
Constructive Logic (15-317), Fall 2017
Assignment 5: Computing proofs

Contact: Daniel Gratzer (jozefg@cmu.edu)

Due Thursday, October 19, 2017, 1:30pm

This assignment is due at the beginning of class on the above date and must
be submitted electronically via autolab. Submit your homework as a single file,
not a tar. Just submit hw5.sml. After submitting via autolab, please check the
submission’s contents to ensure it contains what you expect. No points can
be given to a submission that isn’t there.

You might have noticed, after some practice, that proving a theorem in a
calculus becomes quite a mechanical task. Wouldn’t it be great if we could have
the computer do that for us? That is exactly our goal for this homework: to
implement an automatic theorem prover for propositional intuitionistic logic.

The first thing to think about is which calculus we will use. It should be clear
by now that natural deduction is not the best choice, as it is too non-deterministic.
The verification calculus could be a bit better, as it avoids the redundant steps
that eliminate and introduce the same connective over and over again, but
it still has the problem of keeping track of the right assumptions at the right
places. Maybe we should try the sequent-style presentation of natural deduction,
since this keeps the context in place. In this case we need to be very smart
about which direction to work at each step, since we can either go upwards or
downwards. Instead of trying to come up with heuristics for that, why don’t we
use the sequent calculus itself, where proof construction always happens from
the bottom up?

Indeed, sequent calculi are much better behaved for proof search. But we
need to be careful about it. Think about the first sequent calculus we have seen.
In this first version, the formulas on the left side of the sequent were persistent.
This means we can always choose to decompose those formulas. In fact, any
sequent calculus that has what we call implicit contraction1 of some formulas runs
into the same problem. Roy Dyckhoff’s contraction-free sequent calculus avoids
these problems. This calculus, called G4ip, relies on distinguishing the type of

1Usually in the form of applying a rule to decompose a formula and keeping a copy of the
original formula in the context.

1



antecedent on an implication on the left. For reference, the rules are below. For
further information, please see the notes for Lecture 11.

Identity

P ∈ Γ

Γ −→ P
idP

Ordinary Rules

Γ −→ >
>R

Γ −→ C

Γ,> −→ C
>L

Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, A,B −→ C

Γ, A ∧B −→ C
∧L

(no ⊥R rule) Γ,⊥ −→ C
⊥L

Γ −→ A

Γ −→ A ∨B
∨R1

Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ C Γ, B −→ C

Γ, A ∨B −→ C
∨L

Γ, A −→ B

Γ −→ A⊃B
⊃R

Compound Left Rules

P ∈ Γ Γ, B −→ C

Γ, P ⊃B −→ C
P⊃L

Γ, B −→ C

Γ,>⊃B −→ C
>⊃L

Γ, A1 ⊃ (A2 ⊃B) −→ C

Γ, (A1 ∧A2)⊃B −→ C
∧⊃L

Γ −→ C

Γ,⊥⊃B −→ C
⊥⊃L

Γ, A1 ⊃B,A2 ⊃B −→ C

Γ, A1 ∨A2 ⊃B −→ C
∨⊃L

Γ, A2 ⊃B −→ A1 ⊃A2 Γ, B −→ C

Γ, (A1 ⊃A2)⊃B −→ C
⊃⊃L

Because G4ip’s rules all reduce the “weight” of the formulas making up the
sequent when read bottom-up, it is straightforward to see that it represents a
decision procedure. The rules themselves are non-deterministic, though, so one
must invest some effort in extracting a deterministic implementation from them.

2



Task 1 (40 pts). Implement a proof search procedure based on the G4ip calculus.
Efficiency should not be a primary concern, but see the hints below regarding
invertible rules. Strive instead for correctness and elegance, in that order.

You should write your implementation in Standard ML.2 Some starter code
is provided in the file prop.sml, included in this homework’s handout, to clarify
the setup of the problem and give you some basic tools for debugging Implement
a structure G4ip matching the signature G4IP. A simple test harness assuming
this structure is given in the structure Test in the file test.sml, also included in
the handout. Feel free to post any additional interesting test cases you encounter
to Piazza.

Here are some hints to help guide your implementation:

• Be sure to apply all invertible rules before you apply any non-invertible
rules. Recall that the non-invertible rules in G4ip are idP , ∨R1, ∨R2, ⊃⊃L,
and P⊃L. Among these, id and P⊃L have somewhat special status: if they
apply, we don’t need to look back because there is no premise (idP ), or the
sequent in the premise is provable whenever the conclusion is (P⊃L).

One simple way to ensure that you do inversions first is to maintain a
second context of non-invertible propositions and to process it only when
the invertible rules have been exhausted.

• When it comes time to perform non-invertible search, you’ll have to con-
sider all possible choices you might make. Many theorems require you to
use your non-invertible hypotheses in a particular order, and unless you
try all possible orders, you may miss a proof.

• The provided test cases can help you catch many easy-to-make errors. Test
your code early and often! If you come up with any interesting test cases
of your own that help you catch other errors, we encourage you to share
them on Piazza.

There are many subtleties and design decisions involved in this task, so don’t
leave it until the last minute!

2If you are not comfortable writing in Standard ML, you should contact the instructors and the
TAs for help.

3


