
RECITATION 13: SUBSINGLETON LOGIC

RYAN KAVANAGH

Yesterday, we saw how we could view ordered proofs as concurrent programs.
We focused on the subsingleton fragment of ordered logic, namely, the fragment
where each judgment has at most one antecedent. We introduced the judgment
ω ` P : A, which under the proofs-as-programs interpretation, can equivalently be
viewed as saying that P is a proof of A using ω, and that P is a process providing A

and using ω. Finally, we saw that the computational interpretation comes from cut
reduction.

1. RULES OF SUBSINGLETON LOGIC

The subsingleton fragment is given by the following rules, where ω is an ordered
context consisting of zero or one antecedents:

A ` C B ` C

A⊕B ` C
⊕L

ω ` A

ω ` A⊕B
⊕R1

ω ` B

ω ` A⊕B
⊕R2

A ` C

A & B ` C
& L1

B ` C

A & B ` C
& L2

ω ` A ω ` B

ω ` A & B
& R

A ` A
idA

ω ` A A ` C

ω ` C
cutA

· ` C

1 ` C
1L · ` 1 1R

where we had the following term assignments:

Ai ` Qi : C (∀i ∈ I)

⊕{li : Ai}i∈I ` caseL (li ⇒ Qi)i∈I : C
⊕L

ω ` P : Ak (k ∈ I)

ω ` R.lk;P : ⊕{li : Ai}i∈I
⊕Rk

· ` C

1 ` waitL : C
1L · ` closeR : 1 1R

A ` ↔ : A
idA

ω ` P : A A ` Q : C

ω ` (P | Q) : C
cutA

(we didn’t assign terms to external choice and they won’t be used below, but they
are symmetric relative to the `). These were united by the following reduction
rules:

(R.lk;P) | caseL (li ⇒ Qi)i∈I

P | Qk

closeR | (waitL;Q)

Q

↔ | Q

Q

Q |↔
Q

We remark that we treat | associatively, that is to say, that P | (Q | R) and (P | Q) | R

have the same reductions.

Date: 29 November 2017.
1

2 RYAN KAVANAGH

2. PROGRAMMING WITH SUBSINGLETON LOGIC

We now consider three examples. We adopt the convention that “ ; ” binds more
tightly than “ | ”, that’s to say, we interpret P;Q | R;S as (P;Q) | (R;S) instead of
P; (Q | R);S.

2.1. Producing strings. We first want to write a program that produces a given
(constant) string. We assume the type string to be given by str = ⊕{a : str,b : str, $:

1}. Then 1 ` pababbbq : str is given by

pababbbq = R.a;R.b;R.a;R.b;R.b;R.b;R.$;↔.

What would have happened had we not included↔ at the end? We would end up
with something ill-typed (cf. the ⊕Rk rule above). For the sake of illustration, we
show the typing derivation of 1 ` paq : str:

1 ` ↔ : 1
id1

1 ` R.$;↔ : str
⊕R$

1 ` R.a;R.$;↔ : str
⊕Ra

2.2. Incrementing Binary Integers. We define the type bin = ⊕{b1 : bin, b0 : bin, $:

1}, analogously to str, and encode binary numbers b0 · · ·bn in exactly the same
way as we encoded strings, except that we reverse the bits (we do so due to the
cut rule, as will be made clear below). For example, 110 is encoded as p110q =

R.b0;R.b1;R.b1;R.$;↔.
Given a binary number string b0 · · ·bn, give a program inc of type bin ` inc : bin

that increments it. In particular, pb0 · · ·bnq | inc should produce something of
type bin to the right that corresponds to the increment of b0 · · ·bn. It is useful to
consider how we would implement this in ordered logic:

b0 inc
b1

b1 inc
inc b0

$ inc

$ b1

The corresponding program is

inc = caseL (b0⇒ R.b1;↔ | b1⇒ R.b0; inc | $⇒ R.b1;R.$;↔)

We consider an example evaluation. For illustration purposes, we consider the
helper program turkey that gobbles up everything passed to it from the left:

turkey = caseL (b0⇒ turkey | b1⇒ turkey | $⇒↔).

Then we see that turkey does indeed gobble the increment p10q of 1:

R.b1;R.$;↔ | inc | turkey
R.$;↔ | R.b0; inc | turkey

R.$;↔ | inc | turkey
R.b1;R.$;↔ | turkey

R.$;↔ | turkey
↔ |↔
↔

(For illustrative purposes, the input consumed by turkey is in red.)

RECITATION 13: SUBSINGLETON LOGIC 3

Instead of turkey, we could instead have defined an id process:

id = caseL (b0⇒ (id | R.b0;↔) | b1⇒ (id | R.b1) | $⇒ R.$;↔).

This process acts as the identity process, and when computing examples, has the
advantage of leaving its input in sight:

R.b1;R.$;↔ | inc | id

R.$;↔ | R.b0; inc | id

R.$;↔ | inc | id | R.b0;↔
R.b1;R.$;↔ | id | R.b0;↔

R.$;↔ | id | R.b1;↔ | R.b0;↔
↔ | R.$;↔ | R.b1;↔ | R.b0;↔
R.$;↔ | R.b1;↔ | R.b0;↔

Again, we see that we end up with a process that will produce the intended output
p10q.

2.3. String Reversal. Given some string c0 · · · cn, give a program rev of type
str ` rev : str that provides its reversal to the right. Assume the encoding given
above.

We introduce the following thunks as helper functions, where k ∈ {a,b}:

Tk = caseL ($⇒ R.k;R.$;↔ | a⇒ R.a; Tk | b⇒ R.b; Tk).

Then str ` Tk : str acts as the identity on all inputs from the left, except for R.$, on
which it outputs the thunked value R.k followed by R.$, and then terminates. We
can now capture str ` rev : str as follows:

rev = caseL (a⇒ (rev |str Ta) | b⇒ (rev |str Tb) | $⇒ R.$;↔).

We illustrate this with pabq, again using (an analogous) id to gobble up the output
and marking the value passed to the right in red.

pabq | rev | id

R.a;R.b;R.$;↔ | rev | id

R.b;R.$;↔ | rev | Ta | id

R.$;↔ | rev | Tb | Ta | id

↔ | R.$;↔ | Tb | Ta | id

R.$;↔ | Tb | Ta | id

↔ | R.b;R.$;↔ | Ta | id

R.b;R.$;↔ | Ta | id

R.$;↔ | R.b; Ta | id | R.b;↔
R.$;↔ | Ta | id | R.b;↔
↔ | R.a;R.$;↔ | id | R.b;↔
R.a;R.$;↔ | id | R.b;↔

R.$;↔ | id | R.a;↔ | R.b;↔
↔ | R.$;↔ | R.a;↔ | R.b;↔
R.$;↔ | R.a;↔ | R.b;↔

4 RYAN KAVANAGH

Then, any process composed with the above to the right will first see R.b, then R.a,
and finally R.$, i.e., the reversal of pabq.

	1. Rules of Subsingleton Logic
	2. Programming with Subsingleton Logic
	2.1. Producing strings
	2.2. Incrementing Binary Integers
	2.3. String Reversal

