally treat the output of Figure 5 as defining a grammar. For any subterme
of the input term and valuev, we definee ⇀∗ v to mean that eithere⇒∗ λx.u
andv is 〈λx.u, σ 〉, whereσ is a substitution satisfyingy ⇀∗ σ (y) for all y in
the domain ofσ , or v is a pair〈v1, v2〉 such thate⇒∗ 〈w1,w2〉 with w1 ⇀

∗ v1
andw2 ⇀

∗ v2. The rules in Figure 5 are conservative in the sense that if Figure 4
generates〈e, σ 〉 ⇒∗ v then Figure 5 generates a grammar yieldinge ⇀∗ v. The
proof is by computational induction on the inference rules in Figure 4 and is omitted
here. Note, however, that if, for a given subterme, Figure 5 does not generate any
assertion of the forme⇒∗ λx.e, then it follows that all values ofe are pairs and
run time safety checks in the compilation of5 j (e) can be omitted. By counting
prefix firings in the rules in Figure 5, we get that the running time of this analysis
is O(N3), whereN is the number of subterms of the input term.

The analysis defined in Figure 5 can be viewed as a form of set based analysis
[Heintze 1994; Aiken et al. 1994]. The rules can also be used to determine if the
given term is typable by recursive types with function, pairing, and union types
[McAllester 1996] using arguments similar to those relating control flow analysis
to partial types [Kozen et al. 1994; Palsberg and O’Keefe 1995]. It is possible to
give a subtransitive flow algorithm which runs in linear time under the assumption
that the input expression is well typed and that every type expression has bounded
size [Heintze and McAllester 1997a]. The subtransitive analysis algorithm can also
be presented as a bottom-up logic program whose running time can be analyzed
using Theorem 1.

7. A Union-Find Run Time Theorem

A variety of program analysis algorithms exploit equality. Perhaps the most fun-
damental use of equality in program analysis is the use of unification in type infer-
ence for simple types. Other examples include the nearly linear time flow analysis

528 MCALLESTER

algorithm of Bondorf and Jorgensen [1993], the quadratic type inference algorithm
for an Abadi-Cardelli object calculus given by Henglein [1999], and the improve-
ment in empirical performance due to equality reported by F¨ahndrich et al. [1998].
Here we formulate a general approach to the incorporation of union-find methods
into algorithms defined by bottom-up inference rules. In this section we give a
general run time theorem for such union-find rule sets.

We let UNION, FIND, and FLINK be three distinguished binary predicate sym-
bols. The predicate UNION can appear in rule conclusions but not in rule an-
tecedents. The predicates FIND and FLINK can appear in rule antecedents but not
in rule conclusions. A rule set satisfying these conventions will be called aunion-
find rule set. Intuitively, an assertion of the form UNION(u,w) in the conclusion of
a rule means thatu andw should be made equivalent. The UNION assertions cause
assertions of the form FLINK(u,w) and FIND(u,w) to be added to the database.
The mechanism described below maintains the invariant that for any givenu there
is at most onew such that the database contains FLINK(u,w). Furthermore, the
relation FLINK is acyclic. Hence this relation forms a tree and, for any given node
u, we can follow the FLINK relation from that node until we reach a node that
has no FLINK successor. This terminal node is the find value ofu. Two nodes
are considered equivalent if they have the same find value. The predicate FIND is
maintained as the transitive closure of the predicate FLINK; intuitively the relation
FIND contains all possible path-compressions of the find data tree. Note that two
termsu andw are considered equivalent if and only if there exists anf such that
the database contains both FIND(u, f) and FIND(v, f). Of course in practice one
should erase obsolete FIND assertions so that for any terms there is at most one
assertion of the form FIND(s, f). However, because FIND assertions can gener-
ate conclusions before they are erased, it seems difficult to formulate the erasure
process so as to improve the statement of Theorem 8 below.

When an assertion of the form MERGE(u,w) is added to the database andu
andw are already equivalent, no modification is made to the relations FLINK or
FIND. If u andv are not equivalent then a new FLINK assertion is added from
the find of the smaller equivalence class to the find of the larger equivalence class
and the relation FIND is updated to again be the transitive closure of FLINK. If
the two classes are the same size then the FLINK arc goes from the find ofu (the
first argument to merge) to the find ofv (the second argument). This tie-breaking
convention can have algorithmic significance as discussed in later sections.

We define a clean database to be one not containing FLINK or FIND assertions.
Given a union-find rule setR and a clean databaseD, we say that a databaseE
is an R-closure ofD if E can be derived fromD by repeatedly applying rules in
R—including rules that result in union operations—and no further application of
a rules inR changesE. Unlike the case of traditional inference rules, a union-find
rule set can have many possible closures—the set of derived assertions depends
on the order in which the rules are used. For example, if we derive the three
union operations UNION(u,w), UNION(s,w), and UNION(u, s) then the FLINK
relation will contain only two arcs and the choice of the two arcs depends on the
order in which the union operations are done. If rules are used to derive other
assertions from the FLINK assertions then arbitrary relations can depend on the
order of inference. For most algorithms, however, the correctness analysis and
running time analysis can be done independently of the order in which the rules are
run. We now present a general run time theorem for union-find rule sets:

Complexity Analysis of Static Analyses 529

THEOREM 8. For any range-restricted union-find rule set R, there exists an
algorithm mapping D to an R-closure of D, denoted as R(D), that runs in time
O(|D| + |PR(R(D))| + |F(R(D))|), where F(R(D)) is the set ofFIND assertions
in R(D). Furthermore,|F(R(D))| ≤ Ndlog2 Ne, where N is the number of distinct
terms that appear as an argument of aUNION assertion in R(D).

The proof is essentially identical to the proof of Theorem 1. The same source-to-
source transformation is applied toR to show that without loss of generality we need
only consider single antecedent rules plus rules of the formP(x, y) ∧ Q(y, z)→
R(x, y, z), wherex, y, andzare variables andP, Q, andRare predicates other than
UNION, FIND, or FLINK. For all the rules that do not have a UNION assertion in
their conclusion, the argument is the same as before. Rules with union operations
in the conclusion are handled using the union operation which has unit cost for
each prefix firing leading to a redundant union operation and where the cost of
a nonredundant operation is proportional to the number of new FIND assertions
added. Each time two equivalences classes are merged, the find value changes on
the smaller of the two classes. This implies that every time the find value of a term
changes the size of that term’s class at least doubles. So the find value of a term
can change at mostdlog2 Ne times. This implies that|F(R(D))| ≤ Ndlog2 Ne.
8. Unification

Given two first-order termst1 andt2, unification is the problem of determining if
there exists a substitutionσ such thatσ (t1) = σ (t2). If such a substitution exists,
then one is interested in finding the most general substitution, the substitutionγ
such that ifσ satisfiesσ (t1) = σ (t2) then we have that there exists aσ ′ such that
σ = σ ′ ◦ γ , that is,σ (u) = σ ′(γ (u)) for all termsu. Unification is used in logic
programming when one allows the database to contain assertions with variables.

This paper assumes that the input to logic programs consists of ground terms, that
is, terms not containing variables. The input to a unification problem consists of open
terms, that is, terms with variables. However, there is no problem in representing
the variables of the input terms with a set of constants that represent input term
variables. To give a unification algorithm as a set of inference rules, we assume
that the input to the algorithm contains the single assertion UNIFY!(t ′1, t

′
2), where

t ′1 andt ′2 are ground terms (data structures) representing the input termst1 andt2.
In the remainder of this section we will use the termconstantto mean a constant
representing an input constant and the termvariableto mean a constant representing
an input variable. It is possible to represent first-order terms using constants and
a single pairing function. So we can assume without loss of generality that the
input terms are constructed from constants representing input variables, constants
representing input constants, and a single pairing function where we write the pair
of e1 ande2 as〈e1, e2〉.

A unification problem determines an equivalence relation on the subterms of the
input terms. More specifiically, two subtermss andw of the input termst ′1 andt ′2
are equivalent if for any unifying substitutionσ , that is, for anyσ with σ (t ′1) =
σ (t ′2), we have thatσ (s) = σ (w). In the case where a unifying substitution exists,
this equivalence relation can be computed using the rules in Figure 6. Multiple
conclusions in a rule represent multiple rules—one for each conclusion—and rules
R1 and R2 implement the reflexivity property of equality. A clash occurs if the
equivalence relation generated by the rules of Figure 6 contains an equivalence

530 MCALLESTER

U1 UNIFY!(t1, t2)

INPUT(t1), INPUT(t2), t1 = t2

S x = y

y = x

R1 INPUT(〈x, y〉)

INPUT(x), INPUT(y)

U2 〈t1, t2〉 = 〈u1, u2〉

t1 = u1, t2 = u2

T x = y
y = z

x = z

R2 INPUT(x)

x = x

FIG. 6. An O(n3) algorithm for computing the unification equivalence relation.

U3 UNIFY!(x, y)

UNION(x, y)

U4 FIND(〈x, y〉, f)

UNION(51(f), x), UNION(52(f), y)

FIG. 7. An O(N log N) algorithm for the unification equivalence relation.

class with two distinct constants or a class containing both a pair and a constant.
We assume that the variables are associated with integer indexes so we can talk
about the variable of least index for any set of variables. If no clash occurs, we can
define a particular substitution in terms of the computed equivalence relation as
follows: For any terms that is a subterm of the input terms, we defineσ (s) to be the
(unique) constant in the equivalence class ofs if such a constant exists, to be the pair
〈σ (u), σ (v)〉 if the equivalence class ofs contains a pair〈u, v〉, and otherwise to be
the variable of least index in the equivalence class ofs. The term defined in this way
is independent of the choice of the pair in the equivalence class if the class contains
more than one pair—if the class contains both〈u, v〉and〈u′, v′〉 then the equivalence
class ofu must be the same as the equivalence class ofu′ and similarly forv andv′
so〈σ (u), σ (v)〉 is the same as〈σ (u′), σ (v′)〉. It is possible, however, thatσ (u) is an
infinite term. For example, starting with UNIFY!(x, 〈a, x〉), the rules in Figure 6
generate a two equivalence classes, one for the constanta and one for both the
variablex and the pair〈a, x〉. In this caseσ (x) is the infinte terms〈a, 〈a, 〈a, . . .〉〉〉.
In general, if some terms contained in the input is such thatσ (s) is infinite, then
we say that the equivalence relationcontains an occurs-check violation. Given a
union-find representation of the equivalence relation, as constructed by the rules
in Figure 6, one can determine whether there is an occurs-check violation in linear
time using the linear time algorithm for determining the existince of cycles in a
directed graph. See Martelli and Montanari [1982] for details. If there is no clash or
occurs-check violation then the two input terms are unifiable, and the substitution
mappingx to σ (x) is a most general unifying substiution. The rules in Figure 6
contain explicit rules for equality, and the running time of these rules is dominated
by the transitivity rule T, which isO(N3) whereN is the number of subterms of
the original term.

A more efficient algorithm for computing the same equivalence relation is defined
by the rules in Figure 7. We first note that U3 and U4 effectively implement U1

Complexity Analysis of Static Analyses 531

C1 EQUAL!(x, y)

INPUT(x), INPUT(y), x = y

C2 INPUT(〈x1, x2〉), INPUT(〈y1, y2〉)
x1 = y1, x2 = y2

〈x1, x2〉 = 〈y1, y2〉

C3 EQUAL?(x, y)

INPUT(x), INPUT(y)

FIG. 8. An O(n3) congruence closure algorithm (assuming rules R1, R2, S, and T of Figure 6).

and U2. In particular, if〈u1, u2〉 is in the same equivalence class as〈w1,w2〉 then
they must both have the same find valuef , and bothu1 andw1 must be equivalent
to51(f) and hence equivalent to each other.

To analyze the running time of the rules U3 and U4, we first note that the
rules maintain the invariant that all find values are terms appearing in the input
problem (the union operation breaks ties by using the second argument as the
source of the find value). This implies that every union operation is either of the form
UNION(s,w) or UNION(5i (w), s) wheres andw appear in the input problem.
Let N be the number of distinct terms appearing in the input. We now have that
there are onlyO(N) terms involved in the equivalence relation defined by the
FLINK graph. For a given terms, the number of assertions of the form FIND(s, f)
is at most the log (base 2) of the size of the equivalence class ofs. So we now
have that there are onlyO(N log N) FIND assertions in the closure. This implies
that there are onlyO(N log N) prefix firings. Theorem 8 now implies that the
closure can be computed inO(N log N) time. The best-known unification algorithm
runs in O(N) time [Paterson and Wegman 1978]. The application of Theorem 8
to rules U3 and U4 yields a slightly worse running time for what is, perhaps, a
simpler presentation.

9. Congruence Closure

The congruence closure problem is to determine whether an equations= t between
ground terms is provable from a given set of equations between ground terms using
the reflexivity, symmetry, transitivity, and congruence rules for equality. As with
unification, we will assume that expressions are represented using constants and a
single pairing function. The congruence property of equality states that ifu1 = w1
andu2 = w2 then〈u1, u2〉 = 〈w1,w2〉. The congruence rule cannot be used directly
in a bottom-up logic program because it generates an infinite number of conclusions
and hence a bottom-up procedure using this rule directly would fail to terminate.

Figure 8 plus the equality rules R1, R2, S, and T of Figure 6 provide a cubic
time algorithm for congruence closure. We take the input to consists of the set of
given equations represented by assertions of the form EQUAL!(u, v) and the “goal
equation” stated as EQUAL?(s, t). Rules C1, C3, and R1 generate assertions of the
form INPUT(e) for all termseappearing in the input problem. Rule C2 is a variant
of the congruence rule restricted so that it can only generate assertions involving
input terms. This algorithm terminates inO(N3) time (dominated by the transitivity
rule for equality), whereN is the number of input terms. Shostak [1978] proved
that running rule C2 on only the input terms suffices.

532 MCALLESTER

C1’ EQUAL!(x, y)

INPUT(x), INPUT(y),UNION(x, y)

C2’ INPUT(〈x, y〉)
ID −OR− FIND(x, x′)
ID −OR− FIND(y, y′)

UNION(〈x′, y′〉, 〈x, y〉)

C3 EQUAL?(x, y)

INPUT(x), INPUT(y)

R1 INPUT(〈x, y〉)

INPUT(x), INPUT(y)

C4 INPUT(x)

ID −OR− FIND(x, x)

C5 FIND(x, y)

ID −OR− FIND(x, y)

FIG. 9. An O(N log3 N) algorithm for congruence closure.

Now we consider the congruence closure algorithm given in Figure 9. These
rules compute the same equivalence relation on the terms in the input as do the
rules in Figure 8. In particular, if〈u1, u2〉 and〈w1,w2〉 are both input terms where
u1 andw1 have been made equivalent, andu2 andw2 have been made equivalent,
thenu1 andw1 must have the same findf1 andw1 andw2 must have the same
find f2 and both〈u1, u2〉 and〈w1,w2〉 are made equivalent to〈 f1, f2〉. To analyze
the complexity of the rules in Figure 9 we first note that, since the union operation
breaks ties by selecting the find value from the second argument, the rules maintain
the invariant that every find value is an input term. Given this, one can see that all
terms involved in the equivalence relation are either input terms or pairs of input
terms. This implies that there are at mostO(N2) terms involved in the equivalence
relation, whereN is the number of distinct terms in the input. So we have that for
any given terms the number of assertions of the form FIND(s, f) is O(log N).
So the number of firings of the rule C2′ is O(N log2 N). But this implies that the
number of terms involved in the equivalence relation is actually onlyO(N log2 N).
Since each such term can appear in the left-hand side of at mostO(log N) FIND
assertions, there can be at mostO(N log3 N) FIND assertions. Theorem 8 now
implies that the closure can be computed inO(N log3 N) time. It is possible to
show that by erasing obsolete FIND assertions the algorithm can be made to run in
O(N log N) time—the best-known running time for congruence closure.

10. Henglein’s Algorithm for Object Type Inference

Type inference is the problem of taking a program without type declarations and
inferring types for program variables. For many languages and type systems, it
is possible to determine, for a given program without type declarations, whether
or not there exist type declarations under which the program is well typed. In
this case, we say that the type inference problem is decidable. Perhaps the most
fundamental type inference algorithm is for the Hindley-Milner type system used
in the programming language ML [Milner 1978]. Here we present an inference
rule version of Henglein’s quadratic time algorithm for determining typability in a
variant of the Abadi-Cardelli object calculus [Henglein 1999; Abadi and Cardelli
1996]. This algorithm is interesting because the first algorithm published for the

Complexity Analysis of Static Analyses 533

problem was a classical dynamic transitive closure algorithm requiringO(N3) time
[Palsberg 1995] and because Henglein’s presentation of the quadratic algorithm is
given as in classical pseudo-code and is fairly complex. The algorithm presented
here is given as a set of union-find inference rules for which Theorem 8 yields a
run time ofO(N2 log N).

The type inference problem solved by Henglein’s [1999] algorithm is for object-
oriented programs under a certain type system for objects. An object can be viewed
as a record with fields. An object type specifies types for fields. For example, the type
[`1= INT, `2= INT] denotes set of all objects in which the fields`1 and`2 are both
integers. Note that the type [`1= INT, `2= INT] is a subtype (a subset) of the type
[`1= INT]—anything in which both fields̀1 and`2 are integers is something where
the field`1 is an integer. In the “pure” object calculus of Abadi and Cardelli [1996],
there are only objects—there are no integers, procedures, or other data types. The
pure calculus is of theoretical interest because it isolates and simplifies the nature
of the objects and object types. In the pure object calculus, type expressions are
defined by the following grammar whereα represents type variables:

σ ::= α|[`1 = σ1; . . . ; `n = σn]|µα.σ.
This grammar allows for the universal type [] that places no constraints on an object
and hence represents the set of all objects. In the Abadi-Cardelli [1996] language,
objects compute the values for fields on demand (rather than storing the value in the
slot). On-demand computation of slot values allows objects to be “infinitely deep.”
In particular, recursive types such asµα[`1 = σ, `2 = α] are meaningful and
denote the typeα of objects where slot̀1 has typeσ and in which̀ 2 (recursively)
has typeα. A type expression is closed if all type variables in that expression are
bound inµ expressions, for example, the expressionµα[`1 = α] is closed.

A presentation of the Abadi-Cardelli [1996] programming language is beyond
the scope of this paper. Here we simply note that the problem of determining the
existence of acceptable type declarations can be converted to a problem of deter-
mining whether there exist type expressions satisfying a certain set of constraints
[Henglein 1999]. More specifically, we can take the input to be a set of inequalities
of the formσ1 ≤ σ2, whereσ1 andσ2 are finite nonrecursive type expressions (as de-
fined by the first two cases of the above grammar). The problem is to find (possibly
recursive) closed type expressions for the type variables such that the constraints
are satisfied. To define this problem precisely, one must define the inequality rela-
tion σ1 ≤ σ2 for closed type expressionsσ1 andσ2. Here we are interested in an
“invariant” interpretation of type inequality—a closed type [`1 = σ1; . . . ; `n = σn]
is a subtype of a closed type [m1 = τ1; . . . ; mk = τk] if eachmi is equal to somè j
whereσ j equalsτi . Equality on (recursive) types is defined to mean that the (pos-
sibly infinite) type expressions that result from unrolling all recursive definitions
are equal.

Although superficially the type inference problem may seem quite complex, there
is a very simple cubic time decision procedure. We assume that the input has been
preprocessed so that, for each type expression [`1 = σ1; . . . ; `n = σn] appearing in
the input (either at the top level or as a subexpression of a top-level type expression),
the database also includes all assertions of the form ACCEPTS([`1 = σ1; . . . ; `n =
σn], `i) and [̀ 1 = σ1; . . . ; `n = σn].`i = σi with 1 ≤ i ≤ n. We also assume
that, rather than use rule R1 of Figure 6, the input is preprocessed so that for every

534 MCALLESTER

P1 σ = τ

σ ≤ τ, τ ≤ σ

P2 σ ≤ τ, τ ≤ γ

σ ≤ γ

P3 INPUT(τ)

τ ≤ τ

P4 ACCEPTS(τ, `)
ACCEPTS(σ, `)
γ ≤ τ
γ ≤ σ

σ.` = τ.`
FIG. 10. Palsberg’sO(N3) object type inference algorithm.

type expressionτ appearing in the input the initial database contains the assertion
INPUT(τ). Note that this preprocessing can be done in linear time. Palsberg’s
[1995] cubic algorithm can be given as a bottom-up logic program consisting of
the rules in Figure 10.

The rules are sound in the sense that, under any interpretation of the type vari-
ables as type expressions, if the premises are true under the above mentioned
notions of type equality and subtyping, then the conclusion is true. If the rules
derive [̀ 1 = τ1, . . . , `k = τk] ≤ [m1 = σ1, . . . ,mn = σn], where there ex-
ists anmi that is not equal to anỳ j , then we have a contradiction and the input
constraints are not satisfiable, that is, there is no interpretation of the type vari-
ables as types under which all the input assertions are simultaeously true. If an
assertion of this form is derived then we say thatthe input constraints are re-
jected. If the input constraints are not rejected then one can construct a variable
interpretation satisfying the constraints as follows: For each type expressionγ ap-
pearing in the input, we define the typeσ (γ) recursively to be the type expression
[`1 = σ (τ1.`1), . . . , `k = σ (τk.`k)], where the pairs〈`i , τi 〉 are all pairs such that
the rules deriveγ ≤ τi where we have ACCEPTS(τi , `i). Rule P4 ensures that, for a
given field`i , the typeσ (τi .`i) is independent of the choice ofτi . The recursion need
not terminate and the type expressionσ (γ) may in fact be infinite. However, in the
case where it is infinite, the number of distinct subexpressions can be no larger than
the number of distinct type expressions in the input. Since the number of distinct
(infinite) type expressions is finite, these types can be represented by finite recursive
type expressions.

Figure 11 gives union-find inference rules which perform the same analysis. The
equality relation is stored in the union-find data structure. The inequality relation
is stored in the relation⇒ and its transitive closure⇒∗. Rule P1 of Figure 10 is
implemented by rules H5 and H2 of Figure 11. Rule P4 of Figure 10 is implemented
by two applications of rule H6 of Figure 11. Note that the convention of breaking
ties in favor of the second argument in a UNION assertion maintains the invariant
that find values are always type expressions appearing in the input. This implies
that the equivalence relation on the expressions appearing in the input is determined
by the set of FLINK assertions between input expressions. This observation implies
that rule P2 of Figure 10 is faithfully implemented by H3 and H4 of Figure 11.
Rule P3 of Figure 10 is not required in the formulation in Figure 11.

We now consider the running time of the rules in Figure 11. LetN be the number
of input assertions after the preprocessing described above. There are clearly only

Complexity Analysis of Static Analyses 535

H1 τ ≤ σ

τ ⇒ σ

H2 INPUT(τ)
FLINK(τ, σ)

τ ⇒ σ, σ ⇒ τ

H3 σ ⇒ τ

τ ⇒∗ σ

H4 σ ⇒ τ, τ ⇒∗ γ

σ ⇒∗ γ

H5 τ = σ

UNION(τ, σ)

H6 ACCEPTS(τ, `)
σ ⇒∗ τ

UNION(σ.`, τ.`)

FIG. 11. OnO(N2 log N) object type inference algorithm.

O(N) distinct type expressions in the input. This implies that there can be at most
O(N) FLINK assertions between type assertions appearing in the input—every
such FLINK assertion reduces the number of equivalence classes by 1 and therefore
there cannot be more such assertions than input type expressions. Hence the total
number of prefix firings of rule H2 isO(n). This implies that there are onlyO(N)
⇒ assertions, all of which are between input type expressions. The fact that there
are onlyO(N)⇒ assertions implies that there are at mostO(N2) prefix firings of
the transitivity rule H4. Furthermore, there are at mostO(N) prefix firings of H1,
H3, and H5 and at mostO(N2) prefix firings of H6. So the total number of prefix
firings of the rules in Figure 11 isO(N2). It remains only to consider the number of
FIND assertions. The number of FIND assertions is at mostm logm, wherem is the
number of nodes involved in the FIND assertions. Rule H6 introduces new nodes
of the formσ.`, whereσ is an input expression and̀is a field name used in other
input type expressions. There can beO(N2) such new type expressions introduced
in this way. The number of FIND assertions of the form FIND(σ.`, τ), whereσ.`
is one of the newly created nodes, is no more thanO(N2 log N2) = O(N2 log N).
By Theorem 8, the run time required isO(N2 log N). By only computing find
compressions on terms appearing in the input, the algorithm can be modified to
run in O(N2) time. However, this improved run time is not given directly by the
general run time theorem for union-find rule sets.

11. Conclusions

This paper has argued that many algorithms have natural presentations as bottom-
up logic programs and that such presentations are clearer and simpler to analyze,
both for correctness and for complexity, than classical pseudo-code presentations.
A variety of examples have been given and analyzed. These examples suggest a
variety of directions for further work.

In the case of unification and Henglein’s [1999] algorithm, final checks were
performed by a postprocessing pass. In unification, the postprocessing involves
checking for clashes and occurs-check violations. In Henglein’s [1999] algorithm,
one must check that one has not derived an assertion of the formσ ≤ τ whereτ
accepts a field not acepted byσ . We might consider extensions to logic programming
that allow these postprocessing steps to be naturally expressed as rules. Stratified

536 MCALLESTER

negation by failure would allow a natural way of inferring NOT(ACCEPTS(σ, `))
in Henglein’s [1999] algorithm while preserving the truth of Theorems 1 and 8.
This would allow the acceptability check to be done with rules. A simple extension
of the union-find formalism would allow the detection of an equivalence between
distinct “constants” and hence allow the rules for unification to detect clashes. It
might also be possible to extend the language to improve the running time for cycle
detection and strongly connected component analysis for directed graphs.

Another direction for further work involves aggregation. It would be nice to have
language features and run time theorems allowing natural and efficient renderings
of Dijkstra’s [1959] shortest-path algorithm and the inside algorithm for computing
the probability of a given string in a probabilistic context-free grammar [Lari and
Young 1990].

REFERENCES

ABADI, M., AND CARDELLI, L. 1996. A Theory Of Objects. Springer-Verlag, Berlin, Germany.
AHO, A. V., AND ULLMAN , J. 1986. Compilers: Principles Techniques and Tools. Addison Wesley,

Reading, MA.
AIKEN, A., WIMMERS, E., AND LAKSHMAN, T. K. 1994. Soft typing with conditional types. InACM

Symposium on Principles of Programming Languages. ACM Press, New York, pp. 163–173.
APPEL, A. W. 1997. Modern Compiler Implementation in Java. Cambridge University Press, Cambridge,

U.K.
BANCILHON, F., MAIER, D., SAGIV, Y., AND ULLMAN , J. D. 1986. Magic sets and other strange ways to

implement logic programs. InProceedings of the Fifth ACM SIGMODSIGACT Symposium on Principles
of Database Systems. ACM Press, New York, pp. 1–15.

BONDORF, A., AND JORGENSEN, A. 1993. Efficient analysis for realistic off-line partial evaluation.
J. Funct. Program. 3, 3, 315–346.

CHEN, W., AND WARREN, D. S. 1996. Tabled evaluation with delaying for general logic programs.
Journal of the ACM 43, 1, 20–74.

COUSOT, P.,AND COUSOT, R. 1977. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixed points. InACM Symposium on Principles of
Programming Languages. ACM Press, New York, pp. 238–252.

DIJKSTRA, E. W. 1959. A note on two problems in connection with graphs.Numer. Math. 1, Oct.,
269–271.

DOWNING, W., AND GALLIER, J. W. 1984. Linear time algorithms for testing the satisfiability of propo-
sitional horn formulae.J. Logic Program. 1, 3, 267–284.

EISNER, J.,AND SATTA, G. 1999. Efficient parsing for bilexical context-free grammars and head automa-
ton grammars. InProceedings of the Annual Conference of the Association for Computational Linguistics
(ACL-99). Morgan Kaufman, Menlo Park, Calif., pp. 457–464.

FÄHNDRICH, M., FOSTER, J., SU, Z., AND AIKEN, A. 1998. Partial online cycle elimination in inclu-
sion constraint graphs. InProgramming Language Design and Implementation(PLDI 98). ACM Press,
New York, pp. 85–96.

HEINTZE, N. 1994. Set based analysis of ml programs. InACM Conference on Lisp and Functional
Programming. ACM Press, New York, pp. 306–317.

HEINTZE, N., AND JAFFAR, J. 1990a. A decision procedure for a class of set constraints. InProceedings,
Fifth Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los
Alamitos, Calif., pp. 42–51.

HEINTZE, N., AND JAFFAR, J. 1990b. A finite presentation theorem for approximating logic programs. In
ACM Symposium on Principles of Programming Languages. ACM Press, New York, pp. 197–209.

HEINTZE, N.,AND MCALLESTER, D. 1997a. Linear time subtransitive control flow analysis. InConference
on Programming Language Design and Implementation(PLDI 97). ACM Press, New York, pp. 26–272.

HEINTZE, N., AND MCALLESTER, D. 1997b. On the cubic bottleneck in subtyping and flow analysis. In
Proceedings, Twelvth Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society
Press, Los Alamitos, Calif., pp. 342–361.

HENGLEIN, F. 1999. Breaking through then3 barrier: Faster object type inference.Theor. Pract. Obj.
Syst. 5, 1, 57–72. A Preliminary Version appeared in FOOL4.

Complexity Analysis of Static Analyses 537

KOZEN, D., PALSBERG, J., AND SCHWARTZBACH, M. I. 1994. Efficient inference of partial types.J.
Comput. Syst. Sci. 49, 2 (Oct.), 306–324.

LARI, K., AND YOUNG, S. J. 1990. The estimation of stochastic context-free grammars using the inside-
outside algorithm.Comput. Speech Lang. 4, 1, 35–56.

MARTELLI, A., AND MONTANARI, U. 1982. An efficient unification algorithm.ACM Trans. Program.
Lang. Syst. 4, 2, 258–282.

MCALLESTER, D. 1996. Inferring recursive types. Available online at http://www.research.mit.
edu/∼dmac.

MELSKI, D., AND REPS, T. 1997. Intercovertability of set constraints and context free language reacha-
bility. In ACM SIGPLAN Symposium of Partial Evaluation and Semantic-Based Program Manipulation
(PEPM’97). ACM Press, New York, pp. 74–89.

MILNER, R. 1978. A theory of type polymorphism in programming.J. Comput. Syst. Sci. 17, 3, 348–375.
NAUGHTON, J.,AND RAMAKRISHNAN , R. 1991. Bottom-up evaluation of logic programs. InComputa-

tional Logic, J.-L. Lassez and G. Plotkin, Eds. MIT Press, Cambridge, Mass.
PALSBERG, J. 1995. Efficient inference of object types.Inform. Comput. 123, 2, 198–209.
PALSBERG, J.,AND O’KEEFE, P. 1995. A type system equivalent to flow analysis.ACM Trans. Program.

Lang. Syst. 17, 4, 576–599.
PATERSON, M. S., AND WEGMAN, M. N. 1978. Linear unification.J. Comput. Syst. Sci. 16, 2 (April),

158–167.
PEREIRA, F., AND WARREN, D. 1983. Parsing as deduction. In21st Annual Meeting of the Association

for Computational Linguistics. Morgan Kaufman, Menlo Park, Calif., pp. 137–144.
REPS, T. 1994. Demand Interprocedural Program Analysis Using Logic Databases. Kluwer Academic

Publishers, Norwell, Mass., pp. 163–196.
ROCIO, V., AND LOPES, J. G. 1998. Partial parsing, deduction and tabling. InProceedings of Tabulation

in Parsing and Deduction(TAPD’98) (Paris, France, April 1998), pp. 52–61.
ROHMER, J., LESCOEUR, R., AND KERISIT, J. M. 1986. The Alexander method—a technique for the

processing of recursive axioms in deductive database queries.New Gen. Comput. 4, 3, 273–285.
SAGONAS, K., SWIFT, T., AND WARREN, D. S. 1994. Xsb as an efficient deductive database engine. In

Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data(SIGMOD’94,
Minneapolis, Minn.). ACM Press, New York, pp. 442–453.

SHIVERS, O. 1991. Data flow analysis and type recovery in scheme. InTopics in Advanced Language
Implementation, P. Lee, Ed. MIT Press, Cambridge, Mass.

SHOSTAK, R. 1978. An algorithm for reasoning about equality.Comm. ACM 21, 2 (July), 583–585.
SHIEBER, S. M., SCHABES, Y.,AND PEREIRA, F. 1995. Principles and implementation of deductive parsing.

J. Logic Program. 24, 1-2 (July/Aug.), 3–36.
TAMAKI , H.,AND SATO, T. 1986. Old resolution with tabulation. InProceedings of the Third International

Conference on Logic Programming. Lecture Notes in Computer Science, vol. 225. Springer-Verlag,
London, England, pp. 84–96.

ULLMAN , J. 1989. Bottom-up beats top-down for datalog. InProceedings of the Eighth ACM SIGACT-
SIGMOD-SIGART Symposium on the Principles of Database Systems(March 1998). ACM Press,
New York, pp. 140–149.

ULLMAN , J., AND RAMAKRISHNAN , R. 1995. A survey of research in deductive database systems.
J. Logic Program. 23, 2, 125–150.

VARDI, M. 1982. Complexity of relational query languages. InProceedings of the 14th ACM SIGACT
Symposium on Theory of Computating(San Francisco, Calif.). ACM Press, New York, pp. 137–146.

RECEIVED OCTOBER1999;REVISED MAY 2002;ACCEPTED JUNE2002

Journal of the ACM, Vol. 49, No. 4, July 2002.

