
Constructive Logic (15-317), Fall 2017
Assignment 6: Proof Checking and

Certification

Frank Pfenning

Due Thursday, October 26, 2017

This assignment is due at the beginning of class on the above date and
must be submitted electronically via autolab. Submit your homework as
a tar archive containing only check.sml and g4ip.sml.

There is no written portion of this assigment, so you do not have to
submit a pdf file.

Theorem provers and decision procedures are generally complicated
beasts. This increases the likelihood of errors in code that we would like
to hold to the highest standards of correctness. What to do?

One technique is for theorem provers to produce proof certificates (in
case they succeed, of course) that can be externally checked. This will
represent a step forward in particular if we can make such checkers small.
Very small.

The goal of this assignment is for you (1) to implement a proof checker
(worth 20 points) and then (2) instrument your G4ip decision procedure
to produce proof objects that can be certified by your checker (and our
checker!) (worth 30 points).

Since propositions correspond to types and constructive proofs cor-
respond to programs, you are also implementing a type checker for a
small functional programming language. It has the form of a so-called
bidirectional checker.

1

1 Implementing a proof checker

We present the syntax and checking system for a language of proof terms.

Checkable terms N ::= fn x⇒ N | (N1, N2) | () | inlN | inrN | R
| (case R of inlx1 ⇒ N1 | x2 ⇒ N2) | abort R
| let x : A = N1 in N2

Synthesizing terms R ::= x | N R | fstR | snd R
| (N : A)

Ordered contexts Ω ::= · | (x:A↓) · Ω

We are using ordered context Ω here for two reasons: (1) they are likely
closer to the implementation than sets would be, and (2) they allow us to
check terms such as (fn x⇒ fn x⇒ x) : A⊃B ⊃B ↓without ambiguity.
An occurrence of a variable always refers to the leftmost variable in the
context with the same name.

The checking and synthesis judgments are the following, defined in
Figure 1

Checking: Ω ` N : A ↑

Synthesis: Ω ` R : A ↓

Given types term for terms and prop for propositions as defined in the
starter code, operationalize these as two mutually recursive functions in
ML

val check : term -> prop -> bool

val synth : term -> prop option

where check N A returns true if · ` N : A ↑ and false otherwise, and
synth R returns SOME(A) if · ` R : A ↓ and NONE otherwise. Note that the
contexts here are empty at the interface, but that you will need to maintain
them internally.

Your code must respect the distinction between checkable terms N
and synthesizing terms R, even though in ML they are represented within
the same type term. This representation makes it much easier to write out
concrete examples by hand.

Your implementation does not need to print error messages, although
it may be a significant aid in debugging if it does. Some printing functions
are provided with the starter code for this homework.

2

(x:A↓) · Ω ` x : A ↓
var=

y 6= x Ω ` x : A ↓

(y:A↓) · Ω ` x : A ↓
var 6=

(x:A↓) · Ω ` N : B ↑

Ω ` (fn x⇒ N) : A⊃B ↑
⊃I

Ω ` R : A⊃B ↓ Ω ` N : A ↑
Ω ` RN : B ↓

⊃R

Ω ` N1 : A ↑ Ω ` N2 : B ↑

Ω ` (N1, N2) : A ∧B ↑
∧I

Ω ` R : A ∧B ↓
Ω ` fstR : A ↓

∧E1

Ω ` R : A ∧B ↓
Ω ` sndR : B ↓

∧E2

Ω ` () : > ↑
>I

no >E rule

Ω ` N : A ↑
Ω ` inlN : A ∨B ↑

∨I1

Ω ` N : B ↑
Ω ` inrN : A ∨B ↑

∨I2

Ω ` R : A ∨B ↓ (x:A↓) · Ω ` N1 : C ↑ (y:B↓) · Ω ` N2 : C ↑

Ω ` (case R of inlx⇒ N1 | inr y ⇒ N2) : C ↑
∨E

no ⊥I rule

Ω ` R : ⊥ ↓
Ω ` abortR : C ↑

⊥E

Ω ` R : A′ ↓ A = A′

Ω ` R : A ↑
↓↑

Ω ` N : A ↑

Ω ` (N : A) : A ↓
↑↓

Ω ` N : A ↑ (x:A↓) · Ω ` N ′ : C ↑

Ω ` (letx : A = N in N ′) : C ↑
let

Figure 1: Type checking and synthesis judgments for proof terms

3

2 Instrumenting a decision procedure

Recall that in Assignment 5 we asked you to implement a function

val decide : prop -> bool

In this assignment, modify your implementation to satisfy the interface

val certify : prop -> term option

where certify A returns SOME(N) with · ` N : A ↑ if a proof of A exists,
and NONE if no proof of A exists.

We recommend that you follow the judgment Γ −→ N : A given in
Figure 2 to assign proof terms to G4ip. This judgment uses contexts where
every antecedent is annotated with a synthesizing proof term R, and the
succedent with a checkable proof term N

Γ ::= · | Γ, R : A

We have deliberately left some gaps for you to fill in the nested left rules,
indicated by “??”.

4

Identity

R : P ∈ Γ

Γ −→ R : P
idP

Ordinary Rules

Γ −→ () : >
>R

Γ −→ N : C

Γ, R : > −→ N : C
>L

Γ −→ N1 : A Γ −→ N2 : B

Γ −→ (N1, N2) : A ∧B
∧R

Γ, (fstR : A), (sndR : B) −→ N : C

Γ, R : A ∧B −→ N : C
∧L

(no ⊥R rule) Γ, R : ⊥ −→ abortR : C
⊥L

Γ −→ N : A

Γ −→ inlN : A ∨B
∨R1

Γ −→ N : B

Γ −→ inrN : A ∨B
∨R2

Γ, x : A −→ N1 : C Γ, y : B −→ N2 : C

Γ, R : A ∨B −→ (case R of inlx⇒ N1 | inr y ⇒ N2) : C
∨L

Γ, x : A −→ N : B

Γ −→ (fn x⇒ N) : A⊃B
⊃R

Compound Left Rules

R2 : P ∈ Γ Γ, ?? : B −→ N : C

Γ, R1 : P ⊃B −→ N : C
P⊃L

Γ, ?? : B −→ N : C

Γ, R : >⊃B −→ N : C
>⊃L

Γ, ?? : A1 ⊃ (A2 ⊃B) −→ N : C

Γ, R : (A1 ∧A2)⊃B −→ N : C
∧⊃L

Γ −→ N : C

Γ, R : ⊥⊃B −→ N : C
⊥⊃L

Γ, ?? : A1 ⊃B, ?? : A2 ⊃B −→ N : C

Γ, R : A1 ∨A2 ⊃B −→ N : C
∨⊃L

Γ, ?? : A2 ⊃B −→ N2 : A1 ⊃A2 Γ, ?? : B −→ N : C

Γ, R : (A1 ⊃A2)⊃B −→ N : C
⊃⊃L

Figure 2: G4ip with proof terms

5

Some advice. Here is some potentially useless advice, since it very much
depends on the structure of your current G4ip prover. Nevertheless, we
suggest you read it carefully before you embark on your implementation.

• It should be easy to generalize context Γ from lists (or a similar data
structure) of types A to lists of pairs (R,A).

• If your internal functions implementing decide return booleans
(a perfectly good design), you might consider modifying them to
return a term option instead. You will then have to replace idioms
such as e orelse f by code such as

case e

of NONE => (case f

of NONE => NONE

| SOME(N) => SOME(N))

| SOME(N) => SOME(N)

or write higher-order functions (“combinators”) to achieve this ef-
fect.

• If your internal functions implementing decide use success continu-
ation (functions to call if proving some subgoal succeeds), you should
pass the proof term to the success continuation instead. Failure con-
tinuations (functions to call if some subgoal fails) probably don’t
have to change, since we are not producing certificates to witness
unprovability.

• To fill in the missing proof terms in the rules, write some explicit
ML functions to call. For example, in case of the rule ∧⊃L we
discussed in lecture, you might have an ML function which given
and R : (A1 ∧ A2)⊃ B returns an R′ : A1 ⊃ (A2 ⊃ B), and similarly
in the other missing cases. In this case, presumably R′ will be some
version of of (fn x1 ⇒ fn x2 ⇒ R (x1, x2)) for some fresh variables
x1 and x2. You have to be mindful of the fact that R′ must be a
synthesizing term and that x1 and x2 must be fresh (see next bullet).

• In certain rules, such as ⊃R, ∨L, or ∧⊃L from the previous bullet,
you will need to generate fresh variables, that is, variables that are
distinct from any variables you already use. They need to be fresh

6

so they do not accidentally shadow (and thereby conflict with) vari-
ables already declared in in the context. For this purpose we have
provided you with the function new : (var -> ’a) -> ’a. This
function maintains local state so that if you write new (fn x => e)

then it calls (fn x => e) with a fresh variable xi every time it is
called. In the example above, you might write something like

new (fn x1 => new (fn x2 =>

Fun(x1,Fun(x2,App(R,Pair(Var(x1),Var(x2)))))))

Note that it would be a bug to simply write something like

Fun("x1",Fun("x2",

App(R,Pair(Var("x1"),Var("x2"))))) (* bug! *)

because if "x1" or "x2" happen to be already be used in R the two
new binders would capture them and very likely render the result
no longer well-typed.

• If you find that you are not passing your local tests, please note that
either your proof search engine or your proof checker could be at
fault. Therefore, it is a good idea to thoroughly debug your proof
checker prior to instrumenting your G4ip implementation.

Submitting. Please generate a tarball containing your solution files by
running

$ tar cf hw6.tar check.sml g4ip.sml

and submit the resulting hw6.tar file to Autolab.

7

	Implementing a proof checker
	Instrumenting a decision procedure

