
Chapter 3

Sequent Calculus

In this chapter we develop the sequent calculus as a formal system for proof
search in natural deduction. The sequent calculus was originally introduced
by Gentzen [Gen35], primarily as a technical device for proving consistency of
predicate logic. Our goal of describing a proof search procedure for natural
deduction predisposes us to a formulation due to Kleene [Kle52] called G3.

We introduce the sequent calculus in two steps. The first step is based
on the simple strategy of building a natural deduction by using introduction
rules bottom-up and elimination rules top-down. The result is an intercalation
calculus which applies both to intuitionistic and classical logic [Byr99]. The
second step consists of reformulating the rules for intercalation so that both
forms of rules work bottom-up, resulting in the sequent calculus.

We also show how intercalation derivations lead to more compact proof
terms, and how to extract proof terms from sequent calculus derivations.

3.1 Intercalation

A simple strategy in the search for a natural deduction is to use introduction
rules reasoning bottom-up (from the proposed theorem towards the hypotheses)
and the elimination rules top-down (from the assumptions towards the proposed
theorem). When they meet in the middle we have found a normal deduction.
Towards the end of this chapter we show that this strategy is in fact complete: if
a proposition A has a natural deduction then it has a normal deduction. First,
however, we need to make this strategy precise.

A general technique for representing proof search strategies is to introduce
new judgments which permit only those derivations which can be found by
the intended strategy. We then prove the correctness of the new, restricted
judgments by appropriate soundness and completeness theorems.

In this case, we introduce two judgments:
A ⇑ Proposition A has a normal deduction, and
A ↓ Proposition A is extracted from a hypothesis.

Draft of January 22, 2004



30 Sequent Calculus

They are defined by restricting the rules of natural deduction according to
their status as introduction or elimination rules. Hypotheses can be trivially
extracted. Therefore the necessary hypothetical judgments (in localized form,
see Section 2.3) are

u1:A1 ↓, . . . , un:An ↓ ` A ⇑ and
u1:A1 ↓, . . . , un:An ↓ ` A ↓.

We write Γ↓ for a context of the form shown above.

Hypotheses. The general rule for hypotheses simply reflects the nature of
hypothetical judgments.

u
Γ↓

1, u:A ↓,Γ↓
2 ` A ↓

Coercion. The bottom-up and top-down derivations must be able to meet in
the middle.

Γ↓ ` A ↓
↓⇑

Γ↓ ` A ⇑
Looked at another way, this rule allows us to coerce any extraction derivation
to a normal deduction. Of course, the opposite coercion would contradict the
intended strategy.

Conjunction. The rules for conjunction exhibit no unexpected features: the
introduction rule is classified as a bottom-up rule, the elimination rule is classi-
fied as a top-down rule.

Γ↓ ` A ⇑ Γ↓ ` B ⇑
∧I

Γ↓ ` A ∧B ⇑

Γ↓ ` A ∧B ↓
∧EL

Γ↓ ` A ↓

Γ↓ ` A ∧B ↓
∧ER

Γ↓ ` B ↓

Truth. For truth, there is only an introduction rule which is classified as
normal.

>I
Γ↓ ` > ⇑

Implication. The introduction rule for implication is straightforward. In the
elimination rule we require that the the second premise is normal. It is only the
first premise (whose primary connective is eliminated in this rule) which must
be extracted from a hypothesis.

Γ↓, u:A ↓ ` B ⇑
⊃Iu

Γ↓ ` A⊃B ⇑

Γ↓ ` A⊃B ↓ Γ↓ ` A ⇑
⊃E

Γ↓ ` B ↓
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3.1 Intercalation 31

Disjunction. The introduction rules for disjunction are straightforward. For
the elimination rule, again the premise with the connective which is eliminated
must have a top-down derivation. The new assumptions in each branch also are
top-down derivations. Overall, for the derivation to be normal we must require
the derivations of both premises to be normal.

Γ↓ ` A ⇑
∨IL

Γ↓ ` A ∨B ⇑

Γ↓ ` B ⇑
∨IR

Γ↓ ` A ∨B ⇑

Γ↓ ` A ∨B ↓ Γ↓, u:A ↓ ` C ⇑ Γ↓, w:B ↓ ` C ⇑
∨Eu,w

Γ↓ ` C ⇑

It would also be consistent to allow the derivations of C to be extractions, but
it is not necessary to obtain a complete search procedure and complicates the
relation to the sequent calculus (see Exercise 3.1).

Falsehood. Falsehood corresponds to a disjunction with no alternatives. There-
fore there is no introduction rule, and the elimination rule has no cases. This
consideration yields

Γ↓ ` ⊥ ↓
⊥E.

Γ↓ ` C ⇑
For this rule, it does not appear to make sense to allow the conclusion as hav-
ing been constructed top-down, since the proposition C would be completely
unrestricted.

Negation. Negation combines elements from implication and falsehood, since
we may think of ¬A as A⊃⊥.

Γ↓, u:A ↓ ` p ⇑
¬Ip,u

Γ↓ ` ¬A ⇑

Γ↓ ` ¬A ↓ Γ↓ ` A ⇑
¬E

Γ↓ ` C ⇑

Universal Quantification. Universal quantification does not introduce any
new considerations.

Γ↓ ` [a/x]A ⇑
∀Ia

Γ↓ ` ∀x. A ⇑

Γ↓ ` ∀x. A ↓
∀E

Γ↓ ` [t/x]A ↓

Existential Quantification. Existential quantification is similar to disjunc-
tion and a more lenient view of extraction is possible here, too (see Exercise 3.1).

Γ↓ ` [t/x]A ⇑
∃I

Γ↓ ` ∃x. A ⇑

Γ↓ ` ∃x. A ↓ Γ↓, u:[a/x]A ↓ ` C ⇑
∃Ea,u

Γ↓ ` C ⇑
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32 Sequent Calculus

It is quite easy to see that normal and extraction derivations are sound with
respect to natural deduction. In order to state and prove this theorem, we
introduce some conventions. Given a context

Γ↓ = u1:A1 ↓, . . . , un:An ↓

we denote
u1:A1, . . . , un:An

by Γ and vice versa.

Theorem 3.1 (Soundness of Normal Deductions)

1. If Γ↓ ` A ⇑ then Γ ` A, and

2. if Γ↓ ` A ↓ then Γ ` A.

Proof: By induction on the structure of the given derivations. We show only
three cases, since the proof is absolutely straightforward.
Case:

E = u
Γ↓

1, u:A ↓,Γ↓
2 ` A ↓

The we construct directly Γ1, u:A,Γ2 ` A.

Case:

N =

E
Γ↓ ` A ↓

↓⇑
Γ↓ ` A ⇑

Then Γ ` A by induction hypothesis on E .

Case:

N =

N2

Γ↓, u:A1 ↓ ` A2 ⇑
⊃Iu

Γ↓ ` A1 ⊃A2 ⇑

Γ, u:A1 ` A2 By i.h. on N2

Γ ` A1 ⊃A2 By rule ⊃I

2

When trying to give a translation in the other direction we encounter a diffi-
culty: certain patterns of inference cannot be annotated directly. For example,
consider

D
Γ ` A

E
Γ ` B

∧I
Γ ` A ∧B

∧EL.
Γ ` A
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3.1 Intercalation 33

If we try to classify each judgment, we obtain a conflict:

D′

Γ ` A ⇑
E ′

Γ ` B ⇑
∧I

Γ ` A ∧B ?
∧EL.

Γ ` A ↓

In this particular case, we can avoid the conflict: in order to obtain the deriva-
tion of A ⇑ we can just translate the derivation D and avoid the final two
inferences! In general, we can try to apply local reductions to the given original
derivation until no situations of the form above remain. This approach is called
normalization. It is not easy to prove that normalization terminates, and the
situation is complicated by the fact that the local reductions alone do not suffice
to transform an arbitrary natural deduction into normal form (see Exercise 3.2).

Here, we follow an alternative approach to prove completeness of normal
deductions. First, we temporarily augment the system with another rule which
makes the translation from natural deductions immediate. Then we relate the
resulting system to a sequent calculus and show that the additional rule was
redundant.

A candidate for the additional rule is easy to spot: we just add the missing
coercion from normal to extraction deductions. Since all rules are present, we
can just coerce back and forth as necessary in order to obtain a counterpart
for any natural deduction in this extended system. Of course, the resulting
derivations are no longer normal, which we indicate by decorating the turnstile
with a “+”. The judgments Γ↓ `+ A ⇑ and Γ↓ `+ A ↓ are defined by all
counterparts of all rules which define normal and extracting derivations, plus
the rule

Γ↓ `+ A ⇑
⇑↓

Γ↓ `+ A ↓

Now the annotation in the example above can be completed.

D′

Γ `+ A ⇑
E ′

Γ `+ B ⇑
∧I

Γ `+ A ∧B ⇑
⇑↓

Γ `+ A ∧B ↓
∧EL

Γ `+ A ↓

Both soundness and completeness of the extended calculus with respect to nat-
ural deduction is easy to see.

Theorem 3.2 (Soundness of Annotated Deductions)

1. If Γ↓ `+ A ⇑ then Γ ` A, and
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34 Sequent Calculus

2. if Γ↓ `+ A ↓ then Γ ` A.

Proof: By simultaneous induction over the structure of the given derivations.
2

The constructive proof of the completeness theorem below will contain an
algorithm for annotating a given natural deduction.

Theorem 3.3 (Completeness of Annotated Deductions)

1. If Γ ` A then Γ↓ `+ A ⇑, and

2. if Γ ` A then Γ↓ `+ A ↓.

Proof: By induction over the structure of the given derivation. We show only
two cases.

Case:

D =

D
Γ ` B ⊃A

E
Γ ` B

⊃E
Γ ` A

Γ↓ `+ B ⊃A ↓ By i.h. (2) on D
Γ↓ `+ B ⇑ By i.h. (1) on E
Γ↓ `+ A ↓ By rule ⊃E, proving (2)
Γ↓ `+ A ⇑ By rule ↓⇑, proving (1)

Case:

D =

D2

Γ, u:A1 ` A2

⊃Iu
Γ ` A1 ⊃A2

Γ↓, u:A1 ↓ `+ A2 ⇑ By i.h. (1) on D2

Γ↓ `+ A1 ⊃A2 ⇑ By rule ⊃Iu, proving (1)
Γ↓ `+ A1 ⊃A2 ↓ By rule ⇑↓, proving (2)

2

Even though natural deductions and annotated deductions are very similar,
they are not in bijective correspondence. For example, in an annotated deduc-
tion we can simply alternate the two coercions an arbitrary number of times.
Under the translation to natural deduction, all of these are identified.

Before we introduce the sequent calculus, we make a brief excursion to study
the impact of annotations on proof terms.
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3.2 Compact Proof Terms 35

3.2 Compact Proof Terms

The proof terms introduced in Section 2.4 sometimes contain significant amounts
of redundant information. The reason are the propositions which label λ-
abstractions and also occur in the inlA, inrA, µpu:A, ·A, and abortA constructs.
For example, assume we are given a proof term λu:A. M and we are supposed to
check if it represents a proof of A′⊃B. We then have to check that A = A′ and,
moreover, the information is duplicated. The reason for this duplication was
the intended invariant that every term proves a unique proposition. Under the
interpretations of propositions as types, this means we can always synthesize a
unique type for every valid term. However, we can improve this if we alternate
between synthesizing a type and checking a term against a given type.

Therefore we introduce two classes of terms: those whose type can be syn-
thesized, and those which can be checked against a type. Interestingly, this
corresponds precisely with the annotations as introduction or elimination rules
given above. We ignore negation again, thinking of ¬A as A ⊃ ⊥. We already
discussed why the eliminations for disjunction and falsehood appear among the
intro terms.

Intro Terms I ::= 〈I1, I2〉 Conjunction
| λu. I Implication
| inl I | inr I Disjunction
| ( case E of inl u1 ⇒ I1 | inr u2 ⇒ I2)
| 〈 〉 Truth
| abortE Falsehood
| E Coercion

Elim Terms E ::= u Hypotheses
| E I Implication
| fst E | sndE Conjunction
| (I : A) Coercion

The presence of E as an intro term corresponds to the coercion ↓⇑ which
is present in normal deductions. The presence of (I : A) as an elim term
corresponds to the coercion ⇑↓ which is present only in the extended system.
Therefore, a normal deduction can be represented without any internal type in-
formation, while a general deduction requires information at the point where an
introduction rule is directly followed by an elimination rule. It is easy to endow
the annotated natural deduction judgments with the modified proof terms from
above. We leave the details to Exercise 3.3. The two judgments are Γ↓ `+ I : A ⇑
and Γ↓ `+ E : A ↓.

Now we can prove the correctness of bi-directional type-checking.

Theorem 3.4 (Bi-Directional Type-Checking)

1. Given Γ↓, I, and A. Then either Γ↓ `+ I : A ⇑ or not.

2. Given Γ↓ and E. Then either there is a unique A such that Γ↓ `+ E : A ↓
or there is no such A.
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36 Sequent Calculus

Proof: See Exercise 3.3. 2

3.3 Sequent Calculus

In Section 3.1 we introduced normal deductions which embody the strategy
that proof search should proceed only bottom-up via introduction rules and
top-down via elimination rules. The bi-directional nature of this calculus makes
it somewhat unwieldy when it comes to the study of meta-theoretic properties
and, in particular, complicates its completeness proof. In this section we develop
a closely related calculus in which all proof search steps proceed bottom-up.
Pictorially, we would like to flip the elimination rules upside-down.

Hypotheses

?

Eliminations

↓⇑
66

Introductions

; Initial Sequents
66

Right Rules

6

Left Rules

This transformation turns introduction rules into so-called right rules, and
upside-down elimination rules into so-called left rules. We have two judgments,
A left (A is a proposition on the left) and A right (A is a proposition on the
right). They are assembled into the form of a hypothetical judgment

u1:A1 left , . . . , un:An left ` A right .

We call such a hypothetical judgment a sequent.
Note that the proposition A on the right directly corresponds to the propo-

sition whose truth is established by a natural deduction. On the other hand,
propositions on the left do not directly correspond to hypotheses in natural de-
duction, since in general they include hypotheses and propositions derived from
them by elimination rules.

Keeping this intuition in mind, the inference rules for sequents can now be
constructed mechanically from the rules for normal and extracting derivations.
To simplify the notation, we denote the sequent above by

A1, . . . , An =⇒ A

where the judgments left and right are implied by the position of the propo-
sitions. Moreover, labels ui are suppressed until we introduce proof terms.
Finally, left rules may be applied to any left proposition. Since the order of
the left propositions is irrelevant, we write Γ, A instead of the more pedantic
Γ, A, Γ′.
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3.3 Sequent Calculus 37

Initial Sequents. These correspond to the coercion from extraction to normal
derivations, and not to the use of hypotheses in natural deductions.

init
Γ, A =⇒ A

Conjunction. The right and left rules are straightforward and provide a sim-
ple illustration of the translation, in particular in the way the elimination rules
are turned upside-down.

Γ =⇒ A Γ =⇒ B
∧R

Γ =⇒ A ∧B

Γ, A ∧B,A =⇒ C
∧L1

Γ, A ∧B =⇒ C

Γ, A ∧B,B =⇒ C
∧L2

Γ, A ∧B =⇒ C

In the introduction rule (read bottom-up), we propagate Γ to both premises.
This reflects that in natural deduction we can use any available assumption
freely in both subdeductions. Furthermore, in the elimination rule the hypoth-
esis A ∧ B left persists. This reflects that assumptions in natural deduction
may be used more than once. Later we analyze which of these hypotheses are
actually needed and eliminate some redundant ones. For now, however, they
are useful because they allow us to give a very direct translation to and from
normal natural deductions.

Implication. The right rule for implication is straightforward. The left rule
requires some thought. Using an extracted implication A⊃B gives rise to two
subgoals: we have to find a normal proof of A, but we also still have to prove
our overall goal, now with the additional extracted proposition B.

Γ, A =⇒ B
⊃R

Γ =⇒ A⊃B

Γ, A⊃B =⇒ A Γ, A⊃B,B =⇒ C
⊃L

Γ, A⊃B =⇒ C

Disjunction. This introduces no new considerations.

Γ =⇒ A ∨R1
Γ =⇒ A ∨B

Γ =⇒ B ∨R2
Γ =⇒ A ∨B

Γ, A ∨B,A =⇒ C Γ, A ∨B,B =⇒ C
∨L

Γ, A ∨B =⇒ C

Negation. Negation requires a judgment parametric in a proposition. Some-
times, this is encoded as an empty right-hand side (see Exercise 3.6).

Γ, A =⇒ p
¬Rp

Γ =⇒ ¬A

Γ,¬A =⇒ A
¬L

Γ,¬A =⇒ C
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38 Sequent Calculus

Truth. By our general method, there is no left rule, only a right rule which
models the introduction rule.

>R
Γ =⇒ >

Falsehood. Again by our general method, there is no right rule, only a left
rule which models the (upside-down) elimination rule.

⊥L
Γ,⊥ =⇒ C

Universal Quantification. These require only a straightforward transcrip-
tion, with the appropriate translation of the side condition.

Γ =⇒ [a/x]A
∀Ra

Γ =⇒ ∀x. A

Γ,∀x. A, [t/x]A =⇒ C
∀L

Γ,∀x. A =⇒ C

Existential Quantification. Again, the rules can be directly constructed
from the introduction and elimination rule of natural deduction.

Γ =⇒ [t/x]A
∃R

Γ =⇒ ∃x. A

Γ,∃x. A, [a/x]A =⇒ C
∃La

Γ,∃x. A =⇒ C

The intended theorem describing the relationship between sequent calculus
and natural deduction states that Γ↓ ` A ⇑ if and only if Γ =⇒ A. Prima
facie is unlikely that we can prove either of these directions without further
generalization, since the judgments Γ↓ ` A ⇑ and Γ↓ ` A ↓ are mutually
recursive, and the statement above does not even mention the latter.

In preparation for the upcoming proof, we recall the general property of
hypothetical judgments, namely that we can substitute a derivation of the ap-
propriate judgment for a hypothesis. When applied to normal and extracting
derivations, this yields the following property.

Lemma 3.5 (Substitution Property for Extractions)

1. If Γ↓
1, u:A ↓,Γ↓

2 ` C ⇑ and Γ↓
1 ` A ↓ then Γ↓

1,Γ
↓
2 ` C ⇑.

2. If Γ↓
1, u:A ↓,Γ↓

2 ` C ↓ and Γ↓
1 ` A ↓ then Γ↓

1,Γ
↓
2 ` C ↓.

Proof: By induction on the structure of the given derivations of C ⇑ and C ↓.
In the case where the hypothesis is used we employ weakening, that is, we adjoin
the additional hypotheses Γ↓

2 to every judgment in the derivation of Γ↓
1 ` A ↓.

2

Using this lemma, a direct proof goes through (somewhat surprisingly).

Theorem 3.6 (Soundness of Sequent Calculus)
If Γ =⇒ C then Γ↓ ` C ⇑.
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3.3 Sequent Calculus 39

Proof: By induction on the structure of the given derivation S. We show a few
representative cases.

Case: Initial sequents.
init

Γ, C =⇒ C

Γ↓, u:C ↓ ` C ↓ By hypothesis u
Γ↓, u:C ↓ ` C ⇑ By rule ↓⇑

This case confirms that initial sequents correspond to the coercion from
extractions to normal deductions.

Case: Implication right rule.

S2

Γ, C1 =⇒ C2

⊃R
Γ =⇒ C1 ⊃ C2

Γ↓, u:C1 ↓ ` C2 ⇑ By i.h. on S2

Γ↓ ` C1 ⊃ C2 ⇑ By rule ⊃Iu

This case exemplifies how right rules correspond directly to introduction
rules.

Case: Implication left rule.

S1

Γ, A1 ⊃A2 =⇒ A1

S2

Γ, A1 ⊃A2, A2 =⇒ C
⊃L

Γ, A1 ⊃A2 =⇒ C

Γ↓, u:A1 ⊃A2 ↓ ` A1 ⇑ By i.h. on S1

Γ↓, u:A1 ⊃A2 ↓ ` A1 ⊃A2 ↓ By hypothesis u
Γ↓, u:A1 ⊃A2 ↓ ` A2 ↓ By rule ⊃E
Γ↓, u:A1 ⊃A2 ↓, w:A2 ↓ ` C ⇑ By i.h. on S2

Γ↓, u:A1 ⊃A2 ↓ ` C ⇑ By substitution property (Lemma 3.5)

This case illustrates how left rules correspond to elimination rules. The
general pattern is that the result of applying the appropriate elimination
rule is substituted for a hypothesis.

2

The proof of completeness is somewhat trickier—we first need to generalize
the induction hypothesis. Generalizing a desired theorem so that a direct in-
ductive proof is possible often requires considerable ingenuity and insight into
the problem. In this particular case, the generalization is of medium difficulty.
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The reader who has not seen the proof is invited to test his understanding by
carrying out the generalization and proof himself before reading on.

The nature of a sequent as a hypothetical judgment gives rise to several
general properties we will take advantage of. We make two of them, weakening
and contraction, explicit in the following lemma.

Lemma 3.7 (Structural Properties of Sequents)

1. (Weakening) If Γ =⇒ C then Γ, A =⇒ C.

2. (Contraction) If Γ, A, A =⇒ C then Γ, A =⇒ C.

Proof: First, recall our general convention that we consider the hypotheses of
a sequent modulo permutation. We prove each property by a straightforward
induction over the structure of the derivation. In the case of weakening we
adjoin an unused hypothesis A left to each sequent in the derivation. In the
case of contraction we replace any use of either of the two hypotheses by a
common hypothesis. 2

The theorem below only establishes the completeness of sequent derivations
with respect to normal deductions. That is, at this point we have not established
the completeness of sequents with respect to arbitrary natural deductions which
is more difficult.

Theorem 3.8 (Completeness of Sequent Derivations)

1. If Γ↓ ` C ⇑ then Γ =⇒ C.

2. If Γ↓ ` A ↓ and Γ, A =⇒ C then Γ =⇒ C.

Proof: By induction on the structure of the given derivations I and E . We
show some representative cases.

Case: Use of hypotheses.

E = u
Γ↓

1, u:A ↓,Γ↓
2 ` A ↓

Γ1, A, Γ2, A =⇒ C Assumption
Γ1, A, Γ2 =⇒ C By contraction (Lemma 3.7)

Case: Coercion.

I =

E
Γ↓ ` C ↓

↓⇑
Γ↓ ` C ⇑

Γ, C =⇒ C By rule init
Γ =⇒ C By i.h. on E
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Case: Implication introduction.

I =

I2

Γ↓, u:C1 ↓ ` C2 ⇑
⊃Iu

Γ↓ ` C1 ⊃ C2 ⇑

Γ, C1 =⇒ C2 By i.h. on I2

Γ =⇒ C1 ⊃ C2 By rule ⊃R

Case: Implication elimination.

E =

E2

Γ↓ ` A1 ⊃A2 ↓
I1

Γ↓ ` A1 ⇑
⊃E

Γ↓ ` A2 ↓

Γ, A2 =⇒ C Assumption
Γ, A1 ⊃A2, A2 =⇒ C By weakening (Lemma 3.7)
Γ =⇒ A1 By i.h. on I1

Γ, A1 ⊃A2 =⇒ A1 By weakening (Lemma 3.7)
Γ, A1 ⊃A2 =⇒ C By rule ⊃L
Γ =⇒ C By i.h. on E2

2

In order to establish soundness and completeness with respect to arbitrary
natural deductions we establish a connection to annotated natural deductions.
Recall that this is an extension of normal deductions which we showed sound
and complete with respect to arbitrary natural deduction in Theorems 3.2 and
3.3. We related annotated natural deductions to the sequent calculus by adding
a rule called cut.

We write the extended judgment of sequent derivations with cut as Γ +=⇒ C.
It is defined by copies of all the rules for Γ =⇒ C, plus the rule of cut:

Γ +=⇒ A Γ, A
+=⇒ C

cut
Γ +=⇒ C

Thought of from the perspective of bottom-up proof construction, this rule
corresponds to proving and then assuming a lemma A during a derivation.

Theorem 3.9 (Soundness of Sequent Calculus with Cut)
If Γ +=⇒ C then Γ↓ `+ C ⇑.

Proof: As in Theorem 3.6 by induction on the structure of the given derivation
S, with one additional case.
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Case: Cut.

S =

S1

Γ =⇒ A
S2

Γ, A =⇒ C
cut

Γ =⇒ C

Γ↓ `+ A ⇑ By i.h. on S1

Γ↓ `+ A ↓ By rule ⇑↓
Γ↓, u:A ↓ `+ C ⇑ By i.h. on S2

Γ↓ `+ C ⇑ By substitution (Lemma 3.5, generalized)

We see that, indeed, cut corresponds to the coercion from normal to ex-
traction derivations.

2

Theorem 3.10 (Completeness of Sequent Calculus with Cut)

1. If Γ↓ `+ C ⇑ then Γ +=⇒ C.

2. If Γ↓ `+ A ↓ and Γ, A
+=⇒ C then Γ +=⇒ C.

Proof: As in the proof of Theorem 3.10 with one additional case.

Case: Coercion from normal to extraction derivations.

E =

I
Γ↓ `+ A ⇑

⇑↓
Γ↓ `+ A ↓

Γ =⇒ A By i.h. on I
Γ, A =⇒ C By assumption
Γ =⇒ C By rule cut

2

The central property of the sequent calculus is that the cut rule is redundant.
That is, if Γ +=⇒ C then Γ =⇒ C. This so-called cut elimination theorem
(Gentzen’s Hauptsatz [Gen35]) is one of the central theorems of logic. As an
immediately consequence we can see that not every proposition has a proof, since
no rule is applicable to derive · =⇒ ⊥. In the system with cut, a derivation of
this sequent might end in the cut rule and consistency is not at all obvious. The
proof of cut elimination and some of its many consequences are the subject of
the next section.
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3.4 Cut Elimination

This section is devoted to proving that the rule of cut is redundant in the sequent
calculus. First we prove that cut is admissible: whenever the premises of the
cut rule are derivable in the sequent calculus without cut, then the conclusion
is. It is a simple observation that adding an admissible rule to a deductive
system does not change the derivable judgments. Formally, this second step is
an induction over the structure of a derivation that may contain cuts, proving
that if Γ +=⇒ C then Γ =⇒ C.

There is a stronger property we might hope to prove for cut: it could be a
derived rule of inference. Derived rules have a direct deduction of the conclusion
from the premises within the given system. For example,

Γ ` A Γ ` B Γ ` C

Γ ` A ∧ (B ∧ C)

is a derived rule, as evidenced by the following deduction:

Γ ` A

Γ ` B Γ ` C
∧I

Γ ` B ∧ C
∧I.

Γ ` A ∧ (B ∧ C)

Derived rules have the property that they remain valid under all extensions of
a given system. Admissible rules, on the other hand, have to be reconsidered
when new connectives or inference rules are added to a system, since these rules
may invalidate the proof of admissibility.

It turns out that cut is only admissible, but not derivable in the sequent
calculus. Therefore, we will prove the following theorem:

If Γ =⇒ A and Γ, A =⇒ C then Γ =⇒ C.

We call A the cut formula. Also, each left or right rule in the sequent calculus
focuses on an occurrence of a proposition in the conclusion, called the principal
formula of the inference.

The proof combines two ideas: induction over the structure of the cut for-
mula with induction over the structures of the two given derivations. They are
combined into one nested induction: an outer induction over the structure of
the cut formula and an inner induction over the structure of the derivations
of the premises. The outer induction over the structure of the cut formula is
related to local reductions in natural deduction (see Exercise 3.7).

Theorem 3.11 (Admissibility of Cut)
If Γ =⇒ A and Γ, A =⇒ C then Γ =⇒ C.

Proof: By nested inductions on the structure of A, the derivation D of Γ =⇒ A
and E of Γ, A =⇒ C. More precisely, we appeal to the induction hypothesis
either with a strictly smaller cut formula, or with an identical cut formula and

Draft of January 22, 2004



44 Sequent Calculus

two derivations, one of which is strictly smaller while the other stays the same.
The proof is constructive, which means we show how to transform

D
Γ =⇒ A

and
E

Γ, A =⇒ C
to

F
Γ =⇒ C.

The proof is divided into several classes of cases. More than one case may
be applicable, which means that the algorithm for constructing the derivation
of Γ =⇒ C from the two given derivations is naturally non-deterministic.

Case: D is an initial sequent.

D = init
Γ′, A =⇒ A

Γ = Γ′, A This case
Γ′, A, A =⇒ C Derivation E
Γ′, A =⇒ C By contraction (Lemma 3.7)
Γ =⇒ C By equality

Case: E is an initial sequent using the cut formula.

E = init
Γ, A =⇒ A

C = A This case
Γ =⇒ A Derivation D

Case: E is an initial sequent not using the cut formula.

E = init
Γ′, C, A =⇒ C

Γ = Γ′, C This case
Γ′, C =⇒ C By rule init
Γ =⇒ C By equality

Case: A is the principal formula of the final inference in both D and E . There
are a number of subcases to consider, based on the last inference in D and
E . We show some of them.
Subcase:

D =

D1

Γ =⇒ A1

D2

Γ =⇒ A2

∧R
Γ =⇒ A1 ∧A2

andE =

E1

Γ, A1 ∧A2, A1 =⇒ C
∧L1

Γ, A1 ∧A2 =⇒ C
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Γ, A1 =⇒ C By i.h. on A1 ∧A2, D and E1

Γ =⇒ C By i.h. on A1 from above and D1

Actually we have ignored a detail: in the first appeal to the induction
hypothesis, E1 has an additionaly hypothesis (A1 left) and therefore
does not match the statement of the theorem precisely. However, we
can always weaken D to include this additional hypothesis without
changing the structure of D (see the proof of Lemma 3.7) and then
appeal to the induction hypothesis. We will not be explicit about
these trivial weakening steps in the remaining cases.

Subcase:

D =

D2

Γ, A1 =⇒ A2

⊃R
Γ =⇒ A1 ⊃A2

and E =

E1

Γ, A1 ⊃A2 =⇒ A1

E2

Γ, A1 ⊃A2, A2 =⇒ C
⊃L

Γ, A1 ⊃A2 =⇒ C

Γ =⇒ A1 By i.h. on A1 ⊃A2, D and E1

Γ =⇒ A2 By i.h. on A1 from above and D2

Γ, A2 =⇒ C By i.h. on A1 ⊃A2, D and E2

Γ =⇒ C By i.h. on A2 from above

Subcase:

D =

D1

Γ, A1 =⇒ p
¬Rp

Γ =⇒ ¬A1

and E =

E1

Γ,¬A1 =⇒ A1

¬L
Γ,¬A1 =⇒ C

Γ =⇒ A1 By i.h. on D and E1

Γ, A1 =⇒ C By substitution for parameter C in D1

Γ =⇒ C By i.h. on A1 from above

Note that the condition that p be a new parameter in D1 is necessary
to guarantee that in the substitution step above we have [C/p]A1 =
A1 and [C/p]Γ = Γ.
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Subcase:

D =

D1

Γ =⇒ [t/x]A1

∃R
Γ =⇒ ∃x. A1

and E =

E1

Γ,∃x. A1, [a/x]A1 =⇒ C
∃La

Γ,∃x. A1 =⇒ C

Γ, [t/x]A1 =⇒ C By substitution for parameter a in E1

Γ, [t/x]A1 =⇒ C By i.h. on ∃x. A1, D and [t/a]E1

Γ =⇒ C By i.h. on [t/x]A1 from D1 and above

Note that this case requires that [t/x]A1 is considered smaller than
∃x. A1. Formally, this can be justified by counting the number of
quantifiers and connectives in a proposition and noting that the term
t does not contain any. A similar remark applies to check that [t/a]E1

is smaller than E . Also note how the side condition that a must be a
new parameter in the ∃L rule is required in the substitution step to
conclude that [t/a]Γ = Γ, [t/a][a/x]A1 = [t/x]A1, and [t/a]C.

Case: A is not the principal formula of the last inference in D. In that case D
must end in a left rule and we can appeal to the induction hypothesis on
one of its premises. We show some of the subcases.

Subcase:

D =

D1

Γ′, B1 ∧B2, B1 =⇒ A
∧L1

Γ′, B1 ∧B2 =⇒ A

Γ = Γ′, B1 ∧B2 This case
Γ′, B1 ∧B2, B1 =⇒ C By i.h. on A, D1 and E
Γ′, B1 ∧B2 =⇒ C By rule ∧L1

Γ =⇒ C By equality

Subcase:

D =

D1

Γ′, B1 ⊃B2 =⇒ B1

D2

Γ′, B1 ⊃B2, B2 =⇒ A
⊃L

Γ′, B1 ⊃B2 =⇒ A

Γ = Γ′, B1 ⊃B2 This case
Γ′, B1 ⊃B2, B2 =⇒ C By i.h. on A, D2 and E
Γ′, B2 ⊃B2 =⇒ C By rule ⊃L on D1 and above
Γ =⇒ C By equality
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Case: A is not the principal formula of the last inference in E . This overlaps
with the previous case, since A may not be principal on either side. In
this case, we appeal to the induction hypothesis on the subderivations of
E and directly infer the conclusion from the results. We show some of the
subcases.
Subcase:

E =

E1

Γ, A =⇒ C1

E2

Γ, A =⇒ C2

∧R
Γ, A =⇒ C1 ∧ C2

C = C1 ∧ C2 This case
Γ =⇒ C1 By i.h. on A, D and E1

Γ =⇒ C2 By i.h. on A, D and E2

Γ =⇒ C1 ∧ C2 By rule ∧R on above

Subcase:

E =

E1

Γ′, B1 ∧B2, B1, A =⇒ C
∧L1

Γ′, B1 ∧B1, A =⇒ C

Γ = Γ′, B1 ∧B2 This case
Γ′, B1 ∧B2, B1 =⇒ C By i.h. on A, D and E1

Γ′, B1 ∧B2 =⇒ C By rule ∧L1 from above

2

As mentioned above, it is a general property of deductive system that adding
an admissible rule does not change the derivable judgments. We show the
argument in this special case.

Theorem 3.12 (Cut Elimination)
If Γ +=⇒ C then Γ =⇒ C.

Proof: In each case except cut we simply appeal to the induction hypotheses
and reapply the same rule on the resulting cut-free derivations. So we write out
only the case of cut.
Case:

D+ =

D+
1

Γ +=⇒ A

D+
2

Γ, A
+=⇒ C

cut
Γ +=⇒ C

Γ =⇒ A By i.h. on D+
1

Γ, A =⇒ C By i.h. on D+
2

Γ =⇒ C By admissibility of cut (Theorem 3.11)

2
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3.5 Applications of Cut Elimination

The cut elimination theorem is the final piece needed to complete our study
of natural deduction and normal natural deduction and at the same time the
springboard to the development of efficient theorem proving procedures. Our
proof in the previous section is constructive and therefore contains an algorithm
for cut elimination. Because the cases are not mutually exclusive, the algorithm
is non-deterministic. However, the resulting derivation should always be the
same. While this property does not quite hold, the different derivations can be
shown to be equivalent in a natural sense. This is called the confluence property
for intuitionistic cut elimination modulo commutative conversions. It it is not
implicit in our proof, but has to be established separately. On the other hand,
our proof shows that any possible execution of the cut-elimination algorithm
terminates. This is called the strong normalization property for the sequent
calculus.

By putting the major results of this chapter together we can now prove the
normalization theorem for natural deduction.

Theorem 3.13 (Normalization for Natural Deduction)
If Γ ` A then Γ↓ ` A ⇑.

Proof: Direct from previous theorems.

Γ ` A Assumption
Γ↓ `+ A ⇑ By completeness of annotated deductions (Theorem 3.3)
Γ +=⇒ A By completeness of sequent calculus with cut (Theorem 3.10)
Γ =⇒ A By cut elimination (Theorem 3.12)
Γ↓ ` A ⇑ By soundness of sequent calculus (Theorem 3.6)

2

Among the other consequences of cut elimination are consistency and various
independence results.

Corollary 3.14 (Consistency) There is no deduction of ` ⊥.

Proof: Assume there is a deduction ` ⊥. By the results of this chapter then
· =⇒ ⊥. However, this sequent cannot be the conclusion of any inference rule
in the (cut-free) sequent calculus. Therefore ` ⊥ cannot be derivable. 2

In the same category are the following two properties. As in the proof above,
we analyze the inference rules which may have led to a given conclusion. This
proof technique is called inversion.

Corollary 3.15 (Disjunction and Existential Property)

1. If ` A ∨B then either ` A or ` B.

2. If ` ∃x. A then ` [t/x]A for some t.
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Proof: Direct by inversion on possible sequent derivations in both cases.

1. Assume ` A ∨ B. Then · =⇒ A ∨ B. By inversion, either · =⇒ A or
· =⇒ B. Therefore ` A or ` B.

2. Assume ∃x. A. then · =⇒ ∃x. A. By inversion, · =⇒ [t/x]A for some t.
Hence ` [t/x]A.

2

Note that the disjunction and existential properties rely on a judgment with-
out hypotheses. For example, we have B∨A =⇒ A∨B, but neither B∨A =⇒ A
for B ∨A =⇒ B hold.

The second class of properties are independence results which demonstrate
that certain judgments are not derivable. As a rule, these are parametric judg-
ments some instances of which may be derivable. For example, we will show
that the law of excluded middle is independent. Nonetheless, there are some
propositions A for which we can show ` A ∨ ¬A (for example, take A = ⊥).

Corollary 3.16 (Independence of Excluded Middle)
There is no deduction of ` A ∨ ¬A for arbitrary A.

Proof: Assume there is a deduction of ` A∨¬A. By the result of this section
then · =⇒ A ∨ ¬A. By inversion now either · =⇒ A or · =⇒ ¬A. The former
judgment (which is parametric in A) has no derivation. By inversion, the latter
can only be infered from A =⇒ p for a new parameter p. But there is no
inference rule with this conclusion, and hence there cannot be a deduction of
` A ∨ ¬A. 2

3.6 Proof Terms for Sequent Derivations

In this section we address the question of how to assign proof terms to sequent
calculus derivations. There are essentially two possibilities: we can either de-
velop a new proof term calculus specifically for sequent derivations, or we can
directly assign natural deduction proof terms. The former approach can be
found, for example, in [Pfe95]. The latter is more appropriate for our purposes
here, since we view natural deductions as defining truth and since we already
devised methods for compact representations in Section 3.2.

We define a new judgment, Γ =⇒ I : A, maintaining that Γ ` I : A. For this
purpose we abandon the previous convention of omitting labels for hypotheses,
since proof terms need to refer to them. On the other hand, we still consider
assumptions modulo permutations in order to simplify notation. We use the
compact proof terms here only for simplicity.

The proof terms to be assigned to each inference rule can be determined by a
close examination of the soundness proof for the sequent calculus (Theorem 3.6).
Since that proof is constructive, it contains an algorithm for translating a se-
quent derivation to a normal natural deduction. We just have to write down
the corresponding proof terms.
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Initial Sequents. These are straightforward.

init
Γ, u:A =⇒ u : A

Note that there may be several hypotheses A with different labels. In the
shorthand notation without labels before, it is ambiguous which one was used.

Conjunction. The right rule is straightforward, since it is isomorphic to the
introduction rule for natural deduction. The left rules require a substitution to
be carried out, just as in the proof of Theorem 3.6.

Γ =⇒ I : A Γ =⇒ J : B
∧R

Γ =⇒ 〈I, J〉 : A ∧B

Γ, u:A ∧B,w:A =⇒ I : C
∧L1

Γ, u:A ∧B =⇒ [fstu/w]I : C

Γ, u:A ∧B,w:B =⇒ I : C
∧L2

Γ, u:A ∧B =⇒ [sndu/w]I : C

There are two potential efficiency problems in the proof term assignment for the
left rule. The first is that if w is used many times in I, then fstu or sndu may
be replicated many times, leading to a large proof. The second is that when a
number of successive left rules are encountered, the term I we substitute into
will be traversed many times. These problems can be avoided in several ways
(see Exercise ??).

Implication. The pattern of the previous right and left rules continues here.

Γ, u:A =⇒ I : B
⊃R

Γ =⇒ λu. I : A⊃B

Γ, u:A⊃B =⇒ J : A Γ, u:A⊃B,w:B =⇒ I : C
⊃L

Γ, u:A⊃B =⇒ [u J/w]I : C

Disjunction. This introduces no new considerations.

Γ =⇒ I : A ∨R1
Γ =⇒ inl I : A ∨B

Γ =⇒ J : B ∨R2
Γ =⇒ inr J : A ∨B

Γ, u:A ∨B, v:A =⇒ I : C Γ, u:A ∨B,w:B =⇒ J : C
∨L

Γ, u:A ∨B =⇒ ( case u of inl v ⇒ I | inr w ⇒ J) : C

Negation. This is similar to implication.1

Γ, u:A =⇒ I : p
¬Rp

Γ =⇒ µpu. I : ¬A

Γ, u:¬A =⇒ I : A
¬L

Γ, u:¬A =⇒ u · I : C

1[add to compact proof term section? ]
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Truth. This is trivial, since there is no left rule.

>R
Γ =⇒ 〈 〉 : >

Falsehood. Again, this is immediate.

⊥L
Γ, u:⊥ =⇒ abortu : C

To treat the quantifiers we extend our proof term calculus to handle the
quantifier rules. We overload the notation by reusing λ-abstraction and pairing.
There is no ambiguity, because the proof term for universal quantification binds
a term variable x (rather than a proof variable u), and the first component of
the pair for existential quantification is a first-order term, rather than a proof
term as for conjunction.

First, we show the assignment of these terms to natural deductions, then to
the sequent calculus.

Universal Quantification. The proof term for a universal quantifier ∀x. A
is a function from a term t to a proof of [t/x]A. The elimination term applies
this function.

Γ ` [a/x]M : [a/x]A
∀Ia

Γ ` λx. M : ∀x. A

Γ ` M : ∀x. A
∀E

Γ ` M t : [t/x]A

The local reductions and expansions just mirror the corresponding operations
on natural deductions.

(λx. M) t −→R [t/x]M
M : ∀x. A −→E λx. M x (x not free in M)

Existential Quantification. The proof term for an existential ∃x. A is a pair
consisting of a witness term t and the proof of [t/x]A.

Γ ` M : [t/x]A
∃I

Γ ` 〈t, M〉 : ∃x. A

Γ ` M : ∃x. A Γ, u:[a/x]A ` [a/x]N : C
∃Ea,u

Γ ` let 〈x, u〉 = M in N : C

The local reduction for the existential quantifier has to perform two substitu-
tions, just as on natural deductions.

let 〈x, u〉 = 〈t, M〉 in N −→R [M/u][t/x]N
M : ∃x. A −→E let 〈x, u〉 = M in 〈x, u〉
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It is once again easy to see how to divide the proof terms into introduction
and elimination forms. We only show the resulting definition of compact proof
terms.

Intro Terms I ::= . . .
| λx. I Universal Quantification
| 〈t, I〉 Existential Quantification
| let 〈x, u〉 = E in I

Elim Terms E ::= . . . | E t Universal Quantification

On sequent calculus derivations, we follow the same strategy as in the pre-
ceding propositional rules.

Universal Quantification.

Γ =⇒ [a/x]I : [a/x]A
∀Ra

Γ =⇒ λx. I : ∀x. A

Γ, u:∀x. A,w:[t/x]A =⇒ I : C
∀L

Γ, u:∀x. A =⇒ [u t/w]I : C

Existential Quantification.

Γ =⇒ I : [t/x]A
∃R

Γ =⇒ 〈t, I〉 : ∃x. A

Γ, u:∃x. A,w:[a/x]A =⇒ [a/x]I : C
∃La

Γ, u:∃x. A =⇒ (let 〈x, w〉 = u in I) : C

3.7 Exercises

Exercise 3.1 Consider a system of normal deduction where the elimination
rules for disjunction and existential are allowed to end in an extraction judg-
ment.

Γ↓ ` A ∨B ↓ Γ↓, u:A ↓ ` C ↓ Γ↓, w:B ↓ ` C ↓
∨Eu,w

Γ↓ ` C ↓

Γ↓ ` ∃x. A ↓ Γ↓, u:[a/x]A ↓ ` C ↓
∃Ea,u

Γ↓ ` C ↓

Discuss the relative merits of allowing or disallowing these rules and show how
they impact the subsequent development in this Chapter (in particular, bi-
directional type-checking and the relationship to the sequent calculus).

Exercise 3.2

1. Give an example of a natural deduction which is not normal (in the sense
defined in Section 3.1), yet contains no subderivation which can be locally
reduced.
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2. Generalizing from the example, devise additional rules of reduction so that
any natural deduction which is not normal can be reduced. You should
introduce no more and no fewer rules than you need for this purpose.

3. Prove that your rules satisfy the specification in part (2).

Exercise 3.3 Write out the rules defining the judgments Γ↓ `+ I : A ⇑ and
Γ↓ `+ E : A ↓ and prove Theorem 3.4. Make sure to carefully state the induction
hypothesis (if it is different from the statement of the theorem) and consider all
the cases.

Exercise 3.4 Fill in the missing subcases in the proof of the admissibility of
cut (Theorem 3.11) where A is the principal formula in both D and E .

Exercise 3.5 Consider an extension of intuitionistic logic by a universal quan-
tifier over propositions, written as ∀2p. A, where p is variable ranging over
propositions.

1. Show introduction and elimination rules for ∀2.

2. Extend the calculus of normal and extraction derivations.

3. Show left and right rules of the sequent calulus for ∀2.

4. Extend the proofs of soundness and completeness for the sequent calculus
and sequent calculus with cut to accomodate the new rules.

5. Point out why the proof for admissibility of cut does not extend to this
logic.

Exercise 3.6 Gentzen’s original formulation of the sequent calculus for intu-
itionistic logic permitted the right-hand side to be empty. The introduction rule
for negation then has the form

Γ, A =⇒
¬R.

Γ =⇒ ¬A

Write down the corresponding left rule and detail the changes in the proof for
admissibility of cut. Can you explain sequents with empty right-hand sides as
judgments?

Exercise 3.7 The algorithm for cut elimination implicit in the proof for admis-
sibility of cut can be described as a set of reduction rules on sequent derivations
containing cut.

1. Write out all reduction rules on the fragment containing only implication.

2. Show the extracted proof term before and after each reduction.

3. If possible, formulate a strategy of reduction on proof terms for natural
deduction which directly models cut elimination under our translation.
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4. Either formulate and prove a theorem about the connection of the strate-
gies for cut elimination and reduction, or show by example why such a
connection is difficult or impossible.

Exercise 3.8

1. Prove that we can restrict initial sequents in the sequent calculus to have
the form Γ, P =⇒ P where P is an atomic proposition without losing
completeness.

2. Determine the corresponding restriction in normal and extraction deriva-
tions and prove that they preserve completeness.

3. If you see a relationship between these properties and local reductions or
expansions, explain. If you can cast it in the form of a theorem, do so and
prove it.

Exercise 3.9 For each of the following propositions, prove that they are deriv-
able in classical logic using the law of excluded middle. Furthermore, prove that
they are not true in intuitionistic logic for arbitrary A, B, and C.

1. ((A⊃B)⊃A)⊃A.

2. Any entailment in Exercise 2.8 which is only classically, but not intuition-
istically true.
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