
C. Kirchner and H. Kirchner (Eds.): Automated Deduction, CADE-15

LNAI 1421, pp. 427–441, 1998. c© Springer–Verlag Berlin Heidelberg 1998

Towards Efficient Subsumption

Tanel Tammet

Department of Computing Science, University of Göteborg,
Göteborg, Sweden

tammet@cs.chalmers.se

Abstract. We propose several methods for writing efficient subsump-
tion procedures for non-unit clauses, tested in practice as parts incorpo-
rated into the Gandalf family of theorem provers. Versions of Gandalf
exist for classical logic, first order intuitionistic logic and type theory.

Subsumption is one of the most important techniques for cutting down search
space in resolution theorem proving. However, for many problem categories most
of the proof search time is spent on subsumption. While acceptable efficiency has
been achieved for subsuming unit clauses (see [7], [2]), the nonunit subsumption
tends to slow provers down prohibitively.

We propose several methods for writing efficient subsumption procedures for
non-unit clauses, succesfully tested in practice as parts built into the Gandalf
family of theorem provers:

– ordering literals according to a certain subsumption measure
– indexing first two literals of each nonunit clause
– pre-computed properties of terms, literals and clauses
– a hierarchy of fast filters for clause-to-clause subsumption
– combining subsumption with clause simplification
– linear search among the strongly reduced number of candidates for back

subsumption

The presented methods for substitution were among the key techniques en-
abling the classical version of Gandalf to win the MIX division of the CASC-14
prover contest in 1997. The approach of the paper is purely empirical, presenting
the methods and bringing some statistical evidence.

1 Gandalf Family of Provers

Before continuing with the details of the subsumption methods we will present
an overview of the Gandalf family of provers. We use the name Gandalf for
the interdependent, code-sharing, resolution-based automated theorem provers
we are developing: a resolution prover for first-order intuitionistic logic Tammet
[9], for a fragment of Martin-Löf’s type theory Tammet [10] and for first-order
classical logic (earlier version in Tammet [11]).



428 Tanel Tammet

1.1 Gandalf for Intuitionistic Logic and Type Theory

The motivation for the intuitionistic version of Gandalf was to build the very
first resolution prover for the logic. The type theory version is developed as an
assistant for human users of the type theory system ALF, see Magnusson and
Nordström [4]. One of our goals was to experiment with the optimised translation
methods from type theory to classical logic, presented in Tammet [10]

1.2 Code Sharing and Comparisons

The intuitionistic version presented in Tammet [9] uses the general scheme of
building resolution calculi (also called the inverse method) originating from
Maslov and Mints [5], augmented with a number of novel search strategies.

Most of the code of the intuitionistic prover is shared with the classical
prover. This makes it easy to implement universal low-level resolution strategies,
heuristics and engineering solutions, so that they will work both for classical and
intuitionistic logic.

Since the resolution proof search in intuitionistic logic typically generates
large amounts of non-unit clauses, the efficiency of the subsumption procedure
for the non-unit clauses is highly important for the intuitionistic version of Gan-
dalf. Since the same procedure is shared by the intuitionistic and and classical
components, the subsumption component is currently one of the most sophisti-
cated parts of the classical version of Gandalf.

However, we note that the top-level search strategies for these logics are still
substantially different.

In [9] we observe that for the most of the first-order intuitionistic formulas
we have found in the literature, our resolution-based prover compares favourably
with the earlier tableaux-based provers.

The similarity of the search paradigm — resolution — and the code for
intuitionistic and classical provers also simplifies comparison between the time
it takes to prove a formula intuitionistically and classically. Roughly said, in
almost all of our experiments the intuitionistic proof search is much harder than
the classical proof search.

The current version of Gandalf for the (restricted) type theory uses a mod-
ification of the classical prover, with the latter limited to Horn clauses, where
classical and intuitionistic provability coincide. The modified classical prover is
used as an inference engine in a larger system doing conversions between type
theory and classical logic as well as creating proof subtasks by automating struc-
tural induction on types. The system always performs the conversion from clas-
sical proofs to type theory proofs, which is a relatively complicated part of the
system. In particular, we use a separate limited proof search for the conversion
only.

1.3 Gandalf for Classical Logic

Although some of our motivations stem from nonclassical logics, we are strongly
interested in the classical version in its own right. In particular, Gandalf contains



Towards Efficient Subsumption 429

special strategies for program synthesis using classical logic, see Tammet [8] as
well as decision strategies based on orderings, see Fermüller et al [1]. The classical
version of Gandalf won the prover competition CASC-14 during the CADE-14
in 1997.

Gandalf implements a number of different basic strategies: binary ordered
resolution for several orderings, versions of set-of-support resolution, binary unit
resolution, hyperresolution. Enhancements are used for cutting off literals and
combining different strategies, in particular forward and backward reasoning,
into one run. Equality is handled by ordered paramodulation and demodulation.

1.4 Time Slicing

It is universally recognised that there cannot exist any simple search strategies
which are feasible for most or all problems. Typically, different strategies have
dramatic differences of behaviour on different problems. It is rather common
that a proof which would take years to find with one particular search strategy
can be found in a few seconds with another.

Selecting possibly suitable strategies and running them either in parallel or
one after another is a regular pattern of practical use of provers by humans.
We think that it is worthwhile to automatise at least parts of this Las Vegas
type strategy selection algorithm in order to obtain better cooperation between
runs with different strategies and to assist a human user — in particular, an
unexperienced human user — with a powerful expert system also for the meta-
level of theorem proving.

The basic idea of the automatic mode in Gandalf — also used during the
CASC-14 competition — is time-slicing: Gandalf selects a set of different search
strategies, allocates time to these and finally runs the strategies one after an-
other. The motivation is the following: since it is very hard to determine a single
suitable strategy by some heuristic procedure, it pays off to try a number of
possibly suitable strategies.

The selection of strategies and the percentage of time they receive is in a
somewhat ad hoc way based on the characteristics of the problem: percentage
of horn and almost-horn clauses, the number of clauses, percentage of clauses
where literals can be ordered using term and variable depths. For example, in
case of small horn problems hyperresolution and binary unit resolution would
get most of the time, whereas in case of large non-horn problems several versions
of set-of-support would get most of the time.

The set of candidate strategies contains both pure, complete strategies, in-
complete combinations (for example, hyperresolution with set-of-support) and
strategies with limitations on term depth and clause length. For pure unit equal-
ity problems a fixed set of five different strategies was used.

Once the strategies are selected, they are run one after another. There is
some cooperation between different strategies - in case enough memory is avail-
able, unit clauses derived during running the previous strategies are kept, in
order to cut off literals from newly derived clauses. However, for the CASC-14
competition examples this cooperation was very rarely of any use.



430 Tanel Tammet

1.5 Implementation and Availability

Gandalf is implemented in Scheme. We are using the scm interpreter developed
by A. Jaffer and the Scheme-to-C compiler Hobbit developed by T. Tammet for
the scm system.

The source, binaries, manual and other materials are available at
http://www.cs.chalmers.se/~tammet/gandalf/.

2 Subsumption: Preliminaries

We use the standard notions of term, literal, unifier, clause and subsumption,
see for example Fermüller et al: [1].

A unit clause is a clause consisting of a single literal. A term, literal or a
clause is ground iff it does not contain variables. The length of a clause is the
number of literals in the clause. The size of a term, literal and clause is the
number of subterms and literals in it. The depth of a literal and a clause is the
depth of the deepest term occurring in it.

A literal A subsumes a literal B iff there exists a substitution σ such that
Aσ = B. A clause C subsumes a clause D iff there exists a substitution σ such
that Cσ ⊆ D.

The main kinds of subsumption application in a typical resolution prover are
forward and backward subsumption, ordinarily called while processing a newly
derived clause.

By forward subsumption we mean the process of checking whether any of the
input or already derived clauses subsumes the newly derived clause. If yes, then
the newly derived clause is eliminated.

By backward subsumption we mean the process of eliminating these input
and already derived clauses which are subsumed by the newly derived clause.

By unit subsumption we mean a special case of subsumption where the sub-
suming clause is unit.

The Gandalf given-clause main loop for inferring and processing clauses keeps
two main lists of clauses — sos and usable — and is similar to most of the other
resolution provers (cite from McCune [6]):

While (sos is not empty and no refutation has been found)

1. Let given_clause be the ‘lightest’ clause in sos;

2. Move given_clause from sos to usable;

3. Infer and process new clauses using the inference rules in

effect; each new clause must have the given_clause as

one of its parents and members of usable as its other

parents; new clauses that pass the retention tests

are appended to sos;

End of while loop.

During the ’process’ phase above Gandalf will attempt to forward subsume
the clause and if that does not succeed, back subsumption is called. Several clause
simplification methods are combined into the forward subsumption process.



Towards Efficient Subsumption 431

Gandalf always generates all the factors of each derived clause. Therefore we
prohibit subsumption checks between clauses A and B such that A is longer
than B. Should subsumption hold, there will be a shorter factor of A subsuming
B.

3 Challenges of Subsumption

The two main reasons why subsumption often takes a large percentage of search
time are:

1. Subsumption check has to be called for each newly derived clause C. Each
such check must test C against all the existing clauses. Thus the number
of clause-to-clause subsumption tests is quadratic to the number of derived
clauses. When the latter is large - tens and hundreds of thousands — the
square of this number becomes prohibitively large.

2. Checking whether a non-unit clause C of length n subsumes another clause
D of length m is a backtracking algorithm which requires mn literal-to-literal
subsumption tests in the worst case. Thus, for long clauses even the time of
a single clause subsumption may become prohibitively long.

It is important to consider separately the forward and backward subsump-
tion, as well as unit and nonunit subsumption: the methods for handling these
tasks efficiently differ a lot.

The standard way to alleviate problems stemming from the first reason above
is the use of special indexing techniques, like discrimination tree indexing and
path indexing, see McCune [7].

These indexing methods work very well with forward subsumption, particu-
larly the unit forward subsumption. They are not as good for backward subsump-
tion and they do not give much improvement over the naive linear algorithm in
case the average clause length is high.

The standard way to alleviate the problems stemming from the second reason
above is to analyse the variable-sharing properties of literals and order the literals
accordingly: a literal A which contains a superset of variables in a literal B
should be tested before B. This method was proposed and analysed by Leitsch
and Gottlob in [3].

4 Importance of Subsumption for Large Non-Horn
Problems

When compared to other provers — for example, Otter — Gandalf performs
best on large non-Horn clause sets. Most of the industrial verification problems
create such sets when converted to the clause form. In mathematics, set theory
problems have a similar effect.

For proving non-Horn clause sets it is typically necessary to generate non-unit
clauses. The longer they are, the harder the task of subsumption.



432 Tanel Tammet

Some search strategies, like forward-reasoning hyperresolution, tend to pro-
duce relatively short clauses, while others, like backward-reasoning set of support
resolution, tend to produce long clauses.

Because most of the existing provers slow down considerably — due to sub-
sumption — when large amounts of long clauses are produced, these provers are
preferably used with strategies like hyperresolution, and not with strategies like
set of support.

However, for problems which translate into large clause sets — on the order
of hundreds of clauses — the forward-reasoning hyperresolution-like strategies
are ordinarily a bad choice, since they do not concentrate search on the goal
clause(s), as set of support does. However, without fast subsumption, set of
support becomes prohibitively slow for large non-Horn clause sets.

Because backward-reasoning tableaux provers do not rely on subsumption to
such an extent as the resolution provers do, tableaux systems like SETHEO have
been a good choice for finding proofs for large non-Horn clause sets. However, our
experience with Gandalf shows that versions of set of support combined with an
efficient subsumption procedure are a feasible alternative to the tableaux systems
when it comes to proving beforementioned types of problems.

5 Forward Subsumption

5.1 Unit Forward Subsumption

According to McCune [7] the most efficient forward subsumption procedure for
unit forward subsumption is obtained by using the full variable-containing dis-
crimination tree. Hence Gandalf keeps all the unit clauses indexed in such a tree
and uses the corresponding method for forward subsumption: a newly derived
clause {L1, . . . , Ln} is processed by attempting to forward subsume the literals
L1, . . . , Ln one after another, with the discrimination tree. No direct clause-to-
clause subsumption checks are performed.

Unit Deletion Gandalf combines the following clause simplification method
into unit forward subsumption. The discrimination tree leaves contain unit clauses
for both negative and positive literals, and in case a literal negative to the checked
literal Li is found at a leaf, the literal Li is removed from the clause C.

5.2 Nonunit Forward Subsumption

Observe that if the clause D subsumes C, then each literal in D subsumes at
least one literal in C.

Several provers combine the discrimination tree with the linear test with
a subset of derived clauses. One literal in each nonunit clause is put into the
indexed tree. When a new clause C is checked for nonunit subsumption, at first
the set S of clauses is retrieved from the tree so that at least one literal in each



Towards Efficient Subsumption 433

clause in S subsumes at least one literal in C. The clauses in S are then checked
linearly.

Gandalf takes this idea one step further, indexing on two literals from each
clause. In principle it is possible to extend the indexing to any n literals, in
which case the time spent on linear search will diminish, but the time required
for searching the tree will grow very fast as n increases. Our choice of indexing
on two literals stems mainly from the following empirical considerations:

– It is usually advantageous to concentrate search on shorter clauses. Hence
the number of shorter clauses is likely to be bigger than the number of long
clauses. Although this varies a lot, two-literal clauses appear to be fairly
common during proof searches.

– The balance between the tree search time and the linear test time appears
to be acceptable for most problems when two-literal indexing is used.

Each clause D is ordered according to a certain measure �s described later
(the idea is that the �s-bigger elements of the clause are less likely to subsume
a randomly chosen literal) and the �s-first two literals L1 and L2 are combined
into one pseudo-literal P (L1, L2) which is then added to the discrimination tree
in a standard way.

Hence all the two-literal clauses {R1, R2} are non-unit forward-subsumed by
checking first P (R1, R2) and then P (R2, R1) against the discrimination tree. No
direct clause-to-clause subsumption checks are performed.

For longer clauses {R1, R2, . . . , Rn} we do not carry on subsumption checking
by first checking all clauses of length two, then of length three, etc. Instead we use
the previously described indexing on two literals for forming a set of candidate
subsuming clauses which are later used for clause-to-clause subsumption.

In order to create the list of candidate subsuming clauses we first form
pseudo-literals

P (R1, R2), P (R1, R3), . . . , P (R1, Rn), . . . , P (Rn, Rn−1)

representing all ordered pairs of literals in the clause. These pseudo-literals are
then checked incrementally for finding clauses which contain a pair of literals
subsuming both components of the pseudo-literal. A clause G : {G1, G2, . . . , Gm}
is a subsumption candidate iff for some substitution σ, some literals Gi and Gj

and some pseudo-literal P (Ru, Rv) holds Giσ = Ru and Gjσ = Rv.
The search for subsumption candidates is organised incrementally, by re-using

a path in the discrimination tree for the first component literal. For example,
once the path for P (R1) has been found in the discrimination tree, the found
path is used for all of

P (R1, R2), P (R1, R3), . . . , P (R1, Rn)

instead of re-finding the path for P (R1) for each pseudo-literal.



434 Tanel Tammet

Unit Deletion Gandalf combines the following clause simplification method
into two-literal forward subsumption. The discrimination tree leaves contain two-
literal clauses for both negative and positive literals. In case such a two-literal
clause {¬L, R} is found at the leaf that the newly derived clause contains literals
L′ and R′ such that {L, R} subsumes {L′, R′}, the literal L′ is deleted from the
newly derived clause.

Linear Test The set of candidate subsuming clauses contains clauses of length
three or more. Once the set of candidate subsuming clauses has been built, they
are all tested for subsuming the newly derived clause, using the clause-to-clause
subsumption check. The optimised algorithm for this test is presented in the
next section.

6 Clause-to-Clause Subsumption

We will first consider the importance of ordering the literals in a suitable way.
Consider the task of checking whether the clause {L1, . . . , Ln} subsumes the

clause {R1, . . . , Rm}. In the general case we need to test all the permutations of
literals L1, . . . , Ln against the clause {R1, . . . , Rm}. A natural way to do this is to
use a backtracking algorithm. First a literal L1 is matched with R1, R2, . . . until
such an Ri is found which is subsumed by L1, giving a certain substitution σ1.
After that we repeat the same search for L2σ1, etc, until each literal L subsumes
a literal R. In case some Ljσj does not subsume any Rk, the search backtraces
to Lj−1, attempting to find another Rl subsumed by Lj−1, giving a different
substitution σ′

j .
The crucial issue here is minimising backtracking. Gottlob and Leitsch [3]

suggests the following:

1. In case the literal Lj−1σ does not contain variables, there is no need to
attempt subsuming a different Rl, since the new substitution is empty in
any case.

2. Strengthening the previous idea: in case the literal Lj−1σ does not contain
variables which occur in literals to the right: Lj, . . . , Ln, there is also no need
to attempt subsuming a different Rl.

3. Splitting the clause {L1, . . . , Ln} into subsets which do not share variables
enables analysing these components separately.

4. Ordering the literals in {L1, . . . , Ln} in such a way that the previous consid-
erations would have maximal effect: literals containing more variables should
be tested before literals containing fewer variables. For example, if a literal
Li contains all the variables in {L1, . . . , Ln}, and we test it first, then we
only need to retry Li, never any other literal in the clause.

5. Before full test with backtracking, test each literal in {L1, . . . , Ln} sepa-
rately: for each Li there should be at least one literal Rj which is subsumed
by Li.



Towards Efficient Subsumption 435

The suggestions from Gottlob and Leitsch [3] are implemented in Gandalf
with certain pragmatical modifications. The most important of these is an or-
dering of literals which reflects the probability of a literal subsuming another,
randomly picked literal.

6.1 Ordering Methods in Gandalf

Observe that almost all the clause-to-clause subsumption tests during the proof
search fail. Hence it is useful to look for the failure first. Hence we first try these
literals in {L1, . . . , Ln} which are less likely to subsume randomly picked literals.

The function ground(A) returns 1 if A is ground, 0 otherwise. Functions
size(A) and depth(A) return the size and the depth of the literal, respectively.
Function cnum(A) returns the number of occurrences of constants in A.

The ordering A �s B is defined in the following way: A and B are compared
according to ground, depth, size, cnum, in that order. In case any comparison
gives a bigger value for A than B, then A �s B. In case any comparison gives
a bigger value for B than A, then B �s A. If the values are equal, the next
comparison function is taken.

The proof of the following lemma is easy:

Lemma 1. If A �s B, then A cannot subsume B.

The main issue is having an ordering which contains many independent com-
parison functions and satisfies the lemma. We do not claim that this particular
order �s is statistically much better than other, similar orders.

The order �s is used in Gandalf in several ways. First, it is used to determine
which two literals in the clause should be indexed. Second, it is used for ordering
literals in a clause before the clause-to-clause subsumption checks.

We have not implemented splitting the clause into components, as suggested
by Gottlob and Leitsch [3], for the reason that most clauses derived during the
search typically cannot be split into several non-ground components. The order-
ing realises the splitting effects for the ground and ground/non-ground compo-
nents. We have not implemented ordering by variable occurrences either. Instead
we prefer larger and deeper literals, which statistically tend to contain more
variables than smaller and shallower. We can say that the variable-occurrence
ordering suggested in Gottlob and Leitsch [3] is approximated by our choice of
�s, with the latter taking additional considerations into account too.

6.2 Pre-computing the Values

We avoid all costly computations during subsumption. The values of functions
ground, depth, size are cnum are pre-computed when a clause is stored and
saved as consecutive bit fields into a special 4-byte integer in the representation
of a literal, containing also the name of the leading predicate. Clauses are pre-
sorted according to the ordering.

In order to keep track of whether a literal contains variables occurring also
in the following literals, each variable occurrence in a literal is decorated with a
special data bit, indicating whether there are any later occurrences.



436 Tanel Tammet

6.3 Hierarchical Filters

Before a full clause-to-clause subsumption test of B with A is performed, a
number of fast checks are performed. In most cases these fast checks establish
immediately that A cannot subsume B.

As said before, each literal is decorated with the values of ground, depth,
size and cnum. Similarly, the whole clause and each term is also decorated with
these values for the corresponding object.

The set of predicate names occurring in a literal is encoded as a bit string in
an integer. This enables very fast checking (using bitwise machine operations)
of whether the set of predicate names in A is a subset of predicate names in B.

The hiearchy of tests performed while checking subsumption of B by A is
the following (failure of any test causes failure of the whole test):

1. Is A shorter or of equal length to B?
2. Is it the case that A �s B does not hold?
3. Is it the case that depth(A) ≤ depth(B), size(A) ≤ size(B) and const(A) ≤

const(B)?
4. Bitwise check: is the set of predicate names in A a subset of predicate names

in B?
5. Is it the case that each literal in A subsumes at least one literal in B?
6. Full test: does A subsume B?

The analogues of steps 2 and 3 are used not only before the full subsumption
check of clauses, but also before the full subsumption check of literals and all
terms. For example, it is always very quickly determined that a ground term
cannot subsume a non-ground term, a deep term cannot subsume a shallow
term, etc.

7 Back Subsumption

Simple discrimination trees cannot be used for performing the back-subsumption
operation efficiently. Thus several alternative indexing methods have been pro-
posed in the literature, see Graf [2]. However, these methods are significantly
less efficient than full variable-containing decision trees for forward subsump-
tion. Back subsumption has degraded the performance of many otherwise highly
efficient provers.

Gandalf does not use any indexing methods for back subsumption: it uses
simple linear search, but tests only a very small percent of existing clauses for
back subsumption. Our experiments show that the Gandalf back-subsumption
has excellent efficiency. It it is unclear whether indexing methods are at all
superior to the Gandalf-style simple linear back subsumption.

Gandalf keeps the list of existing clauses for back subsumption sorted under
clause length and the ordering �s. Only these clauses are considered for back
subsumption for which none of the parameters length, ground, depth and size
is less than the corresponding parameters of the newly kept clause A.



Towards Efficient Subsumption 437

When back subsumption with A reaches a clause C such that C is shorter
than A, none of the following clauses can be back subsumed and the whole back
subsumption process is stopped. Similarly, when checking clauses with a certain
length l and a clause C such that A �s C is reached, none of the following
clauses with length l can be back subsumed, thus all the following clauses with
length l are skipped.

Another important restriction is that only the clauses in the usable list
are back subsumed. Indeed, since clauses in the sos list do not participate in
ordinary resolution steps (they may participate in simplification, demodulation
and subsumption steps) not much is gained by eliminating some of them with
back subsumption. Clauses in the usable list, on the contrary, participate in
ordinary resolution and paramodulation steps, hence eliminating some of them
may give a noticeable gain in efficiency.

Because of this restriction we separately check each selected clause in sos
for forward subsumption before it is moved to usable: it may be subsumed by
a clause derived after this selected clause was derived. Since the operation of
selecting a new clause is rare, the extra overhead of a forward subsumption
check is neglible.

The motivation for the used scheme of back subsumption is the following.
Since the problem of deriving an empty clause is undecidable, statistically the
average size of the derived clause is growing during the derivation process. How-
ever, a newly kept clause can only subsume these of the existing clauses which
are not bigger than the newly kept clause. Since it is likely that most of the older
clauses are smaller than the newly kept clause, only a small fraction of the old
clauses has to be checked. This motivation is further strengthened by the fact
that the sos list is normally much larger than the usable list and we only need
to back subsume the usable list.

8 Statistics

In order to give some evidence of the efficiency of the proposed methods, we have
chosen to present statistics for the problems posed in the no-equality, non-Horn
category of the prover competition CASC-14.

The no-equality, non-Horn category is selected since except for back subsump-
tion, the methods presented in the paper are suitable for non-unit subsumption.
The problems in the selected category produce large amounts of non-unit clauses
and the efficiency of proving them does not rely on factors like efficient paramod-
ulation and demodulation.

First we bring the table with the competition results for the mentioned cate-
gory. While the speed of nonunit subsumption is certainly not the only important
factor for the overall result — notably, SPASS was successful since it derived very
few clauses to start with — together with time slicing it was certainly one of the
main factors for the success of Gandalf.



438 Tanel Tammet

Non-Horn with No Equality Category
Problem Allpaths Gandalf I-THOP Otter SCOTT SETHEO SPASS TGTP
SET014-2 76.2 15.5 4.2 TO TO 1.1 0.2 1.0
SET015-2 TO 60.5 TO TO TO TO 148.2 TO
SET013-1 3.0 TO 15.3 TO TO TO 81.0 64.1
SET015-1 1.1 30.5 4.7 TO TO 1.1 64.1 85.1
SET007-1 TO TO 25.5 TO TO 57.9 0.7 3.6
SET012-2 9.6 46.0 TO TO TO TO 20.2 11.8
SET011-1 5.6 6.6 4.5 129.1 250.2 1.3 0.0 1.4
SET055-6 3.0 0.1 13.8 0.4 8.7 5.2 0.5 1.8
SET013-2 TO 50.9 TO TO TO TO TO TO
ANA002-2 TO 121.4 TO TO TO 36.4 TO TO
SET005-1 78.1 30.3 3.9 281.9 6.7 1.8 0.1 1.3
SET012-1 0.5 30.4 14.0 TO TO 4.3 2.1 3.8
Attempted 12 12 12 12 12 12 12 12
Solved 8 10 8 3 3 8 10 9
Time 177.1 392.2 85.9 411.4 265.6 109.1 317.1 173.9
Average 22.1 39.2 10.7 137.1 88.5 13.6 31.7 19.3

The abbreviation TO used in the table stands for “timeout”.

In the following tables we bring subsumption statistics for the problems in
the selected category. The timings and statistics are obtained in a later run than
the competition table above. In particular, Gandalf proved successfully (in 18
seconds) the problem SET013-1.

While searching for proofs, Gandalf uses several different search strategies,
for example hyperresolution and set of support resolution. Thus the statistics do
not depend on one specific strategy, but rather a combination of strategies.

We’d like to turn attention to the ratio of F. full (the number of full, back-
tracking clause-to-clause subsumption checks performed during forward sub-
sumption) and F. fail (the number of full checks which fail). This indicates that
the combination of subsumption candidate selection using the discrimination
tree and the fast filtration steps performed during clause-to-clause subsumption
is quite precise: approximately five percent of full clause-to-clause subsumption
checks succeed.

Also, the number B. full (full backtracking clause-to-clause subsumption
checks during back subsumption) is significantly smaller than the corresponding
number F. full for forward subsumption.



Towards Efficient Subsumption 439

Explanation of the fields:

– Given: number of given clauses
– Derived: number of derived clauses
– Kept: number of kept clauses
– F. unit: number of forward subsumed unit clauses
– F. double: number of forward subsumed two-literal clauses
– F. long: number of forward subsumed clauses of length three and more
– F. tried: number of clause-to-clause subsumption checks during forward sub-

sumption.
– F. full: number of remaining clause-to-clause forward subsumption checks

after fast filters have been passed
– F. fail: number of these remaining clause-to-clause forward subsumption

checks (after fast filters have been passed) which failed
– B. full: number of remaining clause-to-clause back subsumption checks after

fast filters have been passed

SET014-2
Given 143 Derived 24734 Kept 10154
F. unit 2863 F. double 8309 F. long 2175
F. tried 24828 F. full 12471 F. fail 10208
B. full 2761

SET015-2
Given 2958 Derived 75368 Kept 20510
F. unit 28790 F. double 14866 F. long 2723
F. tried 65742 F. full 30876 F. fail 28126
B. full 7934

SET013-1
Given 1366 Derived 14466 Kept 2646
F. unit 1111 F. double 1396 F. long 7377
F. tried 826818 F. full 168118 F. fail 160530
B. full 10011

SET015-1
Given 5268 Derived 170938 Kept 38451
F. unit 51876 F. double 23190 F. long 24783
F. tried 558302 F. full 412754 F. fail 386724
B. full 27006

SET007-1
Given 9360 Derived 169975 Kept 30028
F. unit 17578 F. double 49904 F. long 41520
F. tried 3312621 F. full 847768 F. fail 807156
B. full 11027



440 Tanel Tammet

SET012-2
Given 2311 Derived 63072 Kept 14775
F. unit 28542 F. double 8984 F. long 1258
F. tried 26489 F. full 12773 F. fail 11471
B. full 7105

SET011-1
Given 91 Derived 5393 Kept 2695
F. unit 19 F. double 759 F. long 986
F. tried 25610 F. full 9726 F. fail 8541
B. full 2433

SET055-6
Given 3 Derived 7 Kept 5
F. unit 1 F. double 0 F. long 0
F. tried 0 F. full 0 F. fail 0
B. full 0

SET013-2
Given 2970 Derived 76086 Kept 20835
F. unit 30332 F. double 15601 F. long 1492
F. tried 43519 F. full 18268 F. fail 16719
B. full 8180

ANA002-2
Given 4737 Derived 79270 Kept 32779
F. unit 15915 F. double 18260 F. long 10355
F. tried 876717 F. full 246665 F. fail 237277
B. full 7417

SET005-1
Given 1374 Derived 8152 Kept 3280
F. unit 274 F. double 2654 F. long 1726
F. tried 275975 F. full 117433 F. fail 115824
B. full 10670

SET012-1
Given 1716 Derived 18885 Kept 4958
F. unit 3169 F. double 4325 F. long 5382
F. tried 293373 F. full 81529 F. fail 75858
B. full 35926

9 Acknowledgement

This work is supported by the Swedish TFR grant Dnr 96-536.



Towards Efficient Subsumption 441

References

1. C. Fermüller, A. Leitsch, T. Tammet, N. Zamov. Resolution methods for decision
problems. Lecture Notes in Artificial Intelligence vol. 679, Springer Verlag, 1993.

2. P. Graf. Term Indexing. Lecture Notes in Computer Science. 1053, Springer Verlag,
1996.

3. G. Gottlob, A. Leitsch. On the efficiency of subsumption algorithms, Journa of
ACM 32(2):280-295, April 1985.

4. L. Magnusson, B. Nordström. The ALF proof editor and its proof engine. In Types
for Proofs and Programs, pages 213-237, Lecture Notes in Computer Science vol.
806, Springer Verlag, 1994.

5. G.Mints. Resolution Calculus for The First Order Linear Logic. Journal of Logic,
Language and Information, 2, 58-93 (1993).

6. W.McCune. OTTER 3.0 Reference Manual and Users Guide. Tech. Report ANL-
94/6, Argonne National Laboratory, Argonne, IL, January 1994.

7. W. McCune. Experiments with discrimination tree indexing and path indexing for
term retrieval. Journal of Automated Reasoning, 9(2):147–167, 1992.

8. T. Tammet. Completeness of Resolution for Definite Answers. Journal of Logic
and Computation, (1995), vol 4 nr 5, 449-471.

9. T. Tammet. A Resolution Theorem Prover for Intuitionistic Logic. In CADE-13,
pages 2-16, Lecture Notes in Computer Science vol. 1104, Springer Verlag, 1996.

10. T. Tammet, J. Smith. Optimised Encodings of Fragments of Type Theory in First
Order Logic. In Types for Proofs and Programs, pages 265-287, Lecture Notes in
Computer Science vol. 1158, Springer Verlag,1996.

11. T. Tammet. Gandalf. Journal of Automated Reasoning, 18(2): 199-204, 1997.


	Gandalf Family of Provers
	Subsumption: Preliminaries
	Challenges of Subsumption
	Importance of Subsumption for Large Non-Horn Problems
	Forward Subsumption
	Clause-to-Clause Subsumption
	Back Subsumption
	Statistics
	Acknowledgement

