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Abstract

The performance of all problem-solving sys-
tems depends crucially on problem representa-
tion. The same problem may be easy or dif-
ficult to solve depending on the way we de-
scribe it. Researchers have designed a variety
of learning algorithms that deduce important
information from the description of the prob-
lem domain and use the deduced information
to improve the representation. Examples of
these representation improvements include ge-
nerating abstraction hierarchies, replacing op-
erators with macros, decomposing a problem
into subproblems, and selecting primary effects
of operators. There has, however, been lit-
tle research on the common principles under-
lying the representation-improving algorithms
and the notion of useful representation changes
has remained at an informal level.

We present preliminary results on a sys-
tematic approach to the design of algorithms
for automatically improving representations.
We identify the main desirable properties of
such algorithms, present a framework for for-
mally specifying these properties, and show
how to implement a representation-improving
algorithm based on the specification of its prop-
erties. We illustrate the use of this approach by
developing two novel algorithms that improve
problem representations.
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1 Introduction

The problem representation in an AI problem-solving
system is the input to the system. In most problem-
solving systems, it includes the description of the oper-
ators in a problem domain, the initial and goal states
of a problem, and possibly some other information, such
as control rules and an abstraction hierarchy. The in-
formation given directly as an input is called explicit ,
and the information that can be deduced from the input
is called implicit. Every problem representation leaves
some information implicit.

The performance of all problem-solving systems de-
pends crucially on problem representation. The same
problem may be easy or difficult to solve depending on
the way we describe it. Psychologists and AI researchers
have accumulated much evidence of the importance of
good representations for human problem solvers [Newell
and Simon, 1972; Simon et al., 1985; Kaplan and Simon,
1990] and AI problem-solving systems [Newell, 1966;
Amarel, 1968; Korf, 1980].

Explicit representation of important information im-
proves the performance of a problem-solver. For exam-
ple, we may improve the efficiency of a problem-solving
system by encoding useful information about the domain
in control rules [Minton, 1988] and an abstraction hier-
archy [Knoblock, 1994]. On the other hand, explicit rep-
resentation of irrelevant information decreases efficiency:
if we do not mark such information as unimportant for
the problem, the system attempts to use it, which takes
extra computation and may lead the system to explore
useless branches of the search tree. For example, if we
add unnecessary extra operators to the domain descrip-
tion, and if these operators may (but need not) be used
in solving a problem, the branching factor of search in-
creases and the efficiency decreases.

Different problem-solving algorithms use different in-
formation about the domain and, therefore, perform effi-
ciently with different representations [Stone et al., 1994].
There is no “universal” representation that works well
with all algorithms. The task of finding a good repre-
sentation is usually left to the human user.

Newell was first to discuss the role of representation



in AI problem solving: he showed that the complexity of
reasoning in some games and puzzles strongly depends
on the representation [Newell, 1965; 1966]. Later, Newell
with several other researchers implemented the Soar sys-
tem [Laird et al., 1987; Newell, 1992], capable of using
different descriptions of a problem domain to facilitate
problem solving and learning. Soar, however, does not
generate new representations; the human user must pro-
vide all domain descriptions. A similar approach was
used in the fermi expert system [Larkin et al., 1988],
which automatically selects a representation for a given
problem among several hand-coded representations.

Many researchers have addressed the representation
problem by designing learning algorithms that deduce
important information from the domain description and
use the deduced information to improve the representa-
tion [Allen et al., 1992; Carbonell, 1990]. Examples of
these representation improvements include decomposing
a problem into subproblems [Newell et al., 1960], ge-
nerating abstraction hierarchies [Knoblock, 1994; Bac-
chus and Yang, 1994], replacing operators with macros
[Korf, 1985; Mooney, 1988; Shell and Carbonell, 1989],
replacing problems with similar simpler problems [Hi-
bler, 1994], and selecting primary effects of operators
[Fink and Yang, 1992; 1993].

A generalized model of improving representations in
problem solving was suggested by Korf, who formal-
ized the concept of representation changes based on the
notions of isomorphism and homomorphism of search
spaces [Korf, 1980]. Korf’s model, however, does not
address “a method for evaluating the efficiency of a rep-
resentation relative to a particular problem solver and
heuristics to guide the search for an efficient represen-
tation for a problem” ([Korf, 1980], page 75), whereas
the use of such heuristics is essential for developing an
efficient representation-changing system.

Even though AI researchers implemented many sys-
tems for automatically improving problem representa-
tion, there has been little research on the common prin-
ciples used in the design of representation-changing algo-
rithms and methods for developing new algorithms. Be-
cause of the lack of techniques and guidelines for the de-
sign of representation-changing algorithms, implement-
ing a new representation-changer is usually a complex
research problem.

In this paper, we present preliminary results on a
systematic approach to the design of representation-
changing algorithms. We concentrate on efficiency-
improving representation changes in general-purpose
problem-solving systems, such as prodigy [Veloso et al.,
1995] and ucpop [Penberthy and Weld, 1992], which rep-
resent solutions as sequences of operators.

We identify the main desirable properties of repre-
sentation changing algorithms and describe a method
for formally specifying these properties, which enables
us to abstract the major decisions in the development

of a representation-changer from implementational de-
tails. We show how to write a formal specification of the
important properties of a representation-changing algo-
rithm and then use this specification to implement the
algorithm. We illustrate the use of this approach by ap-
plying it to the development of two novel representation-
changers.

The presentation of the results is organized in five sec-
tions. In Section 2, we give two examples of simple do-
mains where representation changes drastically improve
the efficiency of problem solving. In Section 3, we de-
scribe a novel representation-changing algorithm, which
improves the efficiency of problem solving by removing
unnecessary operators from the description of a prob-
lem domain. In Section 4, we use this algorithm to
illustrate our general model of representation-changing
algorithms and systematic approach to designing such
algorithms. In Section 5, we apply the systematic ap-
proach to the design of another novel representation-
changing algorithm, which improves the effectiveness of
the alpine abstraction-generator [Knoblock, 1994] by
replacing some predicates in the domain description with
more specific predicates. Finally, we summarize the re-
sults in Section 6.

2 Examples of improving representation

For every problem-solving system and almost every prob-
lem, even a simple one, we can find a representation
that makes the problem very hard or even unsolvable.
These hard representations may not be cumbersome or
artificial: a natural representation of a problem is often
inappropriate for problem solving. Finding a good rep-
resentation may be a complex creative task that involves
extensive search.

We present two examples of situations where changing
the representation is essential for efficient performance
of the prodigy problem-solver. We will describe algo-
rithms for automatically making these changes in Sec-
tions 3 and 5.

Example 1: Three-Rocket Transportation.
Consider a planning domain with a planet, three moons,
three rockets, and several boxes [Stone and Veloso, 1994].
Initially, all boxes and all three rockets are on the planet.
A rocket can carry any number of boxes to any moon.
After a rocket has arrived to its destination, it cannot
be refueled and used again; thus, each rocket can be
launched only once. The task of a problem-solving sys-
tem is to find a plan for delivering certain boxes to cer-
tain moons. (We do not care about the resulting loca-
tions of specific rockets, as long as every box has reached
its proper destination.) For example, if we want to send
box-1 and box-2 to moon-1, and box-3 to moon-3, we
can achieve the goal with the following plan:

Load box-1 and box-2 into rocket-1,
and box-3 into rocket-2.



Send rocket-1 to moon-1 and rocket-2 to moon-3.
Unload both rockets.

To describe a current state of the domain, we
have to specify the locations of each rocket and each
box, which can be done with three predicates: (at
<rocket> <place>), (at <box> <place>), and (in
<box> <rocket>), where the “<..>” brackets denote
variables; for example, <rocket> is a variable that de-
notes an arbitrary rocket. We obtain literals describing
a state of the domain by substituting specific constants
for variables. For example, the literal (at rocket-1
planet) means that rocket-1 is on the planet and (in
box-1 rocket-1) means that box-1 is inside rocket-1.
The basic operations in the domain, called operators, are
described by their preconditions and effects. All precon-
ditions of an operator must hold before the execution of
the operator (that is, the preconditions are conjunctive);
the effects are the results of the execution.

The user may describe the operations in the Three-
Rocket domain by the three operators shown in Fig-
ure 1(a). This description, however, makes the prob-
lem very hard for prodigy: the system tries to use the
same rocket for transporting boxes to different moons.
prodigy performs a long search to discover that each
rocket can fly to only one moon [Stone and Veloso, 1994].
If we increase the number of moons and rockets, the
problem-solving time grows exponentially. We can use
control rules to reduce the search, but the Three-Rocket
domain requires a complex set of rules, which are diffi-
cult to hand-code or learn automatically.

We can, however, improve the efficiency of prodigy
by replacing the fly operator with three more specific
operators, shown in Figure 1(b). These new operators
encode explicitly the knowledge that each rocket flies
to only one moon. The use of these operators allows
prodigy to solve three-rocket transportation problems
almost without search. We thus have removed some ac-
tions from the domain, leaving a subset of actions suffi-
cient for solving all transportation problems.

The new domain description works only for three rock-
ets and three moons, whereas the original description
worked for any number of rockets and moons. Thus, we
have improved efficiency by limiting the set of problems
that we can solve.

Example 2: Tower of Hanoi.
We next show an example of a representation change
that enables the alpine learning algorithm [Knoblock,
1994] to generate an abstraction hierarchy, which reduces
the search complexity of prodigy.

We consider the Tower-of-Hanoi puzzle with three
disks (Figure 2). The user may describe the states of this
puzzle with a single predicate, (on <disk> <peg>), and
the operations with the operator shown in Figure 2(a).
Most problem-solvers find the solution to the puzzle by
an extensive search; the search time grows exponentially

with the length of a solution plan. The search could
be reduced by using an abstraction hierarchy of predi-
cates [Knoblock, 1994], but the problem description in
Figure 2(a) does not allow us to generate a hierarchy of
predicates, since this description contains only one pred-
icate.

We may remedy the situation by replacing the predi-
cate (on <disk> <peg>) with three more specific pred-
icates, (on small <peg>), (on medium <peg>), and
(on large <peg>), which specify, respectively, the po-
sitions of the small, medium, and large disk. Given these
new predicates, the alpine algorithm generates the
three-level abstraction hierarchy shown in Figure 2(b),
which reduces the complexity of prodigy’s search from
exponential to linear.

We have again improved efficiency by limiting the set
of problems that we can solve: the new description works
only for three disks, whereas the old one worked for any
number of disks.

3 Example of a representation-changer

We describe a novel representation-changing algorithm,
called Operator-Remover, which detects operators that
can be removed from a problem domain without impair-
ing our ability to solve problems. The algorithm removes
these unnecessary operators, thus reducing the branch-
ing factor of search by a problem-solver and, therefore,
improving the efficiency of the problem-solver.

The Operator-Remover algorithm is able to automat-
ically perform the representation change in the Three-
Rocket domain, described in Section 2: the algorithm de-
termines that all transportation problems can be solved
by sending rocket-1 to moon-1, rocket-2 to moon-2,
and rocket-3 to moon-3, and removes the operators for
the other flights from the domain description. This rep-
resentation change significantly reduces the complexity
of search by the prodigy problem-solver.

The main problem in designing an algorithm for re-
moving unnecessary operators is to ensure that the re-
duced set of operators, generated by the algorithm, al-
lows us to find near-optimal (satisficing) solutions to
most problems in the domain. An improper selection
of operators may result in generating non-optimal solu-
tions.

To illustrate a possible loss of an optimal solution,
let us suppose that the cost of loading or unloading
a box in the Three-Rocket domain is 1, the cost of
launching rocket-1 or rocket-2 is 2, and the cost
of launching rocket-3 is 4. The goal of sending
box-1 to moon-3 may be achieved by the plan “(load
box-1 rocket-1), (fly rocket-1 moon-3), (unload
box-1 rocket-1),” the total cost of which is 4. How-
ever, the reduced set of operators shown in Fig-
ure 1(b) forces a problem-solver to use rocket-3 for
sending a box to moon-3. If the problem-solver
uses this reduced set of operators, it finds the plan



Operator LOAD || Operator UNLOAD || Operator FLY
Parameters: || Parameters: || Parameters:
<box> <rocket> <place> || <box> <rocket> <place> || <rocket> <moon>

Preconds: || Preconds: || Preconds:
(at <box> <place>) || (in <box> <rocket>) || (at <rocket> planet)
(at <rocket> <place>) || (at <rocket> <place>) || Effects:

Effects: || Effects: || Del: (at <rocket> planet)
Del: (at <box> <place>) || Del: (in <box> <rocket>) || Add: (at <rocket> <moon>)
Add: (in <box> <rocket>) || Add: (at <box> <place>) ||

(a) Initial representation of the operations in the domain.

Operator || Operator || Operator
FLY-ROCKET-1-TO-MOON-1 || FLY-ROCKET-2-TO-MOON-2 || FLY-ROCKET-3-TO-MOON-3

Preconds: || Preconds: || Preconds:
(at rocket-1 planet) || (at rocket-2 planet) || (at rocket-3 planet)

Effects: || Effects: || Effects:
Del: (at rocket-1 planet) || Del: (at rocket-2 planet) || Del: (at rocket-3 planet)
Add: (at rocket-1 moon-1) || Add: (at rocket-2 moon-2) || Add: (at rocket-3 moon-3)

(b) Search-saving representation of the fly operation.

Figure 1: Changing the representation of the Three-Rocket domain to reduce prodigy’s search: problem solving
with the initial representation requires an extensive search, whereas the new representation of the fly operation
enables prodigy to solve the problem with little search.

(a) Representation of the operations in the puzzle. 

(on small <peg>) Level 0

Level 2

important
less 

more
important

(b) Abstraction hierarchy generated by ALPINE. 

Level 1

Operator MOVE
Parameters: <disk> <from-peg> <to-peg>
Preconds:

forall <other-disk>
if (smaller <other-disk> <disk>)

then ((not (on <other-disk> <from-peg>))
and (not (on <other-disk> <to-peg>)))

Effects:

(on medium <peg>)

(on large <peg>)

Del:  (on <disk> <from-peg>)
Add:  (on <disk> <to-peg>)

Figure 2: Changing the representation of the Tower-of-Hanoi puzzle to generate an abstraction hierarchy: the alpine
algorithm fails to generate a hierarchy for the initial representation, but it generates a three-level hierarchy if we use
more specific predicates.



“(load box-1 rocket-3), (fly-rocket3-to-moon-3),
(unload box-1 rocket-3),” with cost 6. In this exam-
ple, the ratio of the cost of the solution based on the
reduced set of operators and the cost of the optimal so-
lution is 6/4 = 1.5. This ratio is called the cost increase
of problem solving with the reduced set of operators.

To address the problem of preserving near-optimal
solutions, we use a learning algorithm that (1) tests
whether the reduced set of operators preserves the com-
pleteness of problem solving and (2) estimates the max-
imal cost increase. The algorithm generates solutions
to example problems based on the reduced set of op-
erators and compares them with optimal solutions. If
some problem cannot be solved with the reduced set of
operators or the cost increase is larger than a certain con-
stant C, the algorithm concludes that the reduced set of
operators is not sufficient and adds more operators from
the initial domain description to this set. Informally, we
can describe this algorithm as follows:

1. Generate an initial reduced set of operators.
2. Ask the user to specify the maximal cost increase, C.
3. Repeat “several” times:

(a) Generate an example problem.
(b) Find an optimal solution,

using all operators in the problem domain.
(c) Try to find a solution

with cost at most C · Cost(Optimal-Solution),
using only operators from the reduced set.

(d) If such a solution is not found,
then add a new operator to the reduced set.

To complete this algorithm, we must provide procedures
for generating an initial reduced set of operators and for
selecting a new operator when the current reduced set of
operators is not sufficient for problem solving. We have
discussed some methods for accomplishing these tasks in
[Fink and Yang, 1994].

The input to Operator-Remover must include the set
of operators in a domain. We may also provide the infor-
mation about possible initial and goal states of problems,
which will make the algorithm more effective. For exam-
ple, Operator-Remover simplifies the description of the
Three-Rocket domain only if we specify that the posi-
tions of rockets are never a part of the goal. (If we do
not specify restrictions on goals, the algorithm assumes
by default that all states can be goals.) This additional
information about possible problems is called an optional
input.

We next show the upper bound on the probability that
the use of the reduced set of operators results in the loss
of completeness or in finding too costly solutions. The
derivation of this bound may be found in [Fink, 1995].

Suppose that we use the problem-solving algorithm
with the reduced set of operators generated by Operator-
Remover. Let δ denote the probability that, given a ran-
domly selected solvable problem, the algorithm fails to
find a solution the cost of which is at most C times larger

than the cost of the optimal solution. In other words, δ
is the probability that the problem-solver does not find
a solution or finds a solution that is too costly. Let m
denote the number of example problems considered by
the Operator-Remover algorithm and n denote the num-
ber of operators in the problem domain. If m > n2, then
the “failure” probability δ is bounded by the following
inequality:

δ ≤ n2/m.

This relationship between the number of examples and
the failure probability is called the sample complexity
of the learning algorithm. The inequality shows that
the failure probability can be made arbitrarily small by
increasing the number of training examples.

4 Specification of representation-changers

We have described the Operator-Remover algorithm,
which removes operators from a domain description in
order to reduce the branching factor of search while
preserving completeness and near-optimality of problem
solving. We say that removing operators is the type
of the representation change performed by Operator-
Remover and that reducing the branching factor while
preserving completeness and near-optimality is the pur-
pose of the representation change.

When implementing a representation-changing algo-
rithm, we must decide on the type and purpose of the
representation change performed by the algorithm. Re-
stricting representation change to a specific type limits
the space of alternative representations explored by the
algorithm, whereas specifying the purpose shows exactly
in which way the algorithm must improve the represen-
tation. We must also determine which other algorithms
it calls as subroutines and identify the features of a prob-
lem domain that must be included into the algorithm’s
input.

These top-level decisions form a specification of
a representation-changer. Specifications allow us to
(1) formally describe the desired properties of a
representation-changing algorithm before implementing
the algorithm and (2) separate these properties from
specific methods used in the implementation. In Sec-
tion 5, we will illustrate the use of specifications in de-
signing a representation-changer.

When developing a specification of a representation-
changing algorithm, we must make sure that the spec-
ification describes a useful representation change and
that we can implement a simple and efficient algorithm
that satisfies the specification. We compose specifica-
tions from the following five parts:

Type of representation change. When designing
a representation-changer, we first select a type of rep-
resentation change, such as removing operators (as in
Operator-Remover) and replacing predicates with more



Generating an abstraction hierarchy: Decompos-
ing the set of predicates in the domain description into
several subsets, according to the “importance” of predi-
cates [Sacerdoti, 1974].

Replacing operators with macros: Replacing some
operators in the domain description with macros con-
structed from these operators [Fikes et al., 1972].

Selecting primary effects of operators: Choosing
certain “important” effects of operators and using op-
erators only for achieving their important effects [Fink
and Yang, 1993].

Removing operators: Deleting unnecessary operators
from the domain description (see Example 1 in Sec-
tion 2).

Generating more specific predicates: Replacing a
predicate in the domain description with several more
specific predicates, which together describe the same set
of ground literals (see Example 2 in Section 2).

Figure 3: Examples of types of representation changes
for improving the efficiency of problem solving.

specific ones (as in the Tower-of-Hanoi example in Sec-
tion 2). In Figure 3, we give some examples of types
of representation changes for improving the efficiency of
general-purpose problem-solving systems.

Purpose of representation change. A represen-
tation changing algorithm should find a representation
that satisfies the following three requirements:

• Efficiency: Problem solving with the new represen-
tation is efficient for most of the frequently encoun-
tered problems. We use an objective function to es-
timate the efficiency of problem solving with a new
representation.

• Near-Completeness: Most solvable problems remain
solvable in the new representation. We measure this
factor by the percentage of solvable problems that
become unsolvable after the representation change.

• Near-Optimality: The change of representation pre-
serves optimal or near-optimal solutions to most
problems and the problem-solving algorithm is able
to find near-optimal solutions. We define the opti-
mal solution as the solution with the lowest total
cost of operators. We measure the optimality fac-
tor by the largest increase in the cost of solutions
generated by the algorithm.

For example, in the Operator-Remover algorithm we use
the number of operators in the reduced set as an ob-
jective function for estimating the problem-solving effi-
ciency: the fewer operators, the more efficient problem

solving. The percentage of problems that may become
unsolvable is bounded by n2/m, where n is the num-
ber of operators in the domain and m is the number of
example problems considered by Operator-Remover (see
Section 3). Finally, the increase in the cost of solutions is
bounded by the user-specified maximal cost increase, C.

To summarize, we view the purpose of a representa-
tion change as maximizing a specific objective function,
while preserving near-completeness and near-optimality,
which is the central idea of the approach. This formal
specification of the purpose shows exactly in which way
we improve the representation and enables us to evaluate
the results of a representation change.

The use of other algorithms. We specify here
the problem-solving and learning algorithms that the
representation-changer uses as subroutines and the pur-
pose of using these algorithms. For example, Operator-
Remover calls the prodigy problem-solver to solve the
example problems used in learning.

Required input. We list here the parts of the
domain description that we must include into the
representation-changer’s input. For example, the re-
quired input to Operator-Remover includes the descrip-
tion of operators in the domain.

Optional input. Finally, we specify the additional
information about the domain that may be used by the
representation-changer. If the user inputs this informa-
tion, the representation-changer uses it to generate a bet-
ter representation; in the absence of such information,
the algorithm uses some default values. The optional in-
put may include useful knowledge about the properties
of the domain, such as control rules and a list of pri-
mary effects of operators, and restrictions on the types
of problems that we will solve with a new representa-
tion. For example, we may specify restrictions on the
initial and goal states of problems as an optional input
to Operator-Remover. If we do not provide this infor-
mation, the algorithm assumes by default that problems
may have any initial and goal states.

We summarize the specification of the Operator-Remover
algorithm in Figure 4.

5 Designing a representation-changer

We have described a method for specifying the impor-
tant properties of representation-changing algorithms,
which enables us to abstract these important prop-
erties from implementational details. We now illus-
trate the application of this method to the design of a
novel representation-changer, called Instantiator, which
improves the effectiveness of the alpine abstraction-
generator by replacing some predicates in the domain
description with more specific predicates. Instantiator is
able to perform the representation change in the Tower-
of-Hanoi domain, described in Section 2.

The alpine abstraction-generator is a very fast,



Type of representation change: Removing operators.

Purpose of representation change: Minimizing the num-
ber of remaining operators, while ensuring that the cost
increase is within the user-specified bound C.

The use of other algorithms: A problem-solver, used in
checking completeness and estimating the cost increase
of problem solving with the reduced set of operators.

Required input: Description of the operators; maximal
cost increase.

Optional input: Restrictions on the possible initial and
goal states.

Figure 4: Specification of the Operator-Remover repre-
sentation changing algorithm.

polynomial-time algorithm that generates an abstraction
hierarchy of predicates using several restrictions on the
importance levels of predicates [Knoblock, 1994]. The
restrictions are based on the relations between precondi-
tions and effects of operators. A level of the abstraction
hierarchy generated by alpine consists of predicates of
equal “importance.”

If the user describes a problem domain by a small
number of general predicates, the alpine algorithm usu-
ally fails to generate an abstraction hierarchy, since the
algorithm cannot distribute special cases of a general
predicate between several levels of abstraction. We en-
countered this problem in the Tower-of-Hanoi domain
described by a single predicate, (on <disk> <peg>) (see
Figure 2). alpine cannot distribute this single predicate
between several levels of abstraction and, thus, it cannot
generate a multi-level abstraction hierarchy.

We may avoid the problem of too general predicates by
instantiating all variables in the domain description, thus
replacing each general predicate with a large number of
fully instantiated predicates and each operator with a
number of fully instantiated operators. The full instan-
tiation, however, may lead to a combinatorial explosion
in the number of instantiated predicates and operators.

Knoblock proposed a more sophisticated technique
for replacing general predicates with specific ones, in
which the user divides the values of variables into classes
[Knoblock, 1991]. For example, in the Tower-of-Hanoi
domain, the user may indicate that the disks are divided
into three classes, Small, Medium, and Large, whereas
all pegs are of the same class. alpine uses this infor-
mation to generate three specific predicates, on-small,
on-medium, and on-large, and then generates more spe-
cific operators by incorporating these more specific pred-
icates into the operator description. This approach, how-
ever, requires the user’s help. Besides, a large number
of classes in a complex domain may still lead to a com-
binatorial explosion.

To avoid the explosion, the algorithm must automat-
ically identify the variables whose instantiation leads to
increasing the number of abstraction levels, and instan-
tiate only these variables. For example, in the Tower-of-
Hanoi domain, the algorithm must instantiate <disk>
and leave <peg> uninstantiated.

To perform the instantiation, the algorithm must
know all possible values of the variables. For exam-
ple, it must know that the possible values of <disk> are
small, medium, and large. The algorithm should also
use predicates that describe unchangeable relations be-
tween the values of variables, such as (smaller small
medium), which constrain possible instantiations of vari-
ables in the description of operators. Using these con-
straints, the algorithm generates fewer instantiated op-
erators, which enables alpine to use less restrictions in
generating an abstraction hierarchy and, thus, produce
a hierarchy with more levels.

We can now express the requirements to an algorithm
for generating more specific predicates as a specification
of a representation-changer; we show the specification in
Figure 5.

We next design a greedy algorithm, called Instantia-
tor, that satisfies this specification. The algorithm tries
to instantiate different variables, one by one, and calls
alpine to determine whether instantiating a variable
leads to an increase in the number of abstraction lev-
els. If the instantiation does not increase the number of
levels, the algorithm leaves the variable uninstantiated
and tries to instantiate another variable. Informally, we
can describe the Instantiator algorithm as follows:

For every variable v in the domain description:
1. For every operator Op that contains v,

instantiate v in Op with all its possible values,
thus replacing Op by set of more specific operators.

2. Call alpine to generate an abstraction hierarchy
for the resulting domain description.

3. If the number of levels in this new hierarchy is larger
than that in the hierarchy before instantiating v,

then leave v instantiated in the domain description,
else go back to the description with uninstantiated v.

For example, suppose that we apply the Instantiator
algorithm to the Tower-of-Hanoi domain described with
a single predicate, (on <disk> <peg>). The algorithm
will notice that instantiating the variable <disk> results
in generating a three-level abstraction hierarchy, whereas
instantiating the variable <peg> does not increase the
number of abstraction levels. The algorithm will thus
instantiate <disk> and generate the three-level hierarchy
shown in Figure 2(b).

Note that the Instantiator algorithm does not try to
instantiate several variables at once and, therefore, it
fails to find a good instantiation if the only way to in-
crease the number of abstraction levels is to instantiate
several variables together. We may avoid this problem



Type of representation change: Generating more specific
predicates.

Purpose of representation change: Maximizing the num-
ber of levels in the abstraction hierarchy generated by
alpine.

The use of other algorithms: alpine, used in generating
an abstraction hierarchy based on more specific predi-
cates.

Required input: Description of the operators; the possi-
ble values of the variables in the domain description.

Optional input: Predicates describing unchangeable re-
lations between the values of variables.

Figure 5: Specification of the Instantiator algorithm.

by modifying the algorithm in such a way that it con-
siders instantiations of couples and triples of variables
when instantiating single variables does not improve the
abstraction hierarchy.

6 Conclusions

We have described a systematic approach to the anal-
ysis and design of representation-changing algorithms,
based on the formal specification of the important prop-
erties of these algorithms. We have demonstrated that
the use of specifications simplifies the task of design-
ing representation-changers and evaluating their perfor-
mance. When developing a representation-changer, we
first formalize its desirable properties and then imple-
ment a learning or search algorithm with these proper-
ties.

We have presented two novel representation-changing
algorithms, Operator-Remover and Instantiator. In
[Fink, 1995], we have described the use of specifications
in designing two other, more complex representation-
changers, Prim-Tweak [Fink and Yang, 1993] and Margie
[Fink and Yang, 1992], which improve the efficiency of
problem solving by selecting primary effects of operators.
We have demonstrated experimentally that Prim-Tweak
and Margie considerably improve the performance in a
variety of planning domains [Fink and Yang, 1995].

We plan to extend and formalize the structure and
language of specifications, study methods for deter-
mining which specifications describe useful represen-
tation changes, develop techniques for implementing
representation-changing algorithms according to spec-
ifications, and demonstrate the practical usefulness of
representation-changers by applying them to large-scale
domains. We also plan to study algorithms capable of
improving languages for problem description.
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