
Lecture Notes on
Monadic Logic Programming

15-816: Linear Logic
Frank Pfenning

Lecture 20

We have discussed both forward and backward chaining at length; in this
lecture we address the question how they can be combined effectively. The
central idea is the use of a monad to separate forward chaining from back-
ward chaining. Monads originated in category theory and have been used
successfully in functional programming. In logic programming, they were
first proposed in their present incarnation in the LolliMon language [LPPW05].

1 Monads

We introduce a new type {A} (sometimes written as©A in logic or T A in
category theory). It is weaker than truth in the sense that ` A ({A}, but
not the other way around. It may look like the dual to !A, but as we will
see in a later lecture, this is not quite the case.

In order to explain the meaning of {A} judgmentally we need a new
judgment,A lax , which is somehow a counterpart ofA pers . But it will only
appear explicitly on the right-hand side of a sequent. This is the opposite
of A pers , which only appears explicitly on the left-hand side.

The judgment A lax is weaker than truth, so it can be derived from
truth:1

∆ ` A true

∆ ` A lax
lax

1In this lecture we will uniformly write A true for ephemeral truth, be it on the left-hand
or the right-hand side of a sequent.

LECTURE NOTES

Monadic Logic Programming L20.2

The connection in the other direction is given by a new cut rule.

∆ ` A lax ∆′, A true ` C lax

∆,∆′ ` C lax
cut{ }

It expresses that we can viewA lax as representing an ephemeral truth, but
only while we try to prove the lax truth of C.

Originally, in lax logic [FM97] {A} was conceived to stand for the truth
of A under some constraints, where the constraints remain completely ab-
stract. It is true only if the constraints are satisfied. We can see this in
the two rules above. The rule lax allows the empty (or always true) con-
straint. The cut{ } rule expresses that if A is true under some constraint
which may assume it is true, but only if we are trying to prove C under
some constraint. In essence, the cut{ } rule relies on the conjunction of the
constraints in the two derivations.

The two rules match in the sense that if the first premise of the cut{ }
was derived using the lax rule, then the cut{ } is immediately reduced to
a cut. This illustrates, however, that all cut and left rules of the sequent
calculus we have introduced so far must allow the succedent of the sequent
to be either A true (which we have generally written as just A) or A lax .
This is an analogous step to systematically adding persistent resources Γ to
each rule in the calculus already.

Once the judgmental principles are settled, it is almost trivial to inter-
nalize A lax as a proposition.

∆ ` A lax

∆ ` {A} true
{ }R

∆, A true ` C lax

∆, {A} true ` C lax
{ }L

2 Cut and Identity

Let’s check the cut reduction:

∆ ` A lax

∆ ` {A} true
{ }R

∆′, A true ` C lax

∆′, {A} true ` C lax
{ }L

∆,∆′ ` C lax
cut

−→R

∆ ` A lax ∆′, A true ` C lax

∆,∆′ ` C lax
cut{ }

LECTURE NOTES

Monadic Logic Programming L20.3

In the broader proof of the admissibility of cut, when considering a cut{ }

∆ ` A lax ∆′, A true ` C lax

∆,∆′ ` C lax
cut{ }

we push up the cut into the inference in the proof of the first premise, keep-
ing the second premise fixed. The only way this strategy does not apply is
if the first premise is the lax rule, with the premise of A true . But then we
can just reduce it to an ordinary cut of the two premises.

This is reminiscent of the way cut! always pushed up the cut into the
second premise, until a copy rule was encountered. The lax judgment af-
fords a simplification since there is no copying.

In the proof of the identity expansion the steps are more or less forced:

{A} true ` {A} true
id{A}

−→E

A true ` A true
idA

A true ` A lax
lax

{A} true ` A lax
{ }L

{A} true ` {A} true
{ }R

Because of the judgmental transition, we need three rule applications: two
propositional, and one judgmental. We’ll have to remember this when con-
sidering focusing.

3 Examples: Unit and Bind

In functional programming, monads [Mog91] are presented via two func-
tions, unit and bind:

unit : A→ {A}
bind : {A} → (A→ {B})→ {B}

These characterize lax logic axiomatically, although we do not pursue this
here. But we can prove linear versions of them in the sequent calculus.
First unit (omitting the standard true judgments as usual, but keeping lax

LECTURE NOTES

Monadic Logic Programming L20.4

explicit):

A ` A
id

A ` A lax
lax

A ` {A}
{ }R

` A({A}
(R

bind is only slight more complicated:

A ` A
id

B ` B
id

B ` B lax
lax

{B} ` B lax
{ }L

A,A({B} ` B lax
(L

{A}, A({B} ` B lax
{ }L

{A}, A({B} ` {B}
{ }R

` {A}((A({B}) ({B}
(R2

This demonstrates that monads are compatible with linearity.

4 Focusing

We recall that the identity expansion shown above starts with the { }R rule.
This is a hint that the lax modality should be considered negative, and its
right rule should be invertible. For focused sequents ∆ → A when then
have the following right rule:

∆→ A lax

∆→ {A}
{ }R

Correspondingly, the left rule should be applied in focus. The question is
whether we can retain focus on A.

∆, [A]→ C lax

∆, [{A}]→ C lax
{ }L?

Because there is an implicit judgmental transition (from {A} true to A lax
and then to A true) we suspect we may need to lose focus. To construct a

LECTURE NOTES

Monadic Logic Programming L20.5

counterexample it is always useful to reconsider the identity, so let’s try to
construct a focused proof of {P−} → {P−}.

[P−]→ P− lax

[{P−}]→ P− lax
{ }L?

{P−} → P− lax
focusL

{P−} → {P−}
{ }R

Notice that at this point we fail, because [P−] → γ only succeeds if γ =
P− true .

So, as suspected, we need to lose focus and the correct rule is

∆, A→ C lax

∆, [{A}]→ C lax
{ }L

Finally, we consider the A lax judgment. On the left, it does not occur
because the judgment itself should be considered positive. It occurs on the
right, but represents the end of an inversion phase, waiting for focusing to
occur. This means we have the additional rule

∆→ [A]

∆→ A lax
focR{ }∗

As before, the focusing rules are restricted. If we are just modeling chaining
(allowing inversion anywhere), the rule is restricted to the case where there
is no focus in ∆. In focusing, ∆ must also be stable, that is, consist entirely
of negative propositions and positive atoms.

5 Polarization

As a step towards the logic programming implementation, we now polarize
the propositions, including the lax modality. This will tell us where inver-
sion and focusing phases begin and end, and it will restrict us to a fragment
that has a sensible operational interpretation.

We have considered these before—the crucial issue is how to polarize
the lax modality. We already saw that the proposition {A} is negative, but
the judgment hiding underneath, A lax , is positive. We say that { } is nega-
tive on the outside and positive on the inside. Like the exponential modality, it

LECTURE NOTES

Monadic Logic Programming L20.6

is a polarity-changing connective.

Negative Props. A− ::= P− | A+
1 (A−2 | A

−
1 NA−2 | > | ∀x:τ.A− | {A+}

Positive Props. A+ ::= P+ | A+
1 ⊗A

+
2 | 1 | A

+
1 ⊕A

+
2 | 0 | A− | !A− | ∃x:τ.A+

The inclusion of negative propositions in the positive ones is often written a
↓ A−, where “↓” is like a modality. However, it does not change the logical
meaning, just the focusing behavior of the propositions.

6 Forward and Backward Chaining

We have two forms of stable sequents, one represents forward chaining, the
other backward chaining.

∆→ P− true Backward Chaining (∆ stable)
∆→ C+ lax Forward Chaining (∆ stable)

Notice in particular that we do not have sequents ∆ → C+ true , because
the only way that positives are included in negatives is through the lax
modality.

A prototypical clause that participates in backward chaining has the form

A+ (P−

Focusing on such a clause will only succeed if the succedent will beP− true .
If it is C+ lax , focusing will fail because there is no rule

(fails)
∆, [P−]→ C+ lax

Conversely, a prototypical clause that participates in forward chaining
has the form

A+ ({B+}

Focusing on such a clause will only succeed if the succedent is C+ lax . If it
is P− true it will fail, because there is no rule

(fails)
∆, [{B+}]→ P− true

LECTURE NOTES

Monadic Logic Programming L20.7

If the conclusion is indeed C+ lax, then focusing on the clause will never
fail at the end, since we have the general transition

∆, B+ → C+ lax

∆, [{B+}]→ C+ lax
{ }L

which initiates an inversion phase.
How can we move between forward and backward chaining? When we

decide to focus on a succedent C+ lax

∆→ [C+]

∆→ C+ lax
focR{ }

we break down [C+] until we reach a negative, and this may break down
all the way to an atom, initiating backward chaining. So in this case, we
may leave forward chaining altogether.

Similarly, if we are focused on

∆, [A+ ({B+}]→ C lax

then a subgoal will be
∆′ → [A+]

which may devolve into a negative atom, starting forward chaining. In this
case, the backward chaining is an auxiliary subgoal that enables a forward-
chaining step to proceed.

During backward chaining, we switch to forward chaining if the succe-
dent is {A} in the inversion phase of backward chaining.

∆→ A lax

∆→ {A}
{ }R

This may also happen when working on a subgoal during backward chain-
ing.

7 Example: Testing Bipartiteness

We develop a small implementation of testing whether a graph is bipartite,
that is, can be colored with two colors such that no two adjacent vertices
have the same color.

The algorithm we want to implement is quite simple. In each phase we
traverse a connected component of graph. If there is no uncolored node, we

LECTURE NOTES

Monadic Logic Programming L20.8

are finished and can check if there are two adjacent nodes with the same
color. If not, pick an arbitrary node and color it an arbitrary color. Then
we iterate: pick a node that has not yet been colored and has an adjacent
colored node. Given it the opposite color of its neighbor. When no such
node exists any more, we move to the next phase, again arbitrarily picking
an uncolored node.

We start with some type declarations in CLF.

vertex : type.

edge : vertex -> vertex -> type.

color : type.

a : color.

b : color.

We have two predicates: nodex, of which we initially have an linear one
for every vertex x in the graph, and a persistent edgex y for every edge in
the graph. We assume it is already saturated to be symmetric.

Then the forward-chaining rules that constitute the inner loop, propa-
gating the color constraints would be:

clr : vertex -> color -> type.

node : vertex -> type.

cb : node X * !edge X Y * !clr Y a -o {!clr X b}.

ca : node X * !edge X Y * !clr Y b -o {!clr X a}.

These rules consume nodex, so that each node is colored exactly one.
Next we need to implement the outer loop. We assume we are given a

list of vertices,

nil : vlist.

cons : vertex -> vlist -> vlist.

and have to assume each one into the context. This happens in a backward-
chaining program. The previously mentioned convention and backward-
chaining clauses are written as A ◦− B and forward-chaining ones as A (
{B} comes into effect.

nbp : vlist -> type.

nbp/cons : nbp (cons X L) o- (node X -o nbp L).

LECTURE NOTES

Monadic Logic Programming L20.9

We use the name nbp (short for not bipartite) because we will succeed if we
find a contradiction.

Once the context has been initialized, we have to pick a node, assign it
an arbitrary color (say a), and then use the two rules above until we have
reached quiescence.

nbp/nil : nbp nil o- node X * (!clr X a -o {nbp nil}).

This rule switches from forward chaining to backward chaining, once the
persistent assumption !clr x a has been made.

When we have reached quiescence, we recurse (subgoal nbp nil), picking
another node x that has not yet been colored. At the end, once all nodes
have been colored, we look for a contradiction: adjacent nodes with the
same color.

nbp/fail : nbp nil o- !clr X C * !edge X Y * !clr Y C.

We can improve this program by making the node predicate affine. Re-
call that affine resources (marked with the affine modality “@”) are used
at most once. This allows us to shirt-circuit the algorithm and exit as soon
as we have found two adjacent nodes with the same color. The complete
program is below.

vertex : type.

edge : vertex -> vertex -> type.

color : type.

a : color.

b : color.

clr : vertex -> color -> type.

node : vertex -> type.

cb : @node X * !edge X Y * !clr Y a -o {!clr X b}.

ca : @node X * !edge X Y * !clr Y b -o {!clr X a}.

vlist : type.

nil : vlist.

cons : vertex -> vlist -> vlist.

nbp : vlist -> type.

LECTURE NOTES

Monadic Logic Programming L20.10

nbp/fail : nbp nil o- !clr X C * !edge X Y * !clr Y C.

nbp/nil : nbp nil o- @node X * (!clr X a -o {nbp nil}).

nbp/cons : nbp (cons X L) o- (@node X -o nbp L).

LECTURE NOTES

Monadic Logic Programming L20.11

References

[FM97] M. Fairtlough and M.V. Mendler. Propositional lax logic. Infor-
mation and Computation, 137(1):1–33, August 1997.

[LPPW05] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins.
Monadic concurrent linear logic programming. In A.Felty, ed-
itor, Proceedings of the 7th International Symposium on Principles
and Practice of Declarative Programming (PPDP’05), pages 35–46,
Lisbon, Portugal, July 2005. ACM Press.

[Mog91] Eugenio Moggi. Notions of computation and monads. Informa-
tion and Computation, 93(1):55–92, 1991.

LECTURE NOTES

	Monads
	Cut and Identity
	Examples: Unit and Bind
	Focusing
	Polarization
	Forward and Backward Chaining
	Example: Testing Bipartiteness
	Exercises
	References

