Fast-Paced Trading of Multi-Attribute (Goods

Eugene Fink
Computer Science and Eng.
University of South Florida

Tampa, Florida 33620
eugene@csee.usf.edu
www.csee.usf.edu/~eugene

Abstract — We present an exchange system for trad-
ing complex nonstandard goods, such as used cars. We
explain the representation of desirable purchases and
sales, describe data structures for fast identification of
matches between buyers and sellers, and give experi-
ments on the system’s performance.

Keywords: E-commerce, exchange markets.

1 Introduction

The Internet has opened opportunities for efficient
on-line trading, and researchers have developed vari-
ous automated auctions, which have become a popu-
lar means for on-line trading; however, auctions have
several drawbacks, including lack of liquidity and asym-
metry between buyers and sellers. Traditional exchange
markets do not have these drawbacks, but they require
rigid standardization of tradable items. For example,
the New York Stock Exchange allows trading of about
3,000 stocks, and a buyer or seller has to indicate a spe-
cific stock.

For most goods, the description of a desirable trade is
more complex; for instance, a car buyer needs to specify
a model, options, color, and other features of a desirable
vehicle. She may also want to include preferences; for
example, she may indicate that a red car is preferable to
a white car. An exchange for nonstandard goods should
allow complex constraints in specifications of buy and
sell orders, support fast-paced trading for markets with
millions of orders, and include optimization techniques
that maximize the traders’ satisfaction.

We have defined trading semantics for complex goods,
and developed an exchange system that supports mar-
kets with up to 300,000 orders [5, 8, 9, 10]. We be-
gin with a review of previous work on auctions and ex-
changes (Section 2). We then give a formal model of
a market for complex goods (Section 3), and describe
data structures and algorithms for identifying matches
between buy and sell orders (Sections 4 and 5). Finally,
we show how the system’s performance depends on the
market size and order complexity (Section 6).

0-7803-7952-7/03/$17.00 © 2003 IEEE.

Josh Johnson
Electronic Arts, Tiburon
2301 Lucien Way, Suite 395
Maitland, Florida 32751
joshjohnson@cfl.rr.com

John Hershberger
Computer Science and Eng.
University of South Florida

Tampa, Florida 33620
jhershbe@csee.usf.edu
www.csee.usf.edu/~jhershbe

2 Previous work

We review related work on combinatorial auctions,
representation of complex goods, and exchanges for non-
standard goods.

Combinatorial auctions. Researchers have devel-
oped several efficient systems for combinatorial auc-
tions, which allow buying and selling sets of goods rather
than individual items.

Rothkopf, Peke¢, and Harstad gave a detailed anal-
ysis of combinatorial auctions and described seman-
tics of combinatorial bids that allowed fast match-
ing [15]. Nisan discussed alternative semantics, for-
malized the problem of searching for optimal and near-
optimal matches, and proposed a linear-programming
solution [12, 14].

Sandholm and his colleagues developed combinatorial
auctions that supported markets with several thousand
bids [16, 17, 19]. Gonen and Lehmann studied branch-
and-bound heuristics for processing combinatorial bids
and integrated them with linear programming [6, 7].
Andersson, Tenhunen, and Ygge compared the main
techniques for combinatorial auctions and proposed an
integer-programming representation that allowed richer
bid semantics [1].

Although the developed systems can efficiently pro-
cess several thousand bids, their running time is super-
linear in the number of bids, and they do not scale to
larger markets.

Advanced semantics. Several researchers have stud-
ied techniques for specifying the dependency of item
price on the number and quality of items. They have
also investigated techniques for processing “flexible”
bids, specified by hard and soft constraints.

Che analyzed auctions that allowed negotiating not
only the price, but also the quality of goods [3]. A bid
in these auctions was a function that specified a desired
trade-off between price and quality. Cripps and Ire-
land considered a similar setting and suggested several
strategies for bidding on price and quality [4]. Bich-
ler discussed a market that allowed negotiations on any
attributes of goods [2].



Buy: Sl
Red Mustang, - Any color Mustang,
made after 2000, Fill: made in 2003,
at most 20,000 miles,| | Red Mustang, 0 miles,
$19,000 made in 2003, $18,000

0 miles,
$18,500

(a) Matching orders and the resulting trade.

Buy: Sl Sl
Mustang| | Mustang| | Mustang
$19,000 | | $18,000 | | $17,000

A«

Fill:
Mustang

$18,000

(b) Selection among alternative matches.

Figure 1: Examples of trades in a used-car market.

Sandholm and Suri studied combinatorial auctions
that allowed bulk discounts [18]; that is, they enabled a
bidder to specify a dependency between item price and
transaction size. Lehmann, Lehmann, and Nisan also
considered the dependency of price on transaction size,
showed that the problem of finding the best matches
was NP-hard, and developed a greedy approximation al-
gorithm [13].

This initial work leaves many open problems, includ-
ing the use of complex constraints with general prefer-
ence functions, symmetric treatment of buyers and sell-
ers, and design of efficient matching algorithms for ad-
vanced semantics.

Exchanges. Auction researchers have traditionally
viewed exchanges as a variety of auction markets, called
continuous double auctions. Wurman, Walsh, and Well-
man proposed a theory of exchange markets and im-
plemented a general-purpose system for auctions and
exchanges [20]. Sandholm and Suri developed an ex-
change for combinatorial orders, but it could not sup-
port markets with more than one thousand orders [17].
Kalagnanam, Davenport, and Lee investigated tech-
niques for placing orders with complex constraints and
identifying matches between them, which scaled to a few
thousand orders [11].

The related open problems include development of a
scalable exchange system for large combinatorial mar-
kets, as well as support for orders with complex con-
straints.

3 Multi-attribute market

We present a formal model for describing desirable
purchases and sales, which allows the use of hard and
soft constraints.

Example. We consider an exchange for trading new
and used cars. To simplify this example, we assume that
a trader can describe a car by four attributes: model,

color, year, and mileage. A prospective buyer can place
a buy order, which includes a description of a desired
vehicle and a maximal acceptable price; for instance,
she may indicate that she wants a red Mustang, made
after 2000, with at most 20,000 miles, and she is willing
to pay $19,000. Similarly, a seller can place a sell order;
for example, a dealer may offer a brand-new Mustang
of any color for $18,000.

An exchange system must search for matches between
buy and sell orders, and generate corresponding fills,
that is, transactions that satisfy both buyers and sellers
(Figure la). If the system finds several matches for an
order, it should choose the match with the best price;
for instance, the buy order in Figure 1(b) should trade
with the cheaper of the two sell orders.

Attributes. A specific market includes a certain set
of items that can be bought and sold, defined by a
list of attributes and possible values of each attribute.
When a trader places an order, she has to specify a
set of acceptable values for each attribute, which is
called an attribute set. She specifies some set Iy of val-
ues for the first attribute, some set Iy for the second
attribute, and so on. The resulting set I of accept-
able items is the Cartesian product I = Iy x Io X ... .
For example, suppose that a car buyer is looking for a
Mustang or Camaro, the acceptable colors are red and
white, the car should be made after 2000, and it should
have at most 20,000 miles; then, the item set is I =
{Mustang, Camaro }x{red, white }x[2001..2003]x[0..20,000].

A trader can also define an item set I as the union of
several Cartesian products. For instance, if she wants to
buy either a used red Mustang or a new red Camaro, she
can specify the set I = {Mustang}x{red}x[2001..2003]x
[0..20,000] U {Camaro} x {red} x {2003} x [0..200].

Note that the Cartesian-product representation is a
simplification based on the assumption that all items
have the same attributes. Some markets do not satisfy
this assumption; for instance, if we trade cars and bicy-
cles on the same market, we need two lists of attributes.

Attribute sets. A trader can use specific values or
ranges for each attribute; note that ranges work only
for numeric attributes, such as year and mileage. A
market specification may also include certain standard
sets of values, such as “all sports cars” and “all Ameri-
can cars,” and a trader can use them in her orders. We
must include all standard sets in the market descrip-
tion, and traders cannot define new sets. We specify
a standard set by a list of values or numeric ranges;
for example, a set of American cars is a list of models:
{Camaro, Mustang, }

A trader can also use intersections and unions in
the specification of attribute sets. For instance, sup-
pose that a car buyer is interested in Mustangs, Ca-
maros, and Japanese sports cars. Suppose further that
we have defined a standard set of all Japanese cars,



and another standard set of all sports cars. Then,
the buyer can represent the desired set of models as
{Mustang, Camaro} U (Japanese-Cars N Sports-Cars).

To summarize, an attribute set is one of the following:

Specific value, such as Mustang or 2001.

Range of values, such as [2001..2003].

Standard set of values, such as all Japanese cars.
Intersection of several attribute sets.

Union of several attribute sets.

Price and quality. A trader should specify a limit on
the acceptable price; for instance, a car buyer may be
willing to pay $19,000 for a Mustang, but only $18,000
for a Camaro. This price limit is a real-valued function
defined on the set I, encoded by a C++ procedure; for
each item ¢ € I, it gives a certain limit Price(s).

A trader may also specify preferences among accept-
able transactions, which depend on an item ¢ and its
price p; for instance, a car buyer may indicate that
a Mustang for $18,000 is better than a Camaro for
$17,000. We represent preferences by a real-valued
function Qual(i,p) that assigns a numeric quality to
each pair of an item and price. Larger values corre-
spond to better transactions; that is, if Qual(i,p1) >
Qual(iz, p2), then trading i; at price p; is better than
io at pa. The encoding of a quality function is a C++
procedure, which inputs an item description and price,
and outputs a numeric quality value. Each trader can
use her own quality functions and specify different func-
tions for different orders. Note that buyers look for low
prices, whereas sellers prefer to get as much money as
possible, which means that quality functions must be
monotonic on price:

e Buy monotonicity:
If Qual, is quality for a buy order, and p; < po,
then, for every item i, Qual,(i,p1) > Qual,(i,p2).

o Sell monotonicity:
If Qual, is quality for a sell order, and p; < po,
then, for every item 4, Qual,(i,p1) < Qual, (i, p2).

We do not require a trader to specify a quality func-
tion for each order; by default, quality is defined through
price. This default function is the difference between the
price limit and actual price, divided by the price limit:

o For buy orders: Qual,(i,p) = (Price(i) — p)/ Price(i).
o For sell orders: Qual,(i,p) = (p — Price(i))/ Price(i).

Order sizes. If a trader wants to buy or sell several
identical items, she can include their number in the or-
der specification. We assume that an order size is a
natural number, thus enforcing discretization of contin-
uous goods, such as orange juice. The trader can also
specify a minimal acceptable size of a transaction, and
indicate that a transaction size must be divisible by a
certain number, called a size step.

To summarize, an order includes six elements:

FILL-SIZE(Maxy, Miny, Step,, Mazs, Mins, Step,)

The algorithm inputs the size specification of a buy order,
Maxy, Ming, and Step,, along with the size specification
of a matching sell order, Maxzs, Mins, and Step,.

Let step be the least common multiple of Step, and Step,
size := |min(Maxy, Mazs)/step] - step

If size > max(Miny, Mins), then return size

Else, return NONE (no acceptable size)

Figure 2: Computing the fill size for two matching orders.

Ttem set, 1.

Price function, Price: I — R.
Quality function, Qual: I xR — R.
Overall order size, Mazx.

Minimal acceptable size, Min.

Size step, Step.

Fills. When a buy order matches a sell order, the
corresponding parties can complete a trade; we use
the term fill to refer to the traded items and their
price (Figure 1). We define a fill by a specific item ¢,
its price p, and the number of traded items, denoted
size. If (Ip, Pricey, Maxy,, Miny, Step,) is a buy order,
and (I, Prices, Maxs, Mins, Step,) is a matching sell or-
der, then a fill must satisfy the following conditions:

e jclyNnl,.

o Prices(i) < p < Pricey(i).

o max(Miny, Mins) < size < min(Mazy, Maz,).

e size is divisible by Step, and Step,.

If the buyer’s price limit is larger than the seller’s
limit, we split the price difference between the buyer and
seller, which means that p = (Pricey(i) + Prices(i))/2.
Furthermore, we assume that the buyer and seller are
interested in trading at the maximal size, or as close
to the maximal size as possible; thus, the fill has the
largest possible size (Figure 2).

After getting a fill, the trader may keep the initial
order, reduce its size, or remove the order; the default
option is the size reduction. If the reduced size is zero,
the system removes the order from the market. If the
size remains positive but drops below the minimal ac-
ceptable size Min, the order is also removed.

4 Indexing structure

The exchange system includes a central structure for
indexing of orders with fully specified items, which do
not have ranges, standard sets, intersections, or unions.
If we can put an order into this structure, we call it an
index order. If an order includes a set of items, rather
than a fully specified item, it is added to an unordered
list of nonindex orders. This indexing scheme allows
fast retrieval of index orders that match a given order;
however, the system does not identify matches between
two nonindex orders.

Indexing tree. The indexing structure consists of two



2003 1,

1999: 13

2001y 14

I Mileagel

’ Mileage‘

’ Mileage‘

45000, 5000, 19 45000f 9 20000, o1 20000 25000
Red Camaro, ||White Camaro, |White Camaro, [White Camaro,|| Gold Camry, Red Camry, ||Red Mustang, || Red Mustang,
made in 2001,] | made in 1999,| | made in 1999,| | made in 2003, | madein 1999, || made in 2001, | made in 2001, | |made in 2001,
25,000 miles || 40,000 miles || 45,000 miles 5,000 miles 45,000 miles || 20,000 miles || 20,000 miles || 25,000 miles
F H J N
$14K $20.5K $16K $20K
size?2 sizel sizel size2
G |
$20K $21K
sizel sizel

Figure 3: Indexing tree with seventeen orders. We illustrate the retrieval of matches for an order to buy four Camaros or
Mustangs made after 2000. We show the matching nodes by thick boxes, and the retrieved orders by thick circles.

identical trees: one is for buy orders, and the other is
for sell orders. In Figure 3, we show a tree for sell or-
ders; its height equals the number of attributes, and
each level corresponds to one of the attributes. The
root node encodes the first attribute, and its children
represent different values of this attribute. The nodes
at the second level divide the orders by the second at-
tribute, and each node at the third level corresponds to
specific values of the first two attributes. In general, a
node at level i divides orders by the values of the ith
attribute, and each node at level (i 4+ 1) corresponds to
all orders with specific values of the first ¢ attributes. If
some items are not currently on sale, the tree does not
include the corresponding nodes.

Every nonleaf node includes a red-black tree that al-
lows fast retrieval of its children with given values; for
example, the root node in Figure 3 includes a red-black
tree that indexes its children by model values.

Standard sets. If a market includes standard sets
of values, such as “all sports cars” and “all American
cars,” traders can use them in their orders. For every
attribute, the system maintains a central table of stan-
dard sets, which consists of two parts (Figure 4a). The
first part includes a sorted list of values for every set; it
allows determining whether a given value belongs to a
specific set, by the binary search in the corresponding
list. The second part includes all values that belong to
at least one set; for each value, we store a sorted list of
sets that contain it.

Every node of an indexing tree also includes a ta-
ble of standard sets; for example, the root node in Fig-
ure 3 contains a table of sets for the first attribute (Fig-
ure 4b). Every set in the table includes a list of pointers

to its elements in the node’s red-black tree; for instance,
American-Cars points to Camaro and Mustang.

Basic operations. The nonleaf-node structure (Fig-
ure 4b) supports fast addition and deletion of children,
as well as fast retrieval operations:

e Retrieval of a child with a given attribute value.
e Retrieval of all children in a given standard set.
e Retrieval of all children in a given range.

The system can also retrieve all children that belong
to an intersection or union of several attribute sets.
Given an intersection, the system identifies the match-
ing children for one of its elements, and then prunes
the children that do not belong to the other elements.
Given a union, the system identifies matching children
for each of its elements, and then generates the union of
the resulting sets of children.

Leaf nodes. A leaf node includes orders with identi-
cal items, which are sorted by price, from the best to
the worst; that is, the system sorts buy orders from the
highest to the lowest price limit, and sell orders from
the lowest to the highest price. We use a red-black tree
to maintain this sorting, which allows fast insertion and
deletion of orders.

Time stamps. The system keeps track of the “age”
of each order, and uses it to avoid repetitive search for
matches among the same index orders. Every order has
two time stamps; the first is the time of placing the or-
der, and the second is the time of the last search for
matches. Furthermore, for each node of the indexing
tree, the system keeps the time of the last addition of
an order to the corresponding subtree. If the system
repeats the search for matches for some order, it skips



Indexing by set
American-Cars: Camaro, Mustang, ...
Japanese-Cars:Camry, ...
Sports-Cars:  Camaro, Mustang, ...

Indexing by attribute value
Camaro: American-Cars, Sports-Cars ...
Camry: Japanese-Cars, ...
Mustang: American-Cars, Sports-Cars, |..

(a) Central table of standard sets.

Model
Attribute values

Standard sets |

. |
American-Carss o1
Japanese-Carss |+
Sports-Cars: s «|-

e |

‘Color‘ ‘Color‘ ‘Color‘

NN

(b) Standard sets in a node of the indexing tree.

Figure 4: Standard sets of values. The system includes a
central table of sets (a), and every node in the indexing tree
includes a table of sets for the respective attribute (b).

the subtrees that have no new orders (see Section 5).

Adding and deleting an order. When a trader
places an index order, the system adds it to the corre-
sponding leaf; for example, if a dealer places an order to
sell a red Camaro, made in 2001, with 25,000 miles, the
system adds it to node 16 in Figure 3. If the leaf is not in
the tree, the system adds the appropriate new branch.
After adding an order, it updates the time stamps of
the ancestor nodes; for instance, if it adds a new order
to node 16, then it updates the time stamps of nodes 1,
2, 5,10, and 16.

When the system fills an index order, or a trader can-
cels her old order, the system removes the order from
the corresponding leaf. If the leaf does not include other
orders, the system deletes it from the tree; if the deleted
node is the only leaf in some subtree, the system removes
this subtree. For example, the deletion of order J in Fig-
ure 3 leads to the removal of nodes 7, 13, and 20.

5 Search for matches

The system alternates between processing new orders
and finding matches for old nonindex orders (Figure 5).
When it receives a new order, it immediately identifies
matching index orders. After processing all new orders,
it tries to fill old nonindex orders; for each nonindex
order, it identifies matching index orders.

We give a two-step algorithm that identifies matches
for a given order; it first finds the indexing-tree leaves

that match the item set of the given order, and then
selects the highest-quality matches in these leaves. In
Figure 6, we present the notation for the order and leaf-
node structures used by the matching algorithm; in Fig-
ures 7 and 8, we give pseudocode for the two main steps
of the algorithm.

Matching leaves. The algorithm in Figure 7 retrieves
matching leaves for the item set of a given order. Recall
that we represent the item set by a union of Cartesian
products.

The DFS subroutine finds all matches for one Carte-
sian product using depth-first search in the indexing
tree; it identifies all children of the root that match the
first element of the Cartesian product, and then recur-
sively processes the respective subtrees. For example,
suppose that a buyer is looking for a Mustang or Ca-
maro made after 2000, with any color and mileage, and
the tree of sell orders is as shown in Figure 3. The sub-
routine determines that nodes 2 and 4 match the model,
and processes the two respective subtrees. It identifies
three matching nodes for the second attribute, three
nodes for the third attribute, and finally four matching
leaves; we show these nodes by thick boxes.

If the system already tried to find matches for a given
order during the previous execution of the main loop, it
skips the subtrees that have not been modified since the
previous search. If the order includes a union of several
Cartesian products, the system calls the DFS subroutine
for each product.

Best matches. After the system identifies matching
leaves, it selects the best matching orders in these leaves,
according to the quality function of the given order.
In Figure 8, we give an algorithm that identifies the
highest-quality matches and completes the respective
trades. It arranges the leaves in a priority queue by the
quality of the best unprocessed match in a leaf. At each
step, it processes the best available match; it terminates
after it fills the given order or runs out of matches.

For example, consider the tree in Figure 3, and sup-
pose that a buyer places an order for four Mustangs or
Camaros made after 2000. We suppose further that she
uses the default quality function, which depends only
on price. The system first retrieves order A, with price
$16,000 and size 2, then order B with price $16,500, and
finally order O with price $19,000; we show these orders
by thick circles.

6 Experiments

We describe experiments with artificial market data
and with a used-car market. A more detailed report
of these experiments is available in Johnson’s masters
thesis [10]. We have run the system on a 2-GHz Pentium
computer with one-gigabyte memory.

We have implemented an artificial market setup that
allows control over the number of orders, number of at-



Process every new order in [ ™7 For every nonindex order,
the queue of incoming orders || find matching index orders

Figure 5: Main loop of the system.

Elements of the order structure:

Price[order] price function

Qual[order] quality function
Maa|order] overall order size
Min[order] minimal acceptable size
Steplorder] size step

time of placing the order
time of the last search for matches

Place-Time|order]
Search-Time[order]

Elements of the leaf-node structure:

Ttem|[leaf]
Order|leaf]
Quality[leaf]

item in the leaf’s orders
best-price unprocessed order in the leaf
quality of the best-price unprocessed order

Figure 6: Notation for the main elements of the structures
that represent an order and a leaf node. We use this notation
in the matching-algorithm pseudocode in Figures 7 and 8.

MATCHING-LEAVES( order, root)
The algorithm inputs an order and the root of an indexing tree.
It returns the leaves that match the item set of the order.

Initialize an empty set of matching leaves, denoted leaves
For each Cartesian product I3 X Iz X... in order’s item set:

Call DFS(Iy X I3 X ..., Search-Time[order], root, 1, leaves)
Return leaves

DFS(I1 X Iz X ..., Search-Time, node, k, leaves)

The subroutine inputs a Cartesian product I1 X I2X...,
the previous-search time, a node of the indexing tree,
the node’s depth in the tree, and a set of leaves.

It finds the matching leaves of the subtree rooted at
the given node, and adds them to the set of leaves.

If Search-Time is larger than node’s last-addition time,
then terminate
If node is a leaf, then add node to leaves
If node is not a leaf, then:
Identify all children of node that match Iy
For each matching child:
Call DFs(I1 xI2X..., Search-Time, child, k + 1, leaves)

Figure 7: Retrieval of matching leaves. The algorithm iden-
tifies the leaves of an indexing tree that match the item set
of a given order. The DFS subroutine uses depth-first search
to retrieve matching leaves for one Cartesian product.

BEST-MATCHES(order, leaves)
The algorithm inputs a given order and matching leaves.
It identifies the best matches for the order in these leaves.

Initialize an empty priority queue of matching leaves,
denoted queue, which prioritizes the leaves by the
quality of the best-price unprocessed order

For each leaf in leaves:

Set Order{leaf] to the first order among leaf’s orders,
sorted by price

Call LEAF-PRIORITY (order, leaf, queue)

While Maz{order] > Min[order] and queue is nonempty:

Set leaf to the highest-priority leaf in queue,
and remove it from queue

match := Order]leaf]

Set Order|leaf] to the next order among leaf’s orders,
sorted by price

Call TRADE(order, match)

Call LEAF-PRIORITY (order, leaf, queue)

If Maa[order] < Min[order],
then remove order from the market

Else, set Search-Time[order] to the current time

LEAF-PRIORITY (order, leaf, queue)

The subroutine inputs the given order, a matching leaf, and the
priority queue of leaves. If the order’s price matches the price of
the leaf’s best-price unprocessed order, then the leaf is added
to the queue.

match := Order]leaf]

If match = NONE, then terminate (no more orders in leaf)

i = Item/[leaf]

If the price of order does not match the price of match for i,
then terminate

Else, p := (Price[order](i) + Price[match|(i))/2

Quality[leaf] := Qual[order](Item|[leaf], p)

Add leaf to queue, prioritized by Quality

TRADE(order, match)

The subroutine inputs the given order and the highest-quality
order with matching item and price. If the sizes of these two
orders match, it completes the trade between them.

If Search-Time[order] > Place-Time[match], then terminate
size := FILL-SIZE(Maz|order], Min]order], Step[order],
Maz{match], Min[match], Step[match])
If size = NONE, then terminate
Complete the trade between order and match
Maaz[order] :== Max[order] — size
Maz[match] := Maz[match] — size
If Maz{match] < Min[match],
then remove match from the market

Figure 8: Retrieval of matching orders. The algorithm finds
the best matches for a given order and completes the cor-
responding trades. The LEAF-PRIORITY subroutine adds a
given leaf to the priority queue, arranged by the quality of a
leaf’s best-price unprocessed match. The TRADE subroutine
completes the trade between the given order and the best
available match.



tributes in an item description, and number of values
per attribute. We have varied the number of orders
from one to 300,000, which is the maximal possible num-
ber for one-gigabyte memory. We have randomly gen-
erated these orders, which include an equal number of
buy and sell orders. We have considered markets with
one, three, ten, thirty, and one hundred attributes, and
we have varied the number of values per attribute from
two to 1,000.

For each setting of the control variables, we have mea-
sured the main-loop time and throughput. The main-
loop time is the time of one pass through the system’s
main loop (Figure 5), which includes processing new or-
ders and matching old nonindex orders. The throughput
is the maximal acceptable rate of placing new orders; if
the system gets more orders per second, the number of
unprocessed orders keeps growing and eventually leads
to an overflow.

We give the dependency of the system’s performance
on the control variables in Figures 9-11; the scales of all
graphs are logarithmic. In Figure 9, we show how the
performance changes with the number of orders. The
main-loop time is approximately linear in the number
of orders. The throughput in small markets grows with
the number of orders; it reaches a maximum when the
market grows to about two hundred orders, and slightly
decreases with further increase in the market size. In
Figure 10, we give the dependency of the performance
on the number of attributes. The main-loop time is
super-linear in the number of attributes, whereas the
throughput is in inverse proportion to the same super-
linear function. In Figure 11, we show that the main-
loop time grows sub-linearly with the number of val-
ues per attribute, and the throughput slightly decreases
with an increase in the number of values.

We have also experimented with a used-car market
described by eight attributes: transmission, number of
doors, interior color, exterior color, year, model, option
package, and mileage. In Figure 12, we show the de-
pendency of the performance on the number of orders.
The system scales to markets with 300,000 orders, and
it processes 500 to 5,000 new orders per second.

7 Concluding remarks

The modern economy includes a variety of market-
places, and the Internet has led to the development of
new efficient markets. Computer scientists have stud-
ied algorithms for various auctions and standardized
exchanges, but they have done little work on exchange
markets for complex nonstandard goods. The reported
work is a step toward the development of automated
exchanges for nonstandard goods. We have built an ex-
change system that allows constraints and preference
functions in the description of orders, supports markets
with up to 300,000 orders, and processes hundreds of
orders per second.

Main-loop time Throughput

=)
o

=
(@)
=
o

[any
o,
~

[any
o
~ o

orders per sec
=
o
>

time (msec)
=
o

N

=
o
w
\
N
=
Qo

2 1

10 10
10° 10" 10° 10° 10* 10° 10° 10" 10° 10° 10* 10°
number of orders

number of orders

Figure 9: Dependency of the performance on the number
of orders. We consider three different settings of the con-
trol variables, which correspond to dotted, dashed, and solid
lines. The dotted lines show experiments with one attribute
and two values per attribute. The dashed lines are for three
attributes and sixteen values per attribute. The solid lines
are for ten attributes and 1,000 values per attribute.

o Main-loop time 5 Throughput
10 10
5 - =7 %}
510 P @ 10
£ 10° " g
= 10 e @ 10
E 3 ’ S AN
=10 . / 5 10 ~
102 0 1 2 101 0 1 2
10 10 10 10 10 10

number of attributes number of attributes
Figure 10: Dependency of the performance on the num-
ber of attributes. The dotted lines show experiments with
two values per attribute and 300 orders. The dashed lines
are for sixteen values per attribute and 10,000 orders. The
solid lines are for 1,000 values per attribute and 300,000
orders. We do not plot solid lines for thirty and one hun-
dred attributes, because we have not been able to run the
corresponding experiments, which would require more than
one-gigabyte main memory.

Main-loop time Throughput

6

o

10

=
o

c
[N
o
|
I
|
L

N
I
I

time (msec)
= =

o o

w £

\

\

\

1\
orders per sec
= =

o o

N S

=
o

10 10" 10> 10° 10°

values per attribute

100 100 10’
values per attribute
Figure 11: Dependency of the performance on the number
of values per attribute. The dotted lines show experiments
with one attribute and 300 orders. The dashed lines are for
three attributes and 10,000 orders. The solid lines are for
ten attributes and 300,000 orders.

Main-loop time

]

107 10"
10° 10" 10* 10° 10* 10° 10° 10" 10* 10° 10* 10°
number of orders number of orders
Figure 12: Dependency of the performance on the number
of orders for the used-car market with eight attributes.

. Throughput
10

o

[
o

o
£

[y
o
[
o

£
w

time (msec)
=
o

w
N

=
o

orders per sec
= =
o o




Acknowledgments. We are grateful to Hong Tang
and Jianli Gong for their help in preparing this arti-
cle, and to Savvas Nikiforou for his help with software

and hardware installations.

We thank Ganesh Mani,

Dwight Dietrich, Steve Fischetti, Michael Foster, and
Alex Gurevich for their feedback and help in under-
standing real-world exchanges. This work has been par-
tially sponsored by the DYNAMiX Technologies Corpo-
ration and by the National Science Foundation grant
No. E1A-0130768.

References

1]

Arne Andersson, Mattias Tenhunen, and Fredrik
Ygge. Integer programming for combinatorial auc-
tion winner determination. In Proceedings of the
Fourth International Conference on Multi-Agent
Systems, pages 39-46, 2000.

Martin Bichler. An experimental analysis of multi-
attribute auctions.  Decision Support Systems,
29(3):249-268, 2000.

Yeon-Koo Che. Design competition through multi-
dimensional auctions. RAND Journal of Economics,
24(4):668-680, 1993.

Martin Cripps and Norman Ireland. The design of
auctions and tenders with quality thresholds: The
symmetric case. Economic Journal, 104(423):316—
326, 1994.

Eugene Fink, Joshua Marc Johnson, and Jonathan
Hershberger. Multi-attribute exchange market:
Theory and experiments. In Proceedings of the Siz-
teenth Canadian Conference on Artificial Intelli-
gence, pages 603-610, 2003.

Rica Gonen and Daniel Lehmann. Optimal solu-
tions for multi-unit combinatorial auctions: Branch
and bound heuristics. In Proceedings of the Second
ACM Conference on Electronic Commerce, pages
13-20, 2000.

Rica Gonen and Daniel Lehmann. Linear program-
ming helps solving large multi-unit combinatorial
auctions. In Proceedings of the Electronic Market
Design Workshop, 2001.

Jianli Gong. Exchanges for complex commodities:
Search for optimal matches. Master’s thesis, De-
partment of Computer Science and Engineering,
University of South Florida, 2002.

Jenny Ying Hu. Exchanges for complex commodi-
ties: Representation and indexing of orders. Mas-
ter’s thesis, Department of Computer Science and
Engineering, University of South Florida, 2002.

[10]

[15]

(18]

[19]

[20]

Joshua Marc Johnson. Exchanges for complex com-
modities: Theory and experiments. Master’s thesis,
Department of Computer Science and Engineering,
University of South Florida, 2001.

Jayant R. Kalagnanam, Andrew J. Davenport, and
Ho S. Lee. Computational aspects of clearing con-
tinuous call double auctions with assignment con-
straints and indivisible demand. Technical Report
RC21660(97613), 1BM, 2000.

Ran Lavi and Noam Nisan. Competitive analysis of
incentive compatible on-line auctions. In Proceed-
ings of the Second ACM Conference on Electronic
Commerce, pages 233-241, 2000.

Benny Lehmann, Daniel Lehmann, and Noam
Nisan. Combinatorial auctions with decreasing
marginal utilities. In Proceedings of the Third ACM
Conference on Electronic Commerce, pages 18-28,
2001.

Noam Nisan. Bidding and allocation in combina-
torial auctions. In Proceedings of the Second ACM
Conference on FElectronic Commerce, pages 1-12,
2000.

Michael H. Rothkopf, Aleksandar Peke¢, and
Ronald M. Harstad. Computationally manage-
able combinatorial auctions. Management Science,
44(8):1131-1147, 1998.

Tuomas W. Sandholm. Approach to winner deter-
mination in combinatorial auctions. Decision Sup-
port Systems, 28(1-2):165-176, 2000.

Tuomas W. Sandholm and Subhash Suri. Im-
proved algorithms for optimal winner determina-
tion in combinatorial auctions and generalizations.
In Proceesings of the Seventeenth National Confer-
ence on Artificial Intelligence, pages 90-97, 2000.

Tuomas W. Sandholm and Subhash Suri. Market
clearability. In Proceedings of the Seventeenth In-
ternational Joint Conference on Artificial Intelli-
gence, pages 1145-1151, 2001.

Tuomas W. Sandholm, Subhash Suri, Andrew
Gilpin, and David Levine. CABOB: A fast optimal
algorithm for combinatorial auctions. In Proceed-
ings of the Seventeenth International Joint Con-
ference on Artificial Intelligence, pages 1102-1108,
2001.

Peter R. Wurman, William E. Walsh, and
Michael P. Wellman. Flexible double auctions for
electronic commerce: Theory and implementation.
Decision Support Systems, 24(1):17-27, 1998.



