
Chapter 6

Linear λ-Calculus

In philosophy we distinguish between the notion of analytic and synthetic judg-
ment [ML94], a terminology which goes back to Kant. Briefly, an analytic
judgment can be seen to be evident by virtue of the terms contained in it. A
synthetic judgment, on the other hand, requires to go beyond the judgment
itself to find evidence for it. The various judgments of truth we have considered
such as Γ; ∆ ` A true are synthetic because we need the derivation as evidence
external to the judgment. We can contrast this with the judgment A prop which
is analytic: an analysis of A itself is sufficient to see if it is a proposition.

It is important to recognize analytic judgments because we do not need
to communicate external evidence for them if we want to convince someone
of it. The judgment itself carries the evidence. A standard way to convert
a synthetic to a corresponding analytic judgment is to enrich it with a term
that carries enough information to reconstruct its deduction. We refer to such
objects as proof terms when they are used to establish the truth of a proposition.
There still is a fair amount of latitude in designing proof terms, but with a few
additional requirements discussed below they are essentially determined by the
structure of the inference rules.

From our intuitionistic point of view it should not be surprising that such
proof terms describe constructions. For example, a proof of A(B describes
a construction for achieving the goal B given resource A. This can be seen
as a plan or a program. In (unrestricted) intuitionistic logic, the corresponding
observation that proofs are related to functional programs via the Curry-Howard
isomorphism has been made by [CF58] and [How80]. Howard observed that
there is a bijective correspondence between proofs in intuitionistic propositional
natural deduction and simply-typed λ-terms. A related observation on proof in
combinatory logic had been made previously by Curry [CF58].

A generalization of this observation to include quantifiers gives rise to the
rich field of type theory, which we will analyze in Chapter ??. Here we study
the basic correspondence, extended to the case of linear logic.

A linear λ-calculus of proof terms will be useful for us in various circum-
stances. First of all, it gives a compact and faithful representation of proofs as
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110 Linear λ-Calculus

terms. Proof checking is reduced to type-checking in a λ-calculus. For example,
if we do not trust the implementation of our theorem prover, we can instrument
it to generate proof terms which can be verified independently. In this sce-
nario we are just exploiting that validity of proof terms is an analytic judgment.
Secondly, the terms in the λ-calculus provide the core of a functional language
with an expressive type system, in which statements such as “this function
will use its argument exactly once” can be formally expressed and checked. It
turns out that such properties can exploited for introducing imperative (state-
related) concepts into functional programming [Hof00b], structural complexity
theory [Hof00a, AS01], or analysis of memory allocation [WW01] Thirdly, lin-
ear λ-terms can serve as an expressive representation language within a logical
framework, a general meta-language for the formalization of deductive systems.

6.1 Proof Terms

We now assign proof terms to the system of linear natural deduction. Our main
criterion for the design of the proof term language is that the proof terms should
reflect the structure of the deduction as closely as possible. Moreover, we would
like every valid proof term to uniquely determine a natural deduction. Because
of weakening for unrestricted hypotheses and the presence of >, this strong
property will fail, but a slightly weaker and, from the practical point of view,
sufficient property holds. Under the Curry-Howard isomorphism, a proposition
corresponds to a type in the proof term calculus. We will there call a proof term
well-typed if it represents a deduction.

The proof term assignment is defined via the judgment Γ; ∆ `M : A, where
each formula in Γ and ∆ is labelled. We also use M −→β M ′ for the local
reduction and M : A −→η M

′ for the local expansion, both expressed on proof
terms. The type on the left-hand side of the expansion reminds is a reminder
that this rule only applies to term of the given type (contexts are elided here).

Hypotheses. We use the label of the hypotheses as the name for a variable
in the proof terms. There are no reductions or expansions specific to variables,
although variables of non-atomic type may be expanded by the later rules.

u
Γ; u:A ` u : A

u
(Γ, v:A); · ` v : A

Recall that we take exchange for granted so that in the rule for unrestricted
hypotheses, v:A could occur anywhere.

Multiplicative Connectives. Linear implication corresponds to a linear func-
tion types with corresponding linear abstraction and application. We distinguish
them from unrestricted abstraction and application by a “hat”. In certain cir-
cumstances, this may be unnecessary, but here we want to reflect the proof
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6.1 Proof Terms 111

structure as directly as possible.

Γ; (∆, u:A) `M : B
( I

Γ; ∆ ` λ̂u:A. M : A(B

Γ; ∆ `M : A(B Γ; ∆′ ` N : A
(E

Γ; (∆,∆′) `MˆN : B

(λ̂w:A. M)ˆN −→β [N/w]M

M : A(B −→η λ̂w:A. Mˆw

In the rules for the simultaneous conjunction, the proof term for the elimination
inference is a let form which deconstructs a pair, naming the components. The
linearity of the two new hypotheses means that the variables must both be used
in M .

Γ; ∆1 `M : A Γ; ∆2 ` N : B
⊗I

Γ; (∆1,∆2) `M ⊗N : A⊗ B

Γ; ∆ `M : A ⊗B Γ; (∆′, u:A,w:B) ` N : C
⊗E

Γ; (∆,∆′) ` let u⊗w = M inN : C

The reduction and expansion mirror the local reduction and expansion for de-
duction as the level of proof terms. We do not reiterate them here, but simply
give the proof term reduction.

letw1 ⊗ w2 = M1 ⊗M2 inN −→β [M1/w1,M2/w2]N
M : A⊗ B −→η letw1 ⊗ w2 = M inw1 ⊗ w2

The unit type allows us to consume linear hypotheses without introducing new
linear ones.

1I
Γ; · ` ? : 1

Γ; ∆ `M : 1 Γ; ∆′ ` N : C
1E

Γ; (∆,∆′) ` let ? = M inN : C

let ? = M inN −→β N
M : ? −→η let ? = M in ?

Additive Connectives. As we have seen from the embedding of intuition-
istic in linear logic, the simultaneous conjunction represents products from the
simply-typed λ-calculus.

Γ; ∆ `M : A Γ; ∆ ` N : B
NI

Γ; ∆ ` 〈M,N〉 : ANB

Γ; ∆ `M : ANB
NEL

Γ; ∆ ` fstM : A

Γ; ∆ `M : ANB
NER

Γ; ∆ ` sndM : B
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112 Linear λ-Calculus

The local reduction are also the familiar ones.

fst 〈M1,M2〉 −→β M1

snd 〈M1,M2〉 −→β M2

M : ANB −→η 〈fstM, sndM〉

The additive unit corresponds to a unit type with no operations on it.

>I
Γ; ∆ ` 〈 〉 : > No > elimination

The additive unit has no elimination and therefore no reduction. However, it
still admits an expansion, which witnesses the local completeness of the rules.

M : > −→η 〈 〉

The disjunction (or disjoint sum when viewed as a type) uses injection and case
as constructor and destructor forms, respectively. We annotated the injections
with a type to preserve the property that any well-typed term has a unique
type.

Γ; ∆ `M : A
⊕IL

Γ; ∆ ` inlBM : A⊕ B

Γ; ∆ `M : B
⊕IR

Γ; ∆ ` inrAM : A⊕B

Γ; ∆ `M : A ⊕B Γ; (∆′, w1:A) ` N1 : C Γ; (∆′, w2:B) ` N2 : C
⊕Ew1,w2

Γ; (∆′,∆) ` caseM of inlw1 ⇒ N1 | inrw2 ⇒ N2 : C

The reductions are just like the ones for disjoint sums in the simply-typed λ-
caclulus.

case inlBM of inlw1 ⇒ N1 | inrw2 ⇒ N2 −→β [M/w1]N1

case inrAM of inlw1 ⇒ N1 | inrw2 ⇒ N2 −→β [M/w2]N2

M : A⊕B −→η caseM of inlw1 ⇒ inlB w1 | inrw2 ⇒ inrAw2

For the additive falsehood, there is no introduction rule. It corresponds to a
void type without any values. Consequently, there is no reduction. Once again
we annotate the abort constructor in order to guarantee uniqueness of types.

No 0 introduction

Γ; ∆ `M : 0
0E

Γ; (∆,∆′) ` abortCM : C

M : 0 −→η abort0M

Draft of November 6, 2001
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Exponentials. Unrestricted implication corresponds to the usual function
type from the simply-typed λ-calculus. For consistency, we will still write A⊃B
instead of A→ B, which is more common in λ-calculus. Note that the argument
of an unrestricted application may not mention any linear variables.

(Γ, v:A); ∆ `M : B
⊃I

Γ; ∆ ` λv:A. M : A ⊃B

Γ; ∆ `M : A⊃B Γ; · ` N : A
⊃E

Γ; ∆ `M N : B

The reduction and expansion are the origin of the β and η rules names due to
Church [Chu41].

(λv:A. M)N −→β [N/v]M
M : A⊃ B −→η λv:A. M v

The rules for the of course operator allow us to name term of type !A and use
it freely in further computation.

Γ; · `M : A
!I

Γ; · ` !M : !A

Γ; ∆ `M : !A (Γ, v:A); ∆′ ` N : C
!E

Γ; (∆′,∆) ` let !v = M inN : C

let !v = !M inN −→β [M/v]N
M : !A −→η let !v = M in !v

Below is a summary of the linear λ-calculus with the β-reduction and η-
expansion rules.

M ::= u Linear Variables

| λ̂u:A. M | M1
ˆM2 A(B

|M1 ⊗M2 | letu1 ⊗ u2 = M inM ′ A⊗ B
| ? | let ? = M inM ′ 1
| 〈M1,M2〉 | fstM1 | sndM2 ANB
| 〈 〉 >
| inlBM | inrAM A⊕ B
| (caseM of inlu1 ⇒M1 | inr u2 ⇒M2)

| abortCM 0
| v Unrestricted Variables
| λv:A. M |M1 M2 A⊃ B
| !M | let v = M inM ′ !A

Below is a summary of the β-reduction rules, which correspond to local
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reductions of natural deductions.

(λ̂u:A. M)ˆN −→β [N/u]M A(B
letu1 ⊗ u2 = M1 ⊗M2 inN −→β [M1/u1,M2/u2]N A⊗ B

let ? = M inN −→β N 1
fst 〈M1,M2〉 −→β M1 ANB

snd 〈M1,M2〉 −→β M2

No > reduction

case inlBM of inlu1 ⇒ N1 | inr u2 ⇒ N2 −→β [M/u1]N1 A⊕ B
case inrAM of inlu1 ⇒ N1 | inr u2 ⇒ N2 −→β [M/u1]N2

No 0 reduction
(λv:A. M)N −→β [N/v]M A⊃ B

let !v = !M inN −→β [M/v]N !A

The substitution [M/u]N and [M/v]N assumes that there are no free variables
in M which would be captured by a variables binding in N . We nonethless
consider it a total function, since the capturing variable can always be renamed
to avoid a conflict (see Exercise 6.3).

Next is a summary of the η-expansion rules, which correspond to local ex-
pansions of natural deductions.

M : A(B −→η λ̂u:A. Mˆu
M : A⊗ B −→η letu1 ⊗ u2 = M inu1 ⊗ u2

M : ? −→η let ? = M in ?
M : ANB −→η 〈fstM, sndM〉

M : > −→η 〈 〉
M : A⊕ B −→η caseM of inl u1⇒ inlB u1 | inr u2 ⇒ inrA u2

M : 0 −→η abort0M
M : A⊃ B −→η λv:A. M v

M : !A −→η let !v = M in !v

Note that there is an implicit assumption that the variables w and u in the cases
for A(B and A ⊃B do not already occur in M : they are chosen to be new.

If P is a derivation of Γ; ∆ ` M : A then we write erase(P) for the corre-
sponding derivation of Γ; ∆ ` A true where the proof term M has been erased
from every judgment.

We have the following fundamental properties. Uniqueness, where claimed,
holds only up to renaming of bound variables.

Theorem 6.1 (Properties of Proof Terms)

1. If P is a derivation of Γ; ∆ ` M : A then erase(P) is a derivation of
Γ; ∆ ` A.

2. If D is a derivation of Γ; ∆ ` A then there is a unique M and derivation
P of Γ; ∆ `M : A such that erase(P) = D.

Proof: By straightforward inductions over the given derivations. 2
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6.1 Proof Terms 115

Types are also unique for well-typed terms (see Exercise 6.1). Uniqueness of
derivations fails, that is, a proof term does not uniquely determine its derivation,
even under identical contexts. A simple counterexample is provided by the
following two derivations (with the empty unrestricted context elided).

>I
w:> ` 〈 〉 : >

>I
· ` 〈 〉 : >

⊗I
w:> ` 〈 〉 ⊗ 〈 〉 : >⊗>

>I
· ` 〈 〉 : >

>I
w:> ` 〈 〉 : >

⊗I
w:> ` 〈 〉 ⊗ 〈 〉 : >⊗>

It can be shown that linear hypotheses which are absorbed by >I are the
only source of only ambiguity in the derivation. A similar ambiguity already
exists in the sense that any proof term remains valid under weakening in the
unrestricted context: whenever Γ; ∆ ` M : A then (Γ,Γ′); ∆ ` M : A. So
this phenomenon is not new to the linear λ-calculus, and is in fact a useful
identification of derivations which differ in “irrelevant” details, that is, unused
or absorbed hypotheses.

The substitution principles on natural deductions can be expressed on proof
terms. This is because the translations from natural deductions to proof terms
and vice versa are compositional : uses of a hypothesis labelled u in natural
deduction corresponds to an occurrence of a variable u in the proof term.

Lemma 6.2 (Substitution on Proof Terms)

1. If Γ; (∆, w:A) ` N :C and Γ; ∆′ `M : A, then Γ; (∆,∆′) ` [M/w]N : C.

2. If (Γ, u:A); ∆ ` N :C and Γ; · `M : A, then Γ; ∆ ` [M/u]N : C.

Proof: By induction on the structure of the first given derivation, using the
property of exchange. 2

We also have the property of weakening for unrestricted hypotheses. The
substitution properties are the critical ingredient for the important subject re-
duction properties, which guarantee that the result of β-reducing a well-typed
term will again be well-typed. The expansion rules also preserve types when
invoked properly.

Theorem 6.3 (Subject Reduction and Expansion)

1. If Γ; ∆ `M : A and M −→β M
′ then Γ; ∆ `M ′ : A.

2. If Γ; ∆ `M : A and M : A −→η M
′ then Γ; ∆ `M ′ : A.

Proof: For subject reduction we examine each possible reduction rule, applying
inversion to obtain the shape of the typing derivation. From this we either
directly construct the typing derivation of M ′ or we appeal to the substitution
lemma.

For subject expansion we directly construct the typing derivation for M ′

from the typing derivation of M . 2

Note that the opposite of subject reduction does not hold: there are well-
typed terms M ′ such that M −→β M ′ and M is not well-typed (see Exer-
cise 6.4).
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[ML94] Per Martin-Löf. Analytic and synthetic judgements in type the-
ory. In Paolo Parrini, editor, Kant and Contemporary Epistemology,
pages 87–99. Kluwer Academic Publishers, 1994.
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