
Constructive Logic (15-317), Fall 2017
Recitation 9: Logic programming

October 26, 2017

1 Logic programming

You might be familiar with functional and imperative programming. Today we will see yet another
programming paradigm: logic programming. Logic programming can be seen as a fragment of
intuitionistic logic1 called Horn clauses (remember last homework?). A Horn clause is either an
atom or a formula of the shape A1 ∧ ...∧An ⊃ H, where H is called the head and A1 ∧ ...∧An is the
body. In prolog syntax, this is written as:

h :- a1, a2, ..., an.

Let’s step through a simple prolog program to understand how computation (or proof search)
works. Consider the following simple code:

ocean_level(rising).

temperature(extreme).

global_warming(conspiracy) :- ocean_level(stable), temperature(normal).

global_warming(real) :- ocean_level(rising), temperature(extreme).

If we query prolog for global warming(X), it will look at the head of all (four) clauses trying
to find one that “matches” (unifies) with the goal. In this case, it finds the clauses in lines 3
and 4. Prolog will process the options in order, so it will first go to clause in line 3 and unify X
with conspiracy, generating the new goals ocean level(stable) and temperature(normal). A
proof-theoretic interpretation of this step is the following (predicate names are abbreviated for the
sake of space):

ol(ris), temp(xtr), ... −→ ol(sta) ol(ris), temp(xtr), ... −→ temp(nml)
ol(ris), temp(xtr), ... −→ ol(sta) ∧ temp(nml) ∧R

X is csp

ol(ris), temp(xtr),gw(csp), ... −→ gw(X) init

ol(ris), temp(xtr), ol(sta) ∧ temp(nml) ⊃ gw(csp), ol(ris) ∧ temp(xtr) ⊃ gw(real) −→ gw(X) ⊃ L

In this derivation, X is a special variable that is unified on initial rules, and this unification
propagates to the next branch if there were occurrences of X there as well. When trying to

1It is also a fragment of classical logic. Since it is such a simple fragment, intuitionistic and classical logic coincide.

1

prove the two open sequents, or the new goals, prolog will realize that ocean level(stable) or
temperature(normal) are not true... oops, are not in the context nor they are unifiable with any
clause head. Time to backtrack. We know that ∧R is an invertible rule, so no use in backtracking
there. We go back to the choice of clauses (i.e.,⊃ L) and try to use the one on line 4. This time the uni-
fication will be X is real and the new goals ocean level(rising) and temperature(extreme),
which can be proved.

As a final note, logic programs hold some resemblance to functional programs in the way
programs are written. You will find that sometimes the clauses used look a lot like the cases you
would need in, say, SML. This kind of programming style is referred to as declarative programming
(you write what your program does as opposed to how it does it).

Task 1. Implement a prolog program that computes the truncated subtraction between natural
number along the same lines as the plus and times implementations given in the lecture notes.

pred(z,z).

pred(s(M), M).

minus(N, z, N).

minus(N, s(M), Q) :- minus(N, M, P), pred(P, Q).

In Prolog, lists are built in similarly to SML. The syntax for pattern matching on a list is [Head
| Tail]. Using this we can implement a variety of programs for manipulating lists.

Task 2. Implement a prolog program which merges two sorted lists.

mymerge(L, [], L).

mymerge([], L, L).

mymerge([H1 | T1], [H2 | T2], [H1 | Out]) :-

H1 =< H2,

mymerge(T1, [H2 | T2], Out).

mymerge([H1 | T1], [H2 | T2], [H2 | Out]) :-

H1 > H2,

mymerge([H1 | T1], T2, Out).

Task 3. Implement a merge sorting procedure for lists.

split([], [], []).

split([X], [X], []).

split([H1 | [H2 | T]], [H1 | L1], [H2 | L2]) :-

split(T, L1, L2).

mysort([], []).

mysort([X], [X]).

mysort([X1 | [X2 | L]], O) :-

split([X1 | [X2 | L]], Left, Right),

mysort(Left, SLeft),

mysort(Right, SRight),

mymerge(SLeft, SRight, O).

2

2 Modes

It’s common in Prolog code to denote certain arguments to a relation as “inputs” and some as
“outputs”. These is the mode of an argument. An important property to ensure that your prolog
programs terminate is to ensure that they are well-moded. That is, the inputs to a subgoal as well
as the outputs are either determined by inputs or outputs of a previous goal. For instance, attempt
to verify whether or not the following prolog programs are well-moded.

notprime(P) :-

divisible(P, Q) %% divisible takes two inputs and holds when P % Q = 0

times(z, N, z).

times(s(M), N, O) :-

times(M, N, U),

plus(U, N, O).

% recall synth has the mode input, output

synth(inl(M), or(A, B)) :-

synth(M, A).

3

	Logic programming
	Modes

