Lecture Notes on
Forward Chaining

15-816: Linear Logic
Frank Pfenning

Lecture 13
February 29, 2012

In this lecture we start discussing proof search as a basic computational
mechanism; so far, it has only been proof reduction. Computation via proof
search is the technique underlying logic programming. It provides a fun-
damentally different way of combining programming with reasoning, by
using reasoning itself as the source of computation.

The particular instance of this idea we introduce in this lecture is linear
forward chaining, also called linear bottom-up logic programming. Linear for-
ward chaining is supported in the Celf implementation [SNS08]! of the CLF
logical framework [WCPW02, CPWWO02], and also in LolliMon [LPPWO05].

Our goal for this lecture is to provide enough intuition regarding for-
ward chaining and its implementation that we can write Celf code im-
plementing substructural operational semantics. Some of this will remain
mysterious since CLF provides a dependent type theory that we haven’t
covered yet in this course.

1 Derived Rules via Focusing

We previously discussed that we can go from certain propositions back to
derived rules via the process of focusing. Let’s reconsider this and then add

quantifiers.
Assume we have an inference rule
q
d d n

"More information on the Software page for this course

LECTURE NOTES FEBRUARY 29, 2012

http://www.cs.cmu.edu/~fp/courses/15816-s12/software.html

Forward Chaining L13.2

When we explained linear inference we used this rule for the purpose of
effecting a state transition. For example,

g,n —d,d,n,n
In general, applying linear rules of inference allowed transitions

A — A

to be described by inference rules. We allowed the state to contain persis-
tent as well as ephemeral propositions, so with our new notation we might
rewrite this as
(T'5A) — (I"; A)
where I’ C T".
When we switched from linear inference to a sequent calculus (since we

were unable to represent nested hypothetical judgments in a satisfactory
way), we turned our sample rule from above into a persistent proposition

g—od®d®n

In which way does this now represent a possible state transition? Assume
we have the proposition above as part of I' and a stable sequent

rA—-c=c

Recall that a sequent if stable if all propositions in A are negative or positive
atoms, and C' is either positive or a negative atom.

At this point we can potentially focus on any proposition in I" or A
(except for positive atoms), or on C' (unless it is a negative atom). Consider
the derivation if we focusonq —od®d®n € I':

T;Asdod@n—C

. blurL
;A1 =g T;Ay[deden —C
—oL
I';A[g—od®d®n —C
focusL!

rsA—~c=C

where A = (A1, Ay). Note that after the first focusing step, all the rules are
forced.

Let’s now fix the polarity of all atoms to be positive. In that case, the first
remaining subgoal can only succeed if I' contains q or A; = q. Let’s assume

LECTURE NOTES FEBRUARY 29, 2012

Forward Chaining L13.3

we are in a situation where we know that q cannot be in I', so A; = q is
forced. Completing the first subproof and substituting in our knowledge
on the form of A, we obtain:

) F;Ag,d®'d®n—>0
7'dq+ blurL
I';q—[q] I'; Ag,[ded®@n] —C

I';As,q,[g od®d@n] = C

F;Ag,q—>C

—oL

focus!

Multiplicative conjunction is invertible on the left. So in a full focusing
system, the inversion on d ® d ® n is also forced. We arrive at:
T; Ag,d,d,n —C
QL x 2
. F;Ag,d@d@ﬂ—)C
— idg+ blurL
I';q—[q] I'; Ay, [ded®@n] = C
—oL
I'; Ag,q,[g—od®d®n] = C
T ; AQ, q— C

focus!

At this point we again have a stable sequent, since we assumed the original
goal sequent was stable. Writing it out explicitly, we obtain the following
derived rule:

;A d,dn—>C

I';A,qg—>C

A remarkable observation is that in a system of focusing, this represents
the only way we can use the persistent assumption g —o d ® d ® n. In other
words, we could throw away this assumption and just agree to use the
above derived rule instead.

Looking at the derived rule we can now see how state change is repre-
sented in the sequent calculus. If, under linear inference, we had a transi-
tion

A— A

then using focusing on the corresponding proposition in I' we obtain the

transition
r;A—=cC

rA—-c

LECTURE NOTES FEBRUARY 29, 2012

Forward Chaining L13.4

More generally, if we allow persistent propositions as well, then the context
I' plays two roles: one for the propositions representing rules I',, the other
for persistent atomic propositions. Then a transition (I' ; A) — (I ; AY)
becomes

r.,I";A—=C

r,,Ir;A—=C

Note that the right-hand side C' plays no significant role here.
In summary, we can model linear inference using persistent proposi-
tions and focusing by assigning all atoms a positive polarity.

2 Focusing on Quantifiers

Our goal for this lecture is to implement substructural operational seman-
tics as an executable forward-chaining logic program. Our discussion of
chaining and focusing so far lacks quantifiers, which are necessary for many
programs.

The universal quantifier is invertible on the right, so we focus on the
left and invert on the right.

Uonr; Ty A — Af{n/z} UEM:7 U;T;A [A{M/z}] = C
N
U:Il'; A—VerA i VT A Ve Al —» C

VL

The right rule introduces a new parameter n into the term context ¥; the
left rule instantiates the quantifier with a term of the correct type.

Conversely, the existential quantifier is invertible on the left, so we focus
on the right and invert on the left.

UEM:7 U;T;A—[A{M/z}] U,on:7 ;T A A{n/z} — C
R
VT A— [Fuir.A] U A, 3z:m.A— C

It is straightforward to extend the theorems regarding the soundness and
completeness of chaining and focusing to the quantifiers. Crucial is the
observation that we can consider A{M/z} to be strictly smaller than Jz:7.4
and Vz:7.A, because A{M/z} has fewer quantifiers and connectives.

3 Derived Rules from Quantifiers

Once we add quantifiers, our state transitions have to account for the pos-
sibility that new term parameters are introduced, either by the 3L rule or

LECTURE NOTES FEBRUARY 29, 2012

Forward Chaining L13.5

the VR rule. Then a state transition
(U575 A) — (VT A)
with U C ¥ and I" C I will be modeled by

U, o', TV A= C
v, v;I..[';A—>C

where U, contains constants from the term language and I', contains the
transition rules, rendered as linear logical propositions.

Let’s play through an example from substructural operational seman-
tics.

eval(M N,w) —o Jz.eval(M, z) ® cont(x, _ N, w)

9 —

Assuming a type tm for terms and dest for destinations:

Vm:tm. Vn:tm. Vw:dest.
eval(mn,w) —o Jx:dest. eval(m, z) @ cont(z, _n,w)

We assign eval and cont a positive polarity. Focusing on this an pursuing
three steps:

UE Widest W;T;A[-]—C
W N:tm U T; A Vw:dest. [---] = C
U+ M:tm VT A, [Vnitm. Vw:dest. -] = C
U T A Vmetm. Vnitm. Vw:dest. - -] — C

VL
VL

VL
At this point the open subproof is forced as follows:
U T Ag, Jx:dest. evaI(M; x) ® cont(x, _N, W) = C

Ul Ay — [eval(M N, W) W ;T ; Ay, [Tz:dest. eval(M, x) ® cont(z, . N,W)] — C
U T A, [eval(M N, W) —o Jx:dest. eval (M, z) @ cont(x, _ N, W)]

blurL
—o L

where A = (A, Ay). Wenotice that eval is positive, and so Ay = eval(M N, W)
and the first open goal is closed with the positive identity rule. Carrying

LECTURE NOTES FEBRUARY 29, 2012

Forward Chaining L13.6

out the inversions in the second open derivation, we get:
U, z:dest ; ' ; Ay, eval(M, x), cont(z, _N,W) — C
QL
U, z:dest ; I' ; Ag,eval(M, z) ® cont(z, _N, W) — C
L
U T'; Ag, Jz:dest. eval (M, z) ® cont(z, _ N, W) — C
blurL
U T Ag, [Fx:dest. eval (M, z) ® cont(x, _ N, W)| — C

Putting these all together, and renaming Aj to A, we obtain the following
derived rule:

UHEM:tm

UEN:tm

U W :dest

U, x:dest ; ' ; A, eval(M, x), cont(z, _N, W) — C

U Ajeval(MN,W) = C

Generally, we assume that any proposition in the context is well-formed,
so the fact that a proposition eval(M N, W) is in the context implies the first
three premises, and we are left with

U, z:dest ; ' ; A, eval(M, x), cont(z, _N,W) — C
U Ajeval(MN,W) — C

Let’s read this rule. If we have a proposition eval(M N, W) which states that
we have to evaluate the application of M to N with destination W, then we
introduce a new destination = and replace eval(M N, W) with eval(M, z)
and cont(x, _ N, W). This is precisely how we would like our substructural
operational semantics to proceed.

The outermost universally quantified variables in the propositions turn
into schematic variables in the derived rule, while existentially quantified
variables turn into new parameters in the premise.

4 Forward Chaining

Forward chaining seems to work for a specific class of formulas. We can
reverse engineer this class from the previous example. We want to maintain
that stable sequents have the form

\I/;Dl,...,Dk,Q+,... %;P{F,...,PTT%G

LECTURE NOTES FEBRUARY 29, 2012

Forward Chaining L13.7

where Qj and P." are positive atoms. The following grammar allows us to
stay within this fragment.

Clauses D == Vo:r.D|Di1& D2 | T|G—D|H
Heads H := P+|H1®H2|1|3$7’H|H1@H2‘0"D
Goals G u= PT|Gi®Gy|1|3e:7.G|G1DG2]0

Focusing on a persistent clause D in a context of all positive atoms will start
a chaining phase followed by an inversion phase and can lead only to states
with only persistent clauses and positive atoms. The right-hand side will
never be involved in any such inference. Goals are slightly more restricted
than heads, because we want a sequent

U A= [G]

to be quickly and efficiently decidable which can be achieved by making
sure the G is purely positive, with no negative subformulas. Such subgoals
will arise from a left focus on [G — D]. Dually, we lose focus in a sequent
U ; I'; [H] — G and then can invert all the way down to positive atoms or
new unrestricted clauses added to I". Methods for finding correct instances
for the universal quantifiers in clauses and existential quantifiers in goals
will be discussed in a future lecture.

Carrying out repeated focusing in a don't-care nondeterministic manner
is forward-chaining logic programming. The system terminates when no
further focusing steps can be carried out, a situation we call quiescence. At
this point we can examine the state by focusing on the right-hand side,
which again poses a decidable question.

The fact that forward chaining proceeds with don’t-care nondetermin-
ism or committed choice means that a program is only correct if all choices
lead to the correct answer or computation. This is unlike our earlier model-
ing of stateful systems, where we deemed a problem representation correct
if a proof existed if and only if a solution to the problem existed. Forward
chaining logic programming imposes a much more stringent correctness
requirement.

5 Using Celf

The Celf implementation of CLF supports both forward chaining and back-
ward chaining, although in a slightly different style than presented in this
lecture. As a result, there will be a few matters of syntax and semantics that
will seem mysterious, until we explain them later on in this course.

LECTURE NOTES FEBRUARY 29, 2012

Forward Chaining L13.8

We aim to directly implement the substructural operational semantics
developed in the last lecture. We start with pairs. First we have to define
the terms that are typed in the ¥ = M : 7 judgment. Unlike in first-order
linear logic, in CLF these terms can also be typed in a linear fashion. We
declare:

tm : type.

pair : tm & tm -o tm.
pil : tm -o tm.
pi2 : tm -o tm.

Note that & here is the additive conjunction of the framework. The repre-
sentation function looks like this:

"(M,N)? = pair <"M7,"N™>

FrM™ = pil"M™

oM™ = pi2"M"

Next we need a type of destinations, as well as predicates eval, retn, and
cont. These are actually represented as type families, a distinction we can
ignore for now.

dest : type.

eval : tm -> dest -> type.
retn : tm -> dest -> type.
cont : dest -> (tm -o tm) -> dest -> type.

An interesting question is how we represent the frames that are part of
continuation. Recall that they are like terms with a hole, where a subterm
was extracted for evaluation. A term with a hole can be represented as a
linear function from terms to terms, written tm -o tm in the declarations
above. Now recall the linear specification of the substructural semantics.

eval((M,N), z) —o retn((M, N), z)
eval(my M, w) —o Jz.eval(M, x) @ cont(x, w1 _, w)
eval(ma M, w) — Jx.eval(M, z) @ cont(x, ma_, w)
retn((M, N), z) ® cont(x,m_,w) —o eval(M, z) @ cont(x, _, w)
retn((M, N), z) ® cont(z, ma_, w) —o eval(N, z) ® cont(z, _, w)
We transcribe this in a fairly straightforward way, optimizing slightly by

omitting the intermediate continuation frame in the two projection rules,
evaluating the component directly with destination w.

LECTURE NOTES FEBRUARY 29, 2012

Forward Chaining L13.9

ev/pair : eval (pair < M, N >) X -o {retn (pair < M, N >) X}.

ev/pil : eval (pil M) W -o {Exists x. eval M x * cont x (\h. pil h) W}.
ev/pi2 : eval (pi2 M) W -o {Exists x. eval M x * cont x (\h. pi2 h) W}.

ev/projl : retn (pair < M, N >) X * cont X (\h. pil h) W
-o {eval M W}.

ev/proj2 : retn (pair < M, N >) X * cont X (\h. pi2 h) W
-o {eval N W}.

We note that the all free variables must be capitalized, and are implicitly
universally quantified. We also note that the succedents of the forward-
chaining linear implication are enclosed in { braces }. They define a so-
called monad which is used to control the interaction between forward and
backward chaining in CLF. For the purpose of this lecture we can ignore
them.

Next we come to functions. We need to extend our representation func-
tion, which is somewhat tricky, since the linear A-abstraction binds a vari-
able. We map this into a corresponding abstraction in CLF.

Ay M7 = lam (\y. M)
I—y—l — y
I_M N—l — app I_M—I I_N—I

In addition, we have to substitute a destination for a variable, so we need a
corresponding constructor. Note that in a source expression (before evalu-
ation), there should never be a destination in a term.

lam : (tm -o tm) -o tm.
app : tm -o tm -o tm.
dst : dest -o tm.
Recall the SSOS specification of evaluation.
eval(Ay. My, x) —o retn(A\y. My, x)
eval(M N,w) —o Jz.eval(M, z) ® cont(x, _ N,w)
(

retn(Ay. My, z) @ cont(z, _ N, w)
—o Jz.eval(M{z/y}.,) ® eval(N, z) ® cont(x, _, w)

eval(z,w) —o cont(z, _, w)

Again, we transcribe this into Celf. We optimize the interaction rule by
elimination the new continuation that just forwards from x to w, evaluating
M{z/y} directly with destination w.

LECTURE NOTES FEBRUARY 29, 2012

Forward Chaining L13.10

ev/lam : eval (lam \y. M y) X -o {retn (lam \y. M y) X}.
ev/app : eval (app M N) W

-0 {Exists x. eval M x * cont x (\h. app h N) W}.
ev/red : retn (lam \y. M y) X * cont X (\h. app h N) W

-o {Exists z. eval (M (dst z)) W * eval N z}.
ev/var : eval (dst Z) W -o {cont Z (\h. h) W}.
ev/fud : retn V Z * cont Z (\h. h) W -o {retn V W}.

Interesting here is how we represented M{z/y}. First, we cannot substitute
z directly, because z is a destination, not a term. So we substitute (dst z)
instead, coercing the destination into a term. Secondly, we use the compo-
sitionality of the representation function so that

'_M{z/y}j — [I_Z—I/Y]FM‘I = (\y. "M

We will discuss this technique, often called higher-order abstract syntax, in
more detail in a future lecture.

Finally, we come to unrestriced variables and terms of type !A in the
linear \-calculus. We extend our representation:

mIM = bang (!"M™M
Mletlu=Min N7 = ulet"M'"(\!u."N™T)
Tu’! = lu

Here, \'u.Nin the framework is a persistent abstraction that has type !tm -o tm
which can be written equivalently as tm -> tm. This leads to the following
declarations:

bang : tm -> tm.
ulet : tm -o (tm -> tm) -o tm.
udst : dest -> tm.

The last declaration, of udst, allows us to include persistent destinations in
terms, marking them as unrestricted.
Now recall the substructural operational semantics rules:

eval(!M, x) —o retn(!M, x)
eval(let lu = M in Ny, w) —o Jz.eval(M,x) @ cont(x, let lu = _in Ny, w)
retn(!M, z) ® cont(z,let lu = _ in Ny, w) —o Ju. !retn(M, u) ® eval(N,, w)
eval(u, x) —o cont(u, _, x)

I'retn(M, u) ® cont(u, _,x) —o Jy.eval(M,y) ® cont(y, _, x)

LECTURE NOTES FEBRUARY 29, 2012

Forward Chaining L13.11

We combine the last two rules, avoiding the creation of two extra continu-
ations.

ev/bang : eval (bang M) X -o {retn (bang M) X}.
ev/ulet : eval (ulet M (\!'u. N 'uw)) W
-o {Exists x. eval M x * cont x (\h. ulet h (\'u. N !'u)) W}.
ev/bangred : retn (bang M) X * cont X (\h. ulet h (\!'u. N !'u)) W
-o {Exists u. !retn M u * eval (N !(udst u)) Wk.
ev/uvar : eval (udst U) W * !retn M U -o {eval M W}.

Note that !'retn M Uin the clause ev/uvar is not actually permitted in the
forward-chaining fragment we defined earlier. As noted by a student after
lecture, we could equally well write retn M U here, although it turns out
that the Celf implementation can handle either one.

In lecture, we created a frame cont U (\h. h) W, but this is slightly
dishonest, since it doesn’t in fact pass on what is returned along U, but eval-
uates it. This clause created some incorrect nondeterminism, since the lin-
ear forwarding rule can now apply to unrestricted destinations, which was
not intended in the original SSOS specification where we made a stronger
distinction between linear and unrestricted destinations.

LECTURE NOTES FEBRUARY 29, 2012

Forward Chaining L13.12

Exercises

Exercise 1 Extend the proofs of completeness of chaining from Lecture 9 to
include quantifiers.

(i) Admissibility of identity (Theorem 3)

(ii) Admissibility of cut (Theorem 4)

(iif) Completeness of chaining (Theorem 2)

Exercise 2 Extend the Celf implementation of the linear A-calculus to cover

(i) Multiplicative pairs A ® B.

(if) Multiplicative unit 1.

(iif) Disjunctions A ® B.

(iv) Contradiction O.

(v) Additive unit T.

(See also Exercise L12.1)

LECTURE NOTES FEBRUARY 29, 2012

http://www.cs.cmu.edu/~fp/courses/15816-s12/lectures/09-focusing.pdf
http://www.cs.cmu.edu/~fp/courses/15816-s12/lectures/12-ssos.pdf

Forward Chaining L13.13

References

[CPWWO02]

[LPPWO05]

[SNS08]

[WCPW02]

Iliano Cervesato, Frank Pfenning, David Walker, and Kevin
Watkins. A concurrent logical framework II: Examples and
applications. Technical Report CMU-CS-02-102, Department
of Computer Science, Carnegie Mellon University, 2002. Re-
vised May 2003.

Pablo Loépez, Frank Pfenning, Jeff Polakow, and Kevin
Watkins. Monadic concurrent linear logic programming. In
A Felty, editor, Proceedings of the 7th International Symposium
on Principles and Practice of Declarative Programming (PPDP’05),
pages 35-46, Lisbon, Portugal, July 2005. ACM Press.

Anders Schack-Nielsen and Carsten Schiirmann. Celf - a logi-
cal framework for deductive and concurrent systems. In A. Ar-
mando, P. Baumgartner, and G. Dowek, editors, Proceedings
of the 4th International Joint Conference on Automated Reasoning
(IJCAR'08), pages 320-326, Sydney, Australia, August 2008.
Springer LNCS 5195.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgments and
properties. Technical Report CMU-CS-02-101, Department of
Computer Science, Carnegie Mellon University, 2002. Revised
May 2003.

LECTURE NOTES FEBRUARY 29, 2012

	Derived Rules via Focusing
	Focusing on Quantifiers
	Derived Rules from Quantifiers
	Forward Chaining
	Using Celf
	Exercises
	References

