
Lecture Notes on
Logic Programming

15-317: Constructive Logic
Frank Pfenning∗

Lecture 14
October 19, 2017

1 Computation vs. Deduction

The previous lectures explored a connection between logic and computa-
tion based on the observation that once we have a (constructive) proof, it
corresponds to a functional program (proofs-as-programs). In this lecture
we switch to an entirely different connection between logic and computa-
tion. The starting point is that the search for a proof has a computational
interpretation. We interpret logical rules as programs that are executed by
proof search according to a fixed strategy. This gives rise to the formulas-as-
programs paradigm, where we relate deductive proof search to computation
in logic programming. And, in fact, this development was foreshadowed
to some extent by the previous lectures on proof search.

Logic programming is a particular way to approach programming. Other
paradigms we might compare it to are imperative programming or func-
tional programming. The divisions are not always clear-cut—a functional
language may also have some imperative aspects, for example—but the
mindset of various paradigms is quite different and determines how we
design and reason about programs.

To understand logic programming, we first examine the difference be-
tween computation and deduction. To compute we start from a given ex-
pression and, according to a fixed set of rules (the program) generate a
result. For example, 25 + 46→ (2 + 4 + 1)1→ (6 + 1)1→ 71 for a compu-
tation of decimal addition with carry. To deduce we start from a conjecture

∗With edits by André Platzer

1



and, according to a fixed set of rules (the axioms and inference rules), try
to construct a proof of the conjecture. So computation is mechanical and
requires no ingenuity, while deduction is a creative process. For example,
for all n > 2: an + bn 6= cn, . . . 357 years of hard work . . ., QED.

Philosophers, mathematicians, and computer scientists have tried to
unify the two, or at least to understand the relationship between them for
centuries. For example, George Boole1 succeeded in reducing a certain class
of logical reasoning to computation in so-called Boolean algebras. Since the
fundamental undecidability breakthroughs in the 20th century we know
that not everything we can reason about is in fact mechanically computable,
even if we follow a well-defined fixed set of formal rules.

Yet even so, we should find a striking similarity of the above descrip-
tions of computation and deduction. Both start from some initial input and
follow a fixed set of rules, whether program or axioms and inference rules.

In this course we are interested in a connection of a different kind. A
first observation is that computation can be seen as a limited form of deduc-
tion, because computation actually establishes theorems, too. For example,
25 + 46 = 71 is both the result of a computation, and a theorem of arith-
metic. Conversely, deduction can be considered a form of computation if
only we fix a strategy for proof search, removing the guesswork (and the
possibility of employing ingenuity!) from the deductive process.

This latter idea is the foundation of logic programming. Logic program
computation proceeds by proof search according to a fixed strategy. By knowing
what this strategy is, we can implement particular algorithms in logic, and
execute the algorithms by proof search according to this fixed strategy.

2 Judgments and Proofs

Since logic programming computation is proof search, to study logic pro-
gramming means to study proofs. We adopt here the approach by Martin-
Löf [3]. Although he studied logic as a basis for functional programming
rather than logic programming, his ideas are more fundamental and there-
fore equally applicable in both paradigms.

Recall the most basic notion is that of a judgment, which is an object of
knowledge. We know a judgment because we have evidence for it. The
kind of evidence we are most interested in is a proof, which we display as a

11815–1864

2



deduction using inference rules in the form

J1 . . . Jn

J
R

where R is the name of the rule (often omitted), J is the judgment estab-
lished by the inference (the conclusion), and J1, . . . , Jn are the premisses of
the rule. We can read it as

If J1 and · · · and Jn then we can conclude J by virtue of rule R.

By far the most common judgment is the truth of a proposition A, which
we write as A true. Because we will be occupied almost exclusively with
the truth of propositions for quite some time in this course, and have now
mastered the nuances of separating a proposition from a judgment about
it, we will from now on omit the trailing “true” and just write A in a rule,
when really we still mean A true.

To give some simple examples we need a language to express propo-
sitions. We start with terms t that have the form f(t1, . . . , tn) where f is
a function symbol of arity2 n and t1, . . . , tn are the arguments. Terms can
have variables in them, which we generally denote by upper-case letters
in the context of logic programming. Atomic propositions P have the form
p(t1, . . . , tn) where p is a predicate symbol of arity n and t1, . . . , tn are its ar-
guments. Later we will introduce more general forms of propositions, built
up by logical connectives and quantifiers from atomic propositions.

In our first set of examples we represent natural numbers 0, 1, 2, . . . as
terms of the form 0, s(0), s(s(0)), . . ., using two function symbols (0 of arity
0 and s of arity 1).3 The first predicate we consider is the predicate even of
arity 1. Its meaning is defined by two inference rules:

even(0)
evz

even(N)

even(s(s(N)))
evs

The first rule, evz, expresses that 0 is even. It has no premiss and there-
fore is like an axiom. The second rule, evs, expresses that if N is even, then
s(s(N)) is also even. Here, N is a schematic variable of the inference rule:
every instance of the rule where N is replaced by a concrete term repre-
sents a valid inference. We have no more rules, so we think of these two as

2A function f of arity n expects the n arguments t1, . . . , tn.
3This unary representation is not how numbers are represented in practical logic pro-

gramming languages such as Prolog, but it is a convenient source of simple examples.

3



completely defining the predicate even in the sense that there are no other
circumstances under which we would know even(N) except those justified
by a series of uses of both rules.

The following is a trivial example of a deduction, showing that 4 is even:

even(0)
evz

even(s(s(0)))
evs

even(s(s(s(s(0)))))
evs

It used the rule evs twice: once with N = 0 and once with N = s(s(0)).

3 Proof Search

To make the transition from inference rules to logic programming we need
to impose a particular proof search strategy. Two fundamental ideas sug-
gest themselves: we could either search backward from the conjecture,
growing a (potential) proof tree upwards until all resulting premises are
proved so that it turns into a proof, or we could work forwards from the
axioms applying rules until we arrive at the conjecture. We call the first one
goal-directed and the second one forward-reasoning.

goal-directed search

x
even(0)

evz

even(s(s(0)))
evs

even(s(s(s(s(0)))))
evs

y
forward-reasoning search

In the logic programming literature we find the terminology top-down for
goal-directed, and bottom-up for forward-reasoning, but this goes counter
to the direction in which the proof tree is constructed. Logic programming
was conceived with goal-directed search, and this is still the dominant di-
rection since it underlies Prolog, the most popular logic programming lan-
guage. Later in the class, we will also have an opportunity to consider
forward reasoning.

Goal-directed Proof Search. In the first approximation, the goal-directed
strategy we apply is very simple: given a conjecture (called the goal) we de-
termine which inference rules might have been applied to arrive at this con-
clusion. We select one of them and then recursively apply our strategy to

4



all the premisses as subgoals. If there are no premisses we have completed
the proof of the goal. Of course, we will consider many refinements and
more precise descriptions of this basic idea of goal-directed proof search in
this course.

For example, consider the conjecture even(s(s(0))). We now execute the
logic program consisting of the two rules evz and evs to either prove or
refute this goal. We notice that the only rule with a matching conclusion is
evs. Our partial proof now looks like

...
even(0)

even(s(s(0)))
evs

with even(0) as the only subgoal.
Considering the subgoal even(0) we see that this time only the rule evz

could have this conclusion. Moreover, this rule has no premisses so the
computation terminates successfully, having found the proof

even(0)
evz

even(s(s(0)))
evs.

Actually, most logic programming languages will not show the proof in
this situation, but only answer yes if a proof has been found, which means
the conjecture was true.

Failing Proof Search. Now consider the goal even(s(s(s(0)))). Clearly,
since 3 is not even, the computation must fail to produce a proof. Follow-
ing our strategy, we first reduce this goal using the evs rule to the subgoal
even(s(0)), with the incomplete proof

...
even(s(0))

even(s(s(s(0))))
evs.

At this point we note that there is no rule whose conclusion matches the
goal even(s(0)). We say proof search fails, which will be reported back as
the result of the computation, usually by printing no.

5



Since we think of the two rules as the complete definition of even we
conclude that even(s(0)) is false. This example illustrates negation as failure,
which is a common technique in logic programming. Notice, however, that
there is an asymmetry: in the case where the conjecture was true, search
constructed an explicit proof which provides evidence for its truth. In the
case where the conjecture was false, no evidence for its falsehood is im-
mediately available since all we can say is that we tried to find a proof in
all possible ways and failed in each. This means that negation does not have
first-class status in logic programming.

4 Answer Substitutions

In the even example the response to a goal is either yes, in which case a
proof has been found, or no, if all attempts at finding a proof fail finitely.
In general, it is also possible that proof search does not terminate. But how
can we write logic programs to compute values?

Since every natural number is either even or odd, the only expected
answers are yes or no in that case. So let’s look at an example where we
actually expect a computed value as an answer. As an example we con-
sider programs to compute sums and differences of natural numbers in the
representation from the previous section. We start by specifying the under-
lying relation and then illustrate how it can be used for computation. The
relation in this case is plus(m,n, p) which should hold if m+ n = p. We use
the recurrence

(m+ 1) + n = (m+ n) + 1
0 + n = n

as our guide because it counts down the first argument to 0, which will
eventually happen for natural numbers. We obtain

plus(M,N,P )

plus(s(M), N, s(P ))
ps

plus(0, N,N)
pz.

Now consider a goal of the form plus(s(0), s(0), R) where R is an un-
known. This represents the question if there exists an R such that the rela-
tion plus(s(0), s(0), R) holds. Search not only constructs a proof, but, with
some bookkeeping, also a term t for R such that plus(s(0), s(0), t) is true.
This term t for R is the answer for the question whether there is a choice
for R such that plus(s(0), s(0), R) holds.

For the original goal, plus(s(0), s(0), R), only the rule ps could apply be-
cause of a mismatch between 0 and s(0) in the first argument to plus in the

6



conclusion. We also see that the R must have the form s(P ) for some P ,
although we do not know yet what P should be.

...
plus(0, s(0), P )

plus(s(0), s(0), R)
ps with R = s(P )

For its subgoal only the pz rule applies and we see that P must equal s(0).

proof search

x plus(0, s(0), P )
pz with P = s(0)

plus(s(0), s(0), R)
ps with R = s(P )

y substitute answers

If we carry out the substitutions backwards and put P = s(0) into R = s(P )
giving R = s(s(0)), we obtain the complete proof

plus(0, s(0), s(0))
pz

plus(s(0), s(0), s(s(0)))
ps

which is explicit evidence that 1 + 1 = 2. Instead of the full proof, imple-
mentations of logic programming languages mostly just print the substitu-
tion for the unknowns in the original goal, in this case R = s(s(0)).

Some terminology of logic programming: the original goal is called the
query, its unknowns are logic variables, and the result of the computation is
an answer substitution for the logic variables, suppressing the proof.

5 Backtracking

Sometimes during proof search the goal matches the conclusion of more
than one rule. This is called a choice point. When we reach a choice point we
always pick the first among the rules that match, in the order they were pre-
sented. If that attempt at a proof fails, we try the second one that matches,
and so on. This process is called backtracking.

As an example, consider the query plus(M, s(0), s(s(0))), intended to
compute an m such that m + 1 = 2, that is, m = 2 − 1. This demon-
strates that we can use the same logic program (here: the definition of the
plus predicate) in different ways (before: addition, now: subtraction).

7



The conclusion of the rule pz, plus(0, N,N), does not match because the
second and third argument of the query are different. However, the rule ps
applies and we obtain

...
plus(M1, s(0), s(0))

plus(M, s(0), s(s(0)))
ps with M = s(M1)

At this point both rules, ps and pz, match. We use the rule ps because it is
listed first, leading to

...
plus(M2, s(0), 0)

plus(M1, s(0), s(0))
ps with M1 = s(M2)

plus(M, s(0), s(s(0)))
ps with M = s(M1)

At this point no rule applies at all and this attempt fails. So we return to
our earlier choice point and try the second alternative, pz.

plus(M1, s(0), s(0))
pz with M1 = 0

plus(M, s(0), s(s(0)))
ps with M = s(M1)

At this point the proof is complete, with the answer substitution M = s(0).
Note that with even a tiny bit of foresight we could have avoided the

failed attempt by picking the rule pz first. But even this small amount of in-
genuity cannot be permitted: in order to have a satisfactory programming
language we must follow every step prescribed by the search strategy pre-
cisely.

6 Modes

Wait, why did the above examples work with the same rules defining plus?
Well, plus(M,N,R) is a relation and we can make use of such a relation by
providing inputs for M and N and computing an answer for R, which adds
M to N . Or we can make use of the same relation by providing inputs for
N and R and computing an answer for M , which subtracts N from R. It is
useful to keep track of both modes of using plus.

8



mode meaning
plus(+N,+M,−R) instantiated terms as input for first two arguments

compute output for last argument (here: addition)
plus(−N,+M,+R) instantiated terms as input for last two arguments

compute output for first argument (here: subtraction)

Even if not enforced in Prolog, it is also good style to describe the ex-
pected types of the arguments, so you will also see plus(+nat,+nat,−nat)
with natural numbers nat. Finally you will also often see the notation plus/3
to refer to the plus predicate with 3 arguments.

It is important to remember that these modes do not come for free, and
that they are not checked in a typical logic programming implementation.
This means as part of the programming process we need to carefully check
that the modes work out correctly, or we risk nontermination (mostly) or
incorrect answers (sometimes).

Let’s reconsider the specification for addition.

plus(M,N,P )

plus(s(M), N, s(P ))
ps

plus(0, N,N)
pz

To check that this is well-moded under the mode plus(+,+,−) we need to
prove by induction on the structure of the rules that if the values of the first
two arguments of plus are known then the third argument will be known in
case the search succeeds.

Case: Rule pz. We know 0 (which gives no useful information) and N . We
have to show we know N , which happens to be one of our assump-
tions and we declare this rule to be well-moded.

Case: Rule ps. We know s(M) and N . This means we also know M , and we
can apply the induction hypothesis to conclude that P will be known
if the search for a proof of the premise succeeds. But that means that
s(P ) will also be known and this rule is also mode correct.

Determining that subtraction plus(+,−,+) is a valid mode is similarly
straightforward:

Case: Rule pz. We know N from the third argument, so we also know the
second.

Case: Rule ps. We know N and s(P ) the second and third arguments in
the conclusion. This means we also know P and can apply the induc-
tion hypothesis to conclude that we know M . But that means we can
construction s(M), the first argument of the conclusion.

9



7 Subgoal Order

Another kind of choice arises when an inference rule has multiple premises,
namely the order in which we try to find a proof for them. Of course, log-
ically the order should not be relevant because the final proof is a proof no
matter in which order we went to find it. But operationally the behavior of
a program can be quite different.

As an example, we define times(m,n, p) which should hold if m×n = p.
We implement the recurrence

0× n = 0
(m+ 1)× n = (m× n) + n

in the form of the following two inference rules.

times(0, N, 0)
tz

times(M,N,P ) plus(P,N,Q)

times(s(M), N,Q)
ts

As an example we compute 1× 2 = Q. The first step is determined.

...
times(0, s(s(0)), P )

...
plus(P, s(s(0)), Q)

times(s(0), s(s(0)), Q)
ts

Now if we solve the left subgoal first, there is only one applicable rule, tz,
which forces P = 0

times(0, s(s(0)), P )
tz (P = 0)

...
plus(P, s(s(0)), Q)

times(s(0), s(s(0)), Q)
ts

Now since P = 0 from the first subgoal, which we, thus, know also for the
second subgoal, there is only one rule that applies to the second subgoal,
too, and we obtain correctly

times(0, s(s(0)), P )
tz (P = 0)

plus(P, s(s(0)), Q)
pz (Q = s(s(0)))

times(s(0), s(s(0)), Q)
ts.

On the other hand, if we were to solve the right subgoal plus(P, s(s(0)), Q)
first, then we would have no information on P and Q, so both rules for plus

10



apply. Since ps is given first, the strategy discussed in the previous section
means that we try it first, which leads to

...
times(0, s(s(0)), P )

...
plus(P1, s(s(0)), Q1)

plus(P, s(s(0)), Q)
ps (P = s(P1), Q = s(Q1))

times(s(0), s(s(0)), Q)
ts.

Again, rules ps and ts are both applicable, with ps listed first, so we con-
tinue:

...
times(0, s(s(0)), P )

...
plus(P2, s(s(0)), Q2)

plus(P1, s(s(0)), Q1)
ps (P1 = s(P2), Q1 = s(Q2))

plus(P, s(s(0)), Q)
ps (P = s(P1), Q = s(Q1))

times(s(0), s(s(0)), Q)
ts

It is easy to see that this will go on indefinitely, and computation will not
terminate.

In fact, in light of the backtracking we observed here, we might want
to reorder the rules so that pz comes before ps since pz gives short proofs.
Likewise, the right premise of ts has two schema variables that are still
unknown while the left premise has only one. That serves as a heuristic
indication that tz might have the appropriate order. These are heuristic
considerations, however, and a more detailed analysis is necessary to de-
termine the computationally most suitable form.

This examples illustrate that the order in which subgoals are solved can
have a strong impact on the computation. Here, proof search either com-
pletes in two steps or does not terminate. This is a consequence of fixing
an operational reading for the rules. The standard solution is to attack the
subgoals in left-to-right order. We observe here a common phenomenon of
logic programming: two definitions, entirely equivalent from the logical
point of view, can be very different operationally. Actually, this is also true
for functional programming: two implementations of the same function
can have very different complexity. This debunks the myth of “declarative
programming”—the idea that we only need to specify the problem rather
than design and implement an algorithm for its solution. However, we
can assert that both specification and implementation can be expressed in

11



the language of logic. Furthermore, correctness is easily established (sep-
arately from the computational question of termination and efficiency) in
either decision just from the rules. As we will see later when we come to
logical frameworks, we can integrate even correctness proofs into the same
formalism!

In lecture we now gave another example: numbers in binary form and
some predicates on them. We will show these with the material of the next
lecture.

8 Prolog Notation4

By far the most widely used logic programming language is Prolog, which
actually is a family of closely related languages. There are several good
textbooks, language manuals, and language implementations, both free
and commercial. A good resource is the FAQ of the Prolog newsgroup5.
For this course we use GNU Prolog6 although the programs should run in
just about any Prolog since we avoid the more advanced features.

The two-dimensional presentation of inference rules does not lend itself
to a textual format. The Prolog notation for a rule

J1 . . . Jn

J
R

is
J ← J1, . . . , Jn.

where the name of the rule is omitted and the left-pointing arrow is ren-
dered as ‘:-’ in a plain text file.

J:-J1, . . . , Jn.

We read this as
J if J1 and · · · and Jn.

Prolog terminology for an inference rule is a clause, where J is the head of
the clause and J1, . . . , Jn is the body. Therefore, instead of saying that we
“search for an inference rule whose conclusion matches the conjecture”, we say
that we “search for a clause whose head matches the goal”.

As an example, we show the earlier programs in Prolog notation.
4Covered in the next lecture
5https://groups.google.com/forum/#!forum/comp.lang.prolog
6http://www.gprolog.org/

12

https://groups.google.com/forum/#!forum/comp.lang.prolog
http://www.gprolog.org/


even(z).
even(s(s(N))) :- even(N).

plus(s(M), N, s(P)) :- plus(M, N, P).
plus(z, N, N).

times(z, N, z).
times(s(M), N, Q) :-

times(M, N, P),
plus(P, N, Q).

Clauses are tried in the order they are presented in the program. Subgoals
are solved in the order they are presented in the body of a clause.

9 Unification7

One important operation during search is to determine if the conjecture
matches the conclusion of an inference rule (or, in logic programming ter-
minology, if the goal unifies with the head of a clause). This operation is
a bit subtle, because the the rule may contain schematic variables, and the
the goal may also contain logical variables.

As a simple example (which we glossed over before), consider the goal

plus(s(0), s(0), R)

and the clause
plus(s(M), N, s(P ))← plus(M,N,P )

We need to find some way to instantiate M , N , and P in the clause head and
R in the goal such that plus(s(0), s(0), R) = plus(s(M), N, s(P )), by which
we man that plus(s(0), s(0), R) and plus(s(M), N, s(P )) become syntactically
identical.

Without formally describing an algorithm yet, the intuitive idea is to
match up corresponding subterms. If one of them is a variable, we set it
to the other term. Here we set M = 0, N = s(0), and R = s(P ). P is
arbitrary and remains a variable. Applying these equations to the body of
the clause we obtain plus(0, s(0), P ) which will be the subgoal with another
logic variable, P .

In order to use the other clause for plus to solve this goal we have to
solve plus(0, s(0), P ) = plus(0, N,N) which sets N = s(0) and P = s(0). The

7This section not covered in lecture

13



basic idea behind unification and the intuitive order how it works in this
case is illustrated in the following diagram:

plus(s(0), s(0), R) goal

plus(s(M), N, s(P ))← plus(M,N,P ) ps
0 s(0)

s(0)

plus(0, s(0), P ) subgoal

plus(0, N ′, N ′) pz

s(0)

s(0)

s(0)

This process is called unification, and the equations for the variables we
generate represent the unifier. In the above example the unifier unifying the
given goal and the ps clause is

(0/M, s(0)/N, s(P )/R)

The concrete answer substitution (s(s(0))/R) will be found when the re-
maining computation terminates as in the diagram.

There are some subtle issues in unification. One is that the variables in
the clause (which really are schematic variables in an inference rule) should
be renamed to become fresh variables each time a clause is used so that the
different instances of a rule are not confused with each other. This step
is also called standardize apart, because it renames schematic variables to
make them unique. Another issue is exemplified by the equation N =
s(s(N)) which does not have a solution: the right-hand side will have have
two more successors than the left-hand side so the two terms can never be
equal. Unfortunately, Prolog does not properly account for this and treats
such equations incorrectly by building a circular term (which is definitely
not a part of the underlying logical foundation). This would come up if we
pose the query plus(0, N, s(s(N))): “Is there an n such that 0 + n = n+ 2.”

We discuss the reasons for Prolog’s behavior later in this course (which
is related to efficiency), although we do not subscribe to it because it sub-
verts the logical meaning of programs.

We will come back to a full discussion of unification at a later lecture.
For the moment, this intuitive account of unification will suffice for our
purposes.

14



10 Beyond Prolog

Since logic programming rests on an operational interpretation of logic,
we can study various logics as well as properties of proof search in these
logics in order to understand logic programming. In this way we can push
the paradigm to its limits without departing too far from what makes it
beautiful: its elegant logical foundation.

Ironically, even though logic programming derives from logic, the lan-
guage we have considered so far (which is the basis of Prolog) does not
require any logical connectives at all, just the mechanisms of judgments
and inference rules. Extensions of it do lead to logical connectives, though.

11 Historical Notes

Logic programming and the Prolog language are credited to Alain Colmer-
auer and Robert Kowalski in the early 1970s. Colmerauer had been work-
ing on a specialized theorem prover for natural language processing, which
eventually evolved to a general purpose language called Prolog (for Pro-
grammation en Logique) that embodies the operational reading of clauses
formulated by Kowalski. Interesting accounts of the birth of logic pro-
gramming can be found in papers by the Colmerauer and Roussel [1] and
Kowalski [2].

We like Sterling and Shapiro’s The Art of Prolog [4] as a good introduc-
tory textbook for those who already know how to program and we recom-
mends O’Keefe’s The Craft of Prolog as a second book for those aspiring to
become real Prolog hackers. Both of these are somewhat dated and do not
cover many modern developments, which are the focus of this course. We
therefore do not use them as textbooks here.

References

[1] Alain Colmerauer and Philippe Roussel. The birth of Prolog. In Confer-
ence on the History of Programming Languages (HOPL-II), Preprints, pages
37–52, Cambridge, Massachusetts, April 1993.

[2] Robert A. Kowalski. The early years of logic programming. Communi-
cations of the ACM, 31(1):38–43, 1988.

15



[3] Per Martin-Löf. On the meanings of the logical constants and the justi-
fications of the logical laws. Nordic Journal of Philosophical Logic, 1(1):11–
60, 1996.

[4] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press,
Cambridge, Massachusetts, 2nd edition edition, 1994.

16


	Computation vs. Deduction
	Judgments and Proofs
	Proof Search
	Answer Substitutions
	Backtracking
	Modes
	Subgoal Order
	Prolog NotationCovered in the next lecture
	UnificationThis section not covered in lecture
	Beyond Prolog
	Historical Notes

