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Abstract

Strong O-converity is a generalization of standard convexity, defined with respect to a
fixed set O of hyperplanar orientations. We explore the properties of strongly O-convex sets
in two and more dimensions and develop a mathematical foundation of strong convexity.
We characterize strongly O-convex polytopes, flats, and halfspaces, establish the strong
O-convexity of the affine hull of a strongly O-convex set, and describe conditions under
which two orientation sets yield the same collection of strongly O-convex sets (orientation
equivalence).

We identify some of the major properties of standard convex sets that hold for strong
O-convexity. In particular, we establish the following results:

e The intersection of a collection of strongly O-convex sets is strongly O-convex

e For every point in the boundary of a strongly O-convex set, there is a supporting
strongly O-convex hyperplane through it

e A closed set with a nonempty interior is strongly O-convex if and only if it is the
intersection of the strongly O-convex halfspaces that contain it



1 Introduction

Convex sets are a comparatively recent yet fruitful concept in geometry, which has applica-
tions in optimization, statistics, geometric number theory, functional analysis, and combi-
natorics [Klee, 1971, Preparata and Shamos, 1985], as well as in more practical areas, such
as VLSI design, computer graphics, architectural databases, and geographic databases. For
example, the convex hull of a geometric object is often used as an approximation of the ob-
ject. As another example, decomposing a polygon into convex subpolygons makes polygonal
processing easier to handle.

Researchers have studied many notions of nontraditional convexity along with standard
convexity, such as orthogonal convexity [Montuno and Fournier, 1982, Nicholl et al., 1983,
Ottmann et al., 1984], finitely oriented convexity [Giiting, 1983b, Widmayer et al., 1987,
Rawlins and Wood, 1987], restricted-orientation convexity [Rawlins, 1987, Rawlins and
Wood, 1991, Schuierer, 1991], NESW convexity [Lipski and Papadimitriou, 1981, Soisalon-
Soininen and Wood, 1984, Widmayer et al., 1987], and link convexity [Bruckner and Bruck-
ner, 1962, Valentine, 1965, Schuierer, 1991].

Rawlins introduced the notion of planar strong convexity during his investigation of
restricted-orientation visibility [Rawlins, 1987]. This notion is stronger than standard con-
vexity, hence the name. Rawlins and Wood [Rawlins and Wood, 1988, Rawlins and Wood,
1991] studied the properties of strongly convex sets in two dimensions and demonstrated
that strong convexity generalizes not only standard convexity but also the notions of ortho-
rectangles (that is, rectangles whose edges are parallel to the coordinate axes) and C-oriented
polygons [Giiting, 1983a, Giiting, 1984]. The work on strong convexity adds to our under-
standing of convexity in general and may help us to develop simpler and more efficient
convexity algorithms.

The research on nontraditional notions of convexity has so far been restricted to two
dimensions. The work reported here is the first step in exploring nontraditional convexity
in higher dimensions. In this first paper in a series [Fink and Wood, 1995a, Fink and Wood,
1995b], we extend the notion of strong convexity to higher dimensions. This extension is a
generalization of planar strong convexity and of standard multidimensional convexity.

We explore the properties of strong convexity in higher dimensions and demonstrate
that these properties are much richer than the properties of planar strongly convex sets. We
establish analogs of the following basic properties of convex sets:

Visibility For every two points of a convex set, the straight segment joining them is wholly
contained in the set.

Intersection The intersection of a collection of convex sets is a convex set. This property
is the basis for the definition of the convex hull of a given set, which is the smallest
convex set containing the given set.

Supporting planes For every point in the boundary of a convex set, there is a hyperplane
through it that supports the set.

Halfspace intersection A closed convex set is the intersection of the halfspaces that con-
tain it.
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Figure 1: Strong ortho-convexity.

Except for the intersection property, these properties are defining characteristics of convex
sets.

We also characterize strongly O-convex polytopes, flats, and halfspaces, establish the
strong O-convexity of the affine hull of a strongly O-convex set, and describe conditions under
which two orientation sets yield the same collection of strongly O-convex sets (orientation
equivalence).

The article is organized as follows. In Section 2, we briefly describe the notion of strong
convexity in two dimensions and give basic properties of planar strongly convex sets. In
Section 3, we generalize the notion of strong convexity to higher dimensions. In Section 4, we
present basic properties of higher-dimensional strongly convex sets. In Section 5, we explore
properties of strongly convex flats. In Section 6, we describe strongly convex halfspaces and
present analogs of the supporting-planes and halfspace-intersection properties for strongly
convex sets. Finally, we conclude, in Section 7, with a summary of the results and a discussion
of future work.

2 Strong convexity in two dimensions

We begin by reviewing the notion of strong convexity in two dimensions [Rawlins, 1987]
and exploring the basic properties of planar strongly convex sets. Rawlins introduced this
notion as part of his research on restricted-orientation visibility. He defined strong convexity
through a generalized visibility, by analogy with standard convexity.

We can describe convex sets in terms of visibility: a set is convex if every two points of
the set are visible to each other. In other words, for every two points of a convex set, the
straight segment joining these points is wholly contained in the set. We introduce a new
type of visibility by replacing straight segments with different type of objects, called blocks,
and define strong convexity in terms of this new visibility.

We first present the notions of ortho-rectangles, ortho-blocks, and strong ortho-visibility.
An ortho-rectangle is a rectangle whose sides are parallel to the coordinate axes [Giiting,
1983al]. The ortho-block of two points p and ¢ is the minimal ortho-rectangle that contains
p and ¢ (note that p and ¢ are opposite vertices of this ortho-rectangle; see Figure 1b). If p
and ¢ are on the same vertical or horizontal line, then the ortho-block of p and ¢ is just the
straight segment joining p and ¢ (Figure 1c).

We define strong ortho-convexity using ortho-block wvisibility: a set is strongly ortho-
convex if, for every two points of the set, the ortho-block of these two points is wholly
contained in the set. For example, the rectangles in Figures 1(d) and 1(e) are strongly
ortho-convex (some ortho-blocks contained in these rectangles are shown by dashed lines).
On the other hand, the square in Figure 1(f) is not strongly ortho-convex, because the dashed
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Figure 2: Planar strong convexity.

ortho-block is not in the square.
The following two properties of strongly ortho-convex sets are straightforward to prove:

Lemma 1
1. A set is strongly ortho-convex if and only if it is an ortho-rectangle.

2. The intersection of a collection of strongly ortho-convex sets is strongly ortho-convex.

Thus, after all, strongly ortho-convex sets are quite simple objects. These objects inherit
two important properties of convex sets: visibility and intersection. Ortho-convex sets can
be defined in terms of visibility and the intersection of a collection of ortho-convex sets is
always an ortho-convex set.

Strong O-convezily is a generalization of strong ortho-convexity. We obtain this gener-
alization by replacing the two coordinate axes with a (finite or infinite) set of lines through
a fixed point 0. We denote this set of lines by O and call it an orientation set. An example
of a finite orientation set is shown in Figure 2(a). A straight line parallel to one of the lines
of O is called an O-oriented line.

We now define the O-block of two points p and ¢, which generalizes the notion of the
ortho-block. Let us draw all O-oriented rays with endpoint p and choose the two of them
closest to ¢ (see Figure 2b). The two selected rays, with the common endpoint p, are the
boundary of an angle with vertex p; this angle contains g.

It O is an infinite set, it may not be closed and, hence, we may not be able to choose the
ray closest to ¢. For example, consider the orientation set in Figure 2(c). All lines in the
shaded area are elements of O and the dotted horizontal line is not in O; this orientation set
is not closed. If O is not closed, we have to use a limit in selecting the two rays. We choose
two rays with common endpoint p such that, for each of the two selected rays, (1) there is
a sequence of O-oriented rays convergent to this ray and (2) there are no O-oriented rays
with endpoint p between this ray and the point ¢ (see Figure 2d). The two selected rays are
again the boundary of an angle with vertex p; this angle contains q.

Similarly, we draw the O-oriented rays from ¢ closest to p and obtain the angle with
vertex ¢ whose boundary is formed by these rays (Figure 2e). The O-block of p and ¢ is the
intersection of these two angles (the shaded parallelogram in Figure 2e). As a special case,
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if the line through p and ¢ is O-oriented, then the O-block of p and ¢ is just the straight
segment joining p and ¢ (Figure 2f).
We define strong O-convexity much in the same way as strong ortho-convexity, using

O-blocks instead of ortho-blocks.

Definition 1 (Strong O-convexity) A set is strongly O-convex if, for every two points
of the set, their O-block is contained in the set.

Let us denote the orientation set in Figure 2(a) by O, and the orientation set in Fig-
ure 2(c) by O.. Then, the polygon in Figure 2(g) is strongly O,-convex and strongly O.-
convex (two O,-blocks contained in this polygon are shown by dashed lines). On the other
hand, the circle in Figure 2(h) is neither strongly O,-convex nor strongly O.-convex, since
the block shown by dashed lines, which is an O,-block as well as O.-block, is not in the circle.
Finally, the polygon in Figure 2(i) is strongly O.-convex, but is not strongly O,-convex.

The following properties of strongly O-convex sets readily follow from the definition
(Properties 1-4 and 6 were stated by Rawlins [Rawlins, 1987]).

Lemma 2
1. Every translation of a strongly O-convex set is strongly O-convez.

2. (Intersection) If C is a collection of strongly O-convex sets, then the intersection
NC of this collection ts also strongly O-convex. This property is the basis of the
definition of the unique strongly O-convex hull of a given set, which ts the smallest
strongly O-convex set containing the given set.

For every orientation set O, every strongly O-convex set is standard convex.

RN

If O1 C Oy, then every strongly O1-convex set is strongly Oz-conver.

r

For two orientation sets, O1 and O, through the same point o, strong O -convezily s
equivalent to strong Oq-convexity if and only if Closure(O;) = Closure(Os).

6. For a closed orientation set O, a polygon is strongly O-convez if and only if it is convex
and its edges are O-oriented.

Proof.

(1) By definition, a translation of an O-oriented line is an O-oriented line. Therefore,
translations of O-blocks are O-blocks and translations of strongly O-convex sets are strongly
O-convex sets.

(2) If C is a collection of strongly O-convex sets, then, for every two points p and ¢ of
the intersection () C, the O-block of p and ¢ is a subset of every element of C' and, hence,
O-block(p, ¢) is a subset of NC.

(3) For every two points p and ¢, the straight segment joining them is contained in
O-block(p, ¢). Therefore, for every two points of a strongly O-convex set, the segment
joining them is contained in the set.

(4) Suppose that O; C O;. We readily conclude from the definition of O-blocks that,
for every two points p and ¢, Os-block(p,q) € O;-block(p, ¢). Therefore, if P is strongly
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O;-convex, then, for every two points of P, the Oj-block of these points is in P and, hence,
P is strongly O,-convex.

(5) Let Oj-q be the closure of O; and O, be the closure of O,. By definition,
the notions of O;-blocks and O;-g-blocks are equivalent; therefore, strong O;-convexity is
equivalent to strong O;-q-convexity. Similarly, strong O,-convexity is equivalent to strong
Og-q-convexity. If O1.q = Ojy-q, then strong O;-convexity is equivalent to strong O,-
convexity.

Suppose, conversely, that O1-q # Oy-q. Without loss of generality, we assume that O
is not a subset of O,.. Let p and ¢ be two points such that the line through them is an
O1-a-line and not an Oy -line. Then, the segment joining p and ¢ is strongly O;-convex
but not strongly Os-convex.

(6) Ifa polygon P is not convex, then it is not strongly O-convex by Part 3 of the proof.
If some edge of P is not O-oriented, then, for any two distinct points p and ¢ of this edge,
the O-block of p and ¢ is not in P (see Figure 3a) and, hence, we again conclude that P is
not strongly O-convex.

Now suppose that P is a convex polygon with O-oriented edges. Then, P is the in-
tersection of several halfplanes whose boundaries are O-oriented lines. We prove that P is
strongly O-convex by demonstrating that each of these halfplanes is strongly O-convex: we
show that, for every halfplane with O-oriented boundary [ and every two points p and ¢ of
the halfplane, the O-block of p and ¢ is in the halfplane. Let [, be the line through p parallel
to [ and [, be the line through ¢ parallel to [ (see Figure 3b). Since [, and [, are O-oriented,
O-block(p, ¢) is contained in the “strip” between [, and [; therefore, O-block(p, ¢) is in the
halfplane. We conclude that P is the intersection of several strongly O-convex halfplanes;
therefore, P is strongly O-convex by Part 2 of the proof. O

3 Strong convexity in higher dimensions

We now extend the notion of strong convexity to d-dimensional space R?. We assume that
the space R? is fixed; however, all the results are independent of the particular value of d. We
introduce a set O of hyperplanes through a fixed point o, define O-blocks in d dimensions,
and use O-blocks to define strongly O-convex sets.

A hyperplane in d dimensions is a subset of R? that is a (d — 1)-dimensional space. For
example, hyperplanes in three dimensions are the usual planes. Analytically, a hyperplane
is the set of points satisfying a linear equation, a1z + asxy + ... + agxy = b, in Cartesian
coordinates. Two hyperplanes are parallel if they are translations of each other. Analytically,
two hyperpanes are parallel if their equations differ only by the value of b.
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Figure 4: Orientation sets in three dimensions.

Definition 2 (Orientation sets and O-oriented hyperplanes) An orientation set O
in d dimensions is a set of hyperplanes through a fized point o. A hyperplane parallel to one
of the elements of O is called an O-oriented hyperplane.

Note that every translation of an O-oriented hyperplane is an O-oriented hyperplane and
a particular choice of the point o is not important. When we speak of several different
orientation sets in R?, we always assume that the elements of all these sets are through the
same common point o.

In Figure 4, we show two examples of finite orientation sets in three dimensions. The first
set contains three mutually orthogonal planes; it gives rise to the three-dimensional analog
of strong ortho-convexity. The second orientation set consists of four planes.

The definition of O-blocks in higher dimensions is more complex than the definition of
planar O-blocks. First, we define the notion of a layer of two points, p and ¢. Let H be a
hyperplane from the orientation set O, 'H, be the hyperplane through p parallel to H, and
‘H, be the hyperplane through ¢ parallel to H. The “layer” of space between the planes H,
and H, is called the H-layer of p and ¢. Analytically, the layer can be defined as follows.
Suppose that H, is described by equation ayzq + a22 + ... + agz4 = b, and H, is described
by equation ajx1 + azxs + ... + aqxq = b, (since H, and H, are parallel, all coefficients are
identical). For simplicity, we assume that b, < b,. Then, the H-layer of p and ¢ is described
by the inequality

b, < a1y + azxs + ... + aqrg < b,

The O-block of p and ¢ is the intersection of all the O-oriented layers of p and ¢:

O-block(p, q) = (7| H-layer(p, q).
HeO

In other words, a point is in the O-block of p and ¢ if, for every O-oriented hyperplane H,
the point is between H, and H,.

In two dimensions, we may define O-blocks in the same way: a planar layer is the “layer”
between two parallel lines and the O-block of two points is the intersection of all O-oriented
layers of these two points. This definition is equivalent to the definition of planar O-blocks
in Section 2, as illustrated by Figure 5.

We show some examples of three-dimensional O-blocks in Figure 6. For the three-element
orientation set in Figure 6(a), O-blocks are parallelepipeds with O-oriented facets. The
orientation set in Figure 6(b) contains four planes and gives rise to more complex O-blocks.
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We define strong O-convexity in higher dimensions in the same way as in two dimensions.

Strong Convexity A set in R? is strongly O-convex if, for every two points of the set,
thewr O-block is contained in the set.

We show some examples of strongly O-convex polytopes in Figure 7. For the orientation set
in Figure 7(a), strongly O-convex polytopes are parallelepipeds with O-oriented facets. The
four-element orientation set of Figure 4(b) gives rise to more complex strongly O-convex
objects (Figure Tb); the facets of these objects are also O-oriented, as we show in Section 6
(see Corollary 22).

4 Basic properties of strongly convex sets

We present some simple properties of strongly O-convex sets in higher dimensions and com-
pare them with properties of planar strongly O-convex sets.

Let us recall the properties of planar strong O-convexity presented in Section 2 (see
Lemma 2). We readily generalize Properties 1-3 to higher dimensions: these properties hold
in R? and their proofs are the same as the proofs in R%. The most important of them is
Property 2, which is a generalization of the intersection property for standard convex sets:
the intersection of a collection strongly O-convex sets is strongly O-convex. Property 4 also
holds in higher dimensions, as we demonstrate in Corollary 4.

Yk

Figure 7: Strongly O-convex sets.
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Property 5 holds only in one direction: if two orientation sets, O; and O;, have identical
closures, then strong O;-convexity is equivalent to strong Os-convexity (see Corollary 4).
The converse does not hold: strong convexity for O; and O, may be equivalent even if
Closure(O;) # Closure(O3) (see Example 1 in Section 5). We present a necessary and
sufficient condition for the equivalence of strong O;-convexity and strong O,-convexity in
Section 5.

For Property 6, we show that its analog holds in higher dimensions for finite orientation
sets (Corollary 22): a polytope is strongly O-convex if and only if it is convex and its facets
are Q-oriented. For an infinite orientation set, a polytope may be strongly O-convex even if
its facets are not O-oriented (see Section 6).

Since strongly O-convex sets are defined in terms of O-block visibility, we first compare
O-blocks for different orientation sets.

Lemma 3

1. If O C Oy, then, for every two points p and q, Oz-block(p, q) C O1-block(p, q).

2. If Oy is the closure of O1, then, for every two points p and q, Oi-block(p,q) =
Oz-block(p, q).

Proof.
(1) If O C Oy, then every O;-oriented layer is Oy-oriented. Since the O-block of two points
is defined as the intersection of all O-oriented layers, we conclude that, for every two points,

their @,-block is a subset of their O;-block.

(2) If Oy is the closure of Oy, then O; C Oj; therefore, for every two points p and g,
Oz-block(p, ¢) € Os-block(p, ¢). We prove the converse inclusion by showing that, for every
Os-oriented layer of p and ¢, O1-block(p, q) is a subset of this layer; that is, if a point u is
not in the layer, then it is not in the O;-block(p, ¢) either.

Let H-layer(p, ¢) be an O-oriented layer, with boundary hyperplanes ‘H, (through p) and
H, (through ¢), and let u be a point outside of H-layer(p, ¢). Without loss of generality, we
assume that either H, is between v and H, (see Figure 8) or H, = H,. If H, is Op-oriented,
then O;-block(p, ¢) C H-layer(p, ¢) and, hence, u € O1-block(p, ¢). If H, is not O;-oriented,
then there is a sequence of Oq-oriented hyperplanes through p convergent to H,. For some
element H' of this sequence, ¢ and u are “on different sides” of H' (Figure 8). The layer of
p and ¢ parallel to H' is O;-oriented and u is outside of this layer; therefore, we again have

u & O1-block(p, q). O

Combining these properties of O-blocks and the definition of strong O-convexity, we
immediately obtain the following results.



Corollary 4
1. If O1 C O,, then every strongly O1-convex set is strongly Oy-convex.

2. If Oy 1s the closure of O1, then strong O1-convexity is equivalent to strong Oy-convezity.

According to the second part of this result, we may restrict our attention to the study of
strong O-convezity for closed orientation sets, because strong convexity for every orientation
set is equivalent to strong convexity for its closure.

We next show that O-blocks are strongly O-convex.

Lemma 5 The O-block of every two points is strongly O-convez.

Proof. We consider the O-block of two points p and ¢. We have to show that, for every two
points v and v in O-block(p, ¢), we have O-block(u,v) C O-block(p, ¢). We note that, for
every H € O, the points u and v are in the H-layer of p and ¢; therefore, H-layer(u,v) C H-
layer(p, ¢). Since the O-block of two points is the intersection of all their O-oriented layers,
we conclude that O-block(u,v) C O-block(p, q). O

According to Property 3 of strong O-convexity (see Lemma 2), strongly O-convex sets
are standard convex. We now present a condition for the equivalence of strong and standard
convexity.

Lemma 6 Fvery convex set is strongly O-convez if and only if every straight line is strongly
O-convez.

Proof. Every line is a convex set. Therefore, if every convex set is strongly O-convex, then
every line is strongly O-convex.

Suppose, conversely, that every line is strongly O-convex. Then, for every two points p
and ¢, their O-block is just the straight segment joining them: if the O-block were a superset
of this segment, then the line through p and ¢ would not be strongly O-convex. Therefore,
the O-block visibility is just standard visibility and strong O-convexity is equivalent to
standard convexity. a

5 Strongly convex flats

We now explore the properties of strongly O-convex flats. A flat, also known as an affine
variety, is a subset of R? that is itself a lower-dimensional space. For example, points,
straight lines, two-dimensional planes, and hyperplanes are flats.

First, we characterize strongly O-convex flats in terms of O-oriented flats, which are
the intersections of O-oriented hyperplanes. We show that, for a finite orientation set, a
flat is strongly O-convex if and only it is O-oriented. For an infinite orientation set, every
O-oriented flat is strongly O-convex, but the converse does not hold: a flat may be strongly
O-convex even if it is not O-oriented.

Then, we consider the set O of all strongly O-convex hyperplanes through o and describe
strong O-convexity with respect to this new orientation set O. For finite O, the orientation
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set O is identical to O; however, if O is infinite, then O may be a superset of 0. We show
that strong O-convexity is equivalent to strong O-convexity and use this result to derive a
necessary and sufficient condition for the equivalence of strong convexity with respect to two
different orientation sets. Finally, we establish the strong O-convexity of the affine hull of
a strongly O-convex set, which is the minimal flat containing the set.

We begin by defining the notion of a flat. Analytically, a k-dimensional flat in d dimen-
sions is a subset of R? that is represented in Cartesian coordinates as a system of (d — k)
independent linear equations. The whole space R? is also considered to be a flat. For ex-
ample, in three dimensions, there are four types of flats: points, lines, planes, and the whole
space R®. Two flats are parallel if they are translations of each other (note that parallel
flats are of the same dimension). We use the following properties of flats in our exploration.

Proposition 7 (Properties of flats)
1. The intersection of a collection of flats is either empty or a flat.

2. The intersection of a k-dimensional flat n and a hyperplane is empty, n, or a (k—1)-
dimensional flat.

We now define O-oriented flats.

Definition 3 (O-oriented flats) A flat is O-oriented if it is the intersection of several
O-oriented hyperplanes. O-oriented hyperplanes themselves and the whole space R* are also
O-oriented flats.

In particular, the lines formed by the intersections of O-oriented hyperplanes are called
O-oriented lines.

Since every O-oriented hyperplane is parallel to one of the hyperplanes of the orientation
set O, every Q-oriented flat is parallel to some flat formed by the intersection of several
elements of O. If the point o is the intersection of several elements of O, then every point
in R¢ is an O-oriented flat.

For example, the intersections of the four planes of the orientation set given in Figure 4(b)
form six different lines through o and every O-oriented line for this orientation set is parallel
to one of these six lines. The point o is also the intersection of the elements of this set O;
thus, all points are O-oriented.

Lemma 8 Fvery O-oriented flat is strongly O-convez.

Proof. If points p and ¢ are in an O-oriented flat, then the O-block of p and ¢ is contained
in this flat, since the O-block is a subset of every O-oriented hyperplane through p and ¢
and the flat is equal to the intersection of these hyperplanes. a

Can a flat be strongly O-convex if it is not O-oriented? If O is a finite or closed countably
infinite set, the answer to this question is negative: only O-oriented flats are strongly O-
convex (see Theorem 10). If O is not closed, then strong O-convexity is equivalent to strong
convexity with respect to the closure of O (Corollary 4). In this case, all hyperplanes in
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Figure 10: Construction to show that all lines are Og.-lines.

the closure of O and all intersections of these hyperplanes are strongly O-convex flats, even
though some of them are not O-oriented. For closed uncountable O, points and lines are
strongly O-convex only if they are O-oriented (see Theorem 11), whereas higher-dimensional
flats may be strongly O-convex even if they are not O-oriented, as we show in the following
example.

Example 1: A strongly O-convex flat may not be O-oriented.

Let Og. be the orientation set in three dimensions that includes all planes through o whose
angle with the “horizontal” plane is at least 7/3 (where any plane through o can serve as
the horizontal plane). We illustrate the construction of the orientation set O in Figure 9,
where the horizontal plane is shown by dashed lines. The set contains the (uncountably
many) planes shown by solid lines and all the rotations of these planes around the vertical
axis. The index “sc” stands for “standard convexity,” as we show that strong Og.-convexity
is equivalent to standard convexity.

We now demonstrate that every line through o is the intersection of two elements of O..
An informal proof of this claim is illustrated in Figure 10, where H; and H; are elements of
Os. and the horizontal plane is shown by dashes. In Figure 10(a), the intersection of H; and
H; is a horizontal line. Now suppose that we rotate H, around the vertical axis z, until it
reaches the position shown in Figure 10(b). We then rotate H; around the horizontal axis
x, until it becomes as shown in Figure 10(c). At all times H; remains an element of O.
The intersection of Hy and H, is always a line, whose position continuously changes from
horizontal to vertical. Since every rotation around the vertical axis z maps O, into itself,
we conclude that every line through o can be formed by the intersection of two elements
of O..

Since translations of elements of Oy, are Oy.-oriented planes, we conclude that every line
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is the intersection of two Og.-oriented planes; therefore, every line is strongly Og.-convex.
According to Lemma 6, if every line is strongly convex, then strong convexity is equivalent
to standard convexity; therefore, every plane is strongly Og.-convex. We have shown that
all planes are strongly Og.-convex, whereas some planes are not Og.-oriented.

Note that, if we define O, as the set of planes through o whose angle with some vertical
plane is at least 7/3, then strong convexity for O._is also equivalent to standard convexity.
This example demonstrates that the notions of strong convexity for different closed orien-
tation sets can be equivalent, which means that Property 5 of strongly O-convex sets (see
Lemma 2) does not hold in three dimensions. O

In the following result, we characterize strongly O-convex flats in terms of O-oriented
flats.

Theorem 9 For a closed orientation set O, a flat n is strongly O-convezx if and only if, for
every two points of n, there is an O-oriented flat through them that is contained in 7.

Proof. Suppose that, for every p, ¢ € 5, there is an O-oriented flat H C n through p and
q. Since H is strongly O-convex (Lemma 8), O-block(p,q) € H C 5. Thus, for every two
points of 5, their O-block is in 5; therefore, n is strongly O-convex.

Suppose, conversely, that 5 is strongly O-convex and consider two points, p and ¢, of 7.
Let H be the intersection of all O-oriented hyperplanes through p and ¢; then, H is an
O-oriented flat. We show, by contradiction, that H C 7.

Suppose that H is not in . Now, H N5 is a strongly O-convex flat whose dimension is
less than the dimension of H. Let u be the middle point of the straight segment joining p
and ¢. Since O-block(p,¢) € H Ny and the dimension of H N7 is less than the dimension
of H, we conclude that, for every ball S, centered at v, H NS, € O-block(p, ¢). Therefore,
for every ball S, centered at u, there is an O-oriented layer of p and ¢ that does not contain
HNS,.

It a layer of p and ¢ does not contain H N S,, then each boundary hyperplane of this
layer intersects S, and does not contain H. Thus, we can select a sequence of O-oriented
hyperplanes through p that do not contain H such that the distances from these hyperplanes
to u converge to zero. Selecting a convergent subsequence of this sequence and taking its
limit, we get an O-oriented hyperplane through p and ¢ that does not contain H, which
contradicts the definition of H. (Recall that we have defined H as the intersection of all
O-oriented hyperplanes through p and g¢.) a

We have demonstrated that every O-oriented flat is strongly O-convex (Lemma 8). We
next show that, for finite and closed countably infinite orientation sets, only O-oriented flats
are strongly O-convex.

Theorem 10 [f O is a closed countable set, a flat is strongly O-convezx if and only if it is
O-oriented.

Proof. By Lemma 8, an O-oriented flat is strongly O-convex. To prove the converse,
suppose that O is countable and consider a strongly O-convex flat 7 that is not O-oriented.
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We denote the dimension of n by k. For every O-oriented flat contained in 7, it dimension
is at most (k — 1).

Let p be some point of 5. The set of O-oriented hyperplanes through p is countable. The
intersections of these hyperplanes form countably many O-flats. Therefore, there are only
countably many O-oriented flats through p contained in 5. Since the dimension of these
flats is at most (k — 1), they do not cover 5. Thus, there is a point ¢ in 7 such that no O-
flat through p and ¢ is contained in 5. Therefore, by Theorem 9, 7 is not strongly O-convex. O

For lines and points, the analogous result holds even when an orientation set is uncount-
able: for closed O, only O-oriented lines and points are strongly O-convex.

Theorem 11 If O is a closed orientation set, then a line or point is strongly O-convez if
and only if it is O-oriented.

Proof. Every O-oriented flat is strongly O-convex; it remains to prove the “only if” part.
We first prove it for a point and then for a line.

Suppose that a point p is strongly O-convex. If p = ¢, then the H-oriented layer of p
and ¢ is just the hyperplane through p parallel to H. Therefore, the O-block of p and ¢ is
the intersection of all O-oriented hyperplanes through p. Since p is strongly O-convex, this
O-block is contained in p. Therefore, p is the intersection of O-hyperplanes and, hence, it is
O-oriented.

Now suppose that a line [ is strongly O-convex and let p and ¢ be two distinct points
of {. By Theorem 9, there is an O-oriented flat through p and ¢ contained in {. Since the
only flat through p and ¢ contained in [ is [ itself, we conclude that [ is O-oriented. O

For a given orientation set O, we define O as the set of all strongly O-convex hyperplanes
through o. For example, consider the three-dimensional orientation set O, described in
Example 1, which contains the planes whose angle with the horizontal plane is at least /3.
We have shown that all planes are strongly convex for Oy thus, O, contains all planes
through o.

We consider the notion of strong O-convexity, which is strong convexity with respect to
the orientation set @. Observe that, since every O-oriented hyperplane is strongly O-convex,
we have © C O; therefore, every strongly O-convex set is strongly O-convex (Corollary 4).
We next show that the converse also holds: every strongly O-convex set is strongly O-convex.

Theorem 12

1. Strong O-convexity is equivalent to strong (’5-conve:m'ty. Moreover, for every orientation
set O, if strong O1-convezity is equivalent to strong O-convexity, then O C O.

2. Strong O1-convexity is equivalent to strong Os-convexity if and only if O1=0,.

Proof.

(1) We prove the equivalence by demonstrating that, for every two points p and ¢, we
have O-block(p, ¢) = O-block(p, q). Without loss of generality, we assume that O is closed
(Lemma 3).

13
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Figure 11: Proof of Theorem 12.

Since @ is a subset of @, we immediately conclude that @—block(p, q) € O-block(p, q)
(Lemma 3). To prove the converse inclusion, we show that, for every O-oriented layer of p
and ¢, O-block(p, ¢) is a subset of this layer; that is, if a point u is not in the layer, then it
is not in the O-block(p, q) either.

Let H-layer(p, ¢) be an O-oriented layer, with boundary hyperplanes H,, (through p) and
H, (through ¢), and let u be a point outside of H-layer(p, ¢) (see Figure 11). Since H, and
'H, are O-oriented, they are strongly O-convex.

First, suppose that H, = H,; that is, ¢ is in H,,. Then, the O-block of p and ¢ is a subset
of H,, because H, is strongly O-convex; therefore, u is not in O-block(p, ¢).

Next, suppose that H, and H, are distinct hyperplanes. Without loss of generality,
we assume that H, is between u and H, (Figure 11). Then, the segment joining ¢ and u
intersects H,; we denote the point of their intersection by v. Since O is closed, we conclude,
by Theorem 9, that there is an O-oriented flat 5 through p and v that is contained in H,.
By the definition of O-flats, 5 is the intersection of several O-oriented hyperplanes; since
u & 1, one of these hyperplanes, say H;, does not contain u. Then, ¢ is not in H; either and
u and ¢ are “on different sides” of H;. Therefore, u is not in the H;-layer of p and ¢g. Since
the Hi-layer is O-oriented, we conclude that u ¢ O-block(u,v).

Finally, we have to show that, if strong O;-convexity is equivalent to strong O-convexity,
then @7 C O. If the two convexities are equivalent, then @ contains all the strongly O;-
convex hyperplanes through o. Since every O;-oriented hyperplane is strongly O;-convex,
we conclude that O; C 0.

(2) Since strong O;-convexity is equivalent to strong O;-convexity and the same holds for
©,, we conclude that, if O; = O,, then strong Oj-convexity is equivalent to strong O,-
convexity. On the other hand, if strong O;-convexity is equivalent to strong O,-convexity,
then every hyperplane is strongly Oy-convex if and only if it is strongly O,-convex; therefore,

by definition, O, = O,. O

We conclude from the first part of Theorem 12 that O is the maximal orientation set for
which strong convexity is equivalent to strong O-convexity. The second part of Theorem 12
is a generalization of Property 5 of planar strong convexity (see Lemma 2). It provides a
necessary and sufficient condition for the equivalence of strong convexity for two different
orientation sets.

We thus have shown that, for every orientation set O, there is a unique maximal set for
which strong convexity is equivalent to strong O-convexity. On the other hand, there may
not be a unique minimal orientation set for which strong convexity is equivalent to strong O-
convexity. For example, suppose that O is an orientation set in two dimensions that contains
all lines through o. Strong convexity with respect to some orientation set Oy is equivalent
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Figure 12: Proof of Lemma 15.

to strong O-convexity if and only if the closure of Oy is O (see Part 5 of Lemma 2). The
collection of all such orientation sets does not have a unique minimal element. In fact, it
does not have any minimal elements. For every set O; whose closure is O, we can construct
a proper subset of O; whose closure is also O, by removing some line from O;.

Corollary 13 For every O, the set O is closed.

Proof. Let O be the closure of O. By Lemma 3, strong O g-convexity is equivalent to
strong O-convexity. Therefore, by Theorem 12, Oy C O, which implies that O =0. 0O

We now establish the strong O-convexity of the affine hull of a strongly O-convex set.
The affine hull n of a set P is the minimal flat that contains P. In other words, it is the
intersection of all flats that contain P (recall that the intersection of flats is a flat). For
example, the affine hull of a straight segment is a line, the affine hull of a triangle is a
two-dimensional plane, and the affine hull of a ball is the whole space.

Next, we define the relative interior of a set P in its affine hull 5. Since n is a lower-
dimensional space, we can speak of the interior of P within this space; this interior is called
the relative interior of P. For example, suppose that P is a triangle in R? and 7 is the plane
that contains this triangle. The interior of the triangle in R® is empty. On the other hand,
its relative interior includes all points except the sides of the triangle, since only the sides
make the boundary of the triangle within the two-dimensional space . We use the following
property of relative interiors in our exploration [Griinbaum et al., 1967].

Proposition 14 If P is a convex set and n is the affine hull of P, then the relative interior
of P in n is nonempty.

The next result gives an important property of the affine hulls of strongly O-convex sets,
which we use in characterizing strongly O-convex sets in terms of halfplane intersections (see
Lemma 19).

Lemma 15 The affine hull of a strongly O-convex set is strongly O-convez.

Proof. Let P be a strongly O-convex set and 5 be the affine hull of P (see Figure 12).
Since P is convex, the relative interior of P in 7 is nonempty. Therefore, we can choose an
interior point v in P and a ball S, C P centered at u. (Note that S, is a ball in the space
n rather than in R?; this ball is shown by the dashed circle in Figure 12.)

We have to show that, for every two points p and ¢ of 5, the O-block of these two points
is in . Let v be a point in S, such that the line through w and v is parallel to the line
through p and ¢ (Figure 12). The O-block of u and v is in P; therefore, it is in 5. The
O-block of p and ¢ is a scaled version of O-block(u,v); therefore, it is also in 7. a
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6 Strongly convex halfspaces

We now study the properties of strongly O-convex halfspaces and show that their role in
strong O-convexity is similar to the role of halfspaces in standard convexity. We present,
in Theorems 17 and 18, strong-convexity analogs of the supporting-planes and halfspace-
intersection properties of convex sets (see Section 1). We characterize strongly O-convex
sets in terms of supporting hyperplanes and in terms of halfspace intersections.

We begin by characterizing strongly O-convex halfspaces in terms of their boundaries.

Theorem 16 A halfspace is strongly O-convex if and only if its boundary is a strongly
O-convex hyperplane.

Proof. Let P be a halfspace and H be its boundary hyperplane. Suppose that H is
strongly O-convex. We show that P is strongly O-convex by demonstrating that it is strongly
O-convex. (Recall that, by Theorem 12, strong O-convexity is equivalent to strong O-
convexity). Thus, we have to show that, for every two points p and ¢ of P, the O-block of
these points is in P. Since H is strongly O-convex, it is O-oriented; therefore O- block(p, ¢)
is a subset of the H-layer of p and ¢. This layer is parallel to the boundary H of P; therefore,
it is contained in P. Since @—block(p, q) is contained in the H-layer of p and ¢, we conclude
that (5—block(p, q) is in P.

Now suppose, conversely, that the boundary H of a halfspace P is not strongly O-convex.
Then, there are points p and ¢ in ‘H such that O-block(p,¢) is not in H. The O-block is
centrally symmetric with respect to the middle point of the straight segment joining p and
q; therefore, it is not contained in either of the halfspaces with boundary H. Thus, p and ¢
are in P and their O-block is not in P; therefore, P is not strongly O-convex. O

We next describe supporting hyperplanes of strongly O-convex sets. A hyperplane sup-
ports a set if it “touches” the set in some of its boundary points and does not cut the set
in two parts. For example, if we put a three-dimensional object on a table, then the surface
of the table is a plane that supports the object. To put it more formally, a hyperplane H
supports a set P if the intersection of H and the boundary of P is nonempty and P is
contained in one of the two halfspaces whose boundary is H.

We can describe standard convex sets in terms of supporting hyperplanes: a closed set
with a nonempty interior is convex if and only if, for every point of its boundary, there is
a supporting hyperplane through this point. We now generalize this property to strongly
O-convex sets.

Theorem 17 A closed set with a nonempty interior is strongly O-convex if and only if, for
every point in the boundary of the set, there is a strongly O-convex hyperplane through this
point that supports the set.

Proof. Let P be a closed set with a nonempty interior. Suppose that, for every point r
of P’s boundary, there is a strongly O-convex hyperplane through r that supports the set.
Then, for every boundary point r, there is a strongly O-convex halfspace with boundary
through r that contains P. Clearly, he intersection of all such halfspaces is the set P. By
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Figure 13: Proof of Theorem 17.

Theorem 16, these halfspaces are strongly O-convex; therefore, their intersection P is also
strongly O-convex.

Suppose, conversely, that P is strongly O-convex and let r be a point in the boundary
of P. Since P is convex, its boundary in some neighborhood of r can be viewed as a graph
of some convex function f.

First, we consider the case when r corresponds to a reqular point of the function f, which
means that the function is differentiable at this point. Then, there is exactly one supporting
hyperplane H through r. We have to prove that this hyperplane is strongly O-convex. For
convenience, we view H as a horizontal plane and P as being below H (see Figure 13a). We
prove that H is strongly O-convex by contradiction.

Suppose that H is not strongly O-convex. Then, the halfspace with boundary H that
contains P is not strongly O-convex either (Theorem 16). Therefore, there are points p
and ¢ in this halfspace such that O-block(p, ¢) is not in the halfspace (Figure 13a). Without
loss of generality, we assume that p and ¢ are not in H (if p or ¢ is in H, we can move these
points down “a little bit,” in such a way that a part of O-block(p, ¢) remains above H).

Let us choose some point r’ € O-block(p, ¢) NV'H and translate O-block(p, ¢) in such a way
that ' becomes identical to r (Figure 13b). Next, we scale O-block(p, ¢) in such a way that
the point r’ of the O-block remains identical to the point r of the set P (Figure 13c). Since
the function f is differentiable at r, for a sufficiently small scaled version the O-block, the
points p and ¢ are below the graph of the function; that is, they are in P (Figure 13¢). On
the other hand, a part of the scaled version of O-block(p, ¢) is above H and, hence, outside
P. Since a translation and a scaled version of an O-block is an O-block, we conclude that
there are two points of P such that the O-block of these points is not in P, contradicting
the assumption that P is strongly O-convex.

Next we consider the case when r is not a regular point; that is, f is not differentiable
at r. Then, there may be more than one supporting hyperplane through r. We have to show
that at least one of these hyperplanes is strongly O-convex.

Since f is a convex function, it is a function of locally bounded variation. Functions
of bounded variation are differentiable “almost everywhere,” which means that the set of
nonregular points is of measure zero. Therefore, there is a sequence of regular points in
the graph of f convergent to r. The supporting hyperplane through each of these points is
strongly O-convex.

We can select a convergent subsequence from this sequence of supporting hyperplanes; let
H be the limit of this subsequence. Then, r € H and, since the set @ of strongly O-convex
hyperplanes is closed (Corollary 13), H is strongly O-convex. It remains to show that H
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Figure 14: Proof of Theorem 18.

supports P. If H does not support P, then, since P is convex, H intersects the interior of
P. Let u be an interior point of P that belongs to H and S, C P be an open ball centered
at u. Then, some hyperplane of the convergent subsequence intersects S, and, therefore,
this hyperplane does not support P, yielding a contradiction. a

To see that the analogous result does not hold for sets with an empty interior, let us
consider an O-oriented plane H (say, in three dimensions) and a nonconvex set P contained
in H. Then, for every point in P’s boundary, H is a supporting plane through this point;
however, P is not strongly O-convex since it is not convex.

Our next goal is to generalize the halfspace-intersection property of convex sets: every
closed convex set is the intersection of the halfspaces that contain it. We first show that an
analogous result holds for strongly O-convex sets with a nonempty interior.

Theorem 18 A closed set with a nonempty interior is strongly O-convex if and only if it
is the intersection of strongly O-convex halfspaces.

Proof. The intersection of strongly O-convex sets is strongly O-convex; therefore, if a set
P is the intersection of strongly O-convex halfspaces, then P is strongly O-convex.

Suppose, conversely, that P is a strongly O-convex set with a nonempty interior. To
demonstrate that P is the intersection of strongly O-convex halfspaces, we show that, for
every point p € P, there is a strongly O-convex halfspace that contains P and does not
contain p.

Let ¢ be an interior point of P and r be a point of the intersection of the straight segment
joining p and ¢ with P’s boundary (see Figure 14). Note that, since P is closed, r # p. By
Theorem 17, there is a strongly O-convex hyperplane H through r that supports P. (We
show this hyperplane by a solid line in Figure 14.) Since ¢ is an interior point of P, we
conclude that ¢ ¢ H; therefore, p € H. Thus, P and p are “on different sides” of H, which
means that the halfspace with boundary H that contains P does not contain p. a

This result can be readily generalized to nonclosed sets if we use open halfspaces, that is,
halfspaces that do not contain their boundaries. A set with a nonempty interior is strongly
O-convex if and only if it is the intersection of strongly O-convex open halfspaces.

We next characterize strongly O-convex sets with empty interiors in terms of the inter-
sections of lower-dimensional strongly O-convex halfspaces. For a given set P, we consider
the affine hull  of P. Since 7 is a lower-dimensional space, we can speak of halfspaces within
this space; we call them 7-halfflats. For example, a ray is a one-dimensional halfflat and a
halfplane (say, in R?) is a two-dimensional halfflat.
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If P is a strongly O-convex set, then the relative interior of P in its affine hull 7 is
nonempty (Proposition 14). Using this observation and Theorem 18, we demonstrate that
P is the intersection of strongly O-convex n-halfflats.

Lemma 19 Let P be a closed strongly O-convex set and n be the affine hull of P. Then, P
is the intersection of strongly O-convex n-halfflats.

Proof. Let k be the dimension of . We treat  as an independent k-dimensional space
and define the orientation set O, in this space as follows: a (k — 1)-dimensional flat H C p
is O, -oriented if it is the intersection of n with some O-oriented hyperplane. Note that, if
a hyperplane intersects n and does not contain 7, then its intersection with 5 is a (k — 1)-
dimensional flat (Proposition 7). Therefore, every O-oriented hyperplane that intersects and
does not contain 7 gives rise to an O,-oriented (k — 1)-dimensional flat.

We next observe that, for every two points p and ¢ of 1, a set is an O, -oriented layer
of p and ¢ if and only if it is the intersection of an O-oriented layer of p and ¢ with 7.
This observation implies that, for every two points p and ¢ of 5, we have O,-block(p, ¢) =
O-block(p, ¢) M. Since 7 is strongly O-convex (Lemma 15), O-block(p, ¢) is in n; therefore,
O,-block(p, ¢) = O-block(p, ¢). We conclude from this equality that a set contained in 7 is
strongly O,-convex if and only if it is strongly O-convex.

Since P is strongly O-convex, it is convex; therefore, its relative interior in 7 is nonempty
(Proposition 14). On the other hand, since strong O,-convexity is equivalent to strong
O-convexity, P is strongly O,-convex. Therefore, by Theorem 18, P is the intersection of
strongly O-convex n-halfflats. O

We next describe a condition under which all strongly O-convex sets, even those with an
empty interior, are formed by the intersections of strongly O-convex halfspaces. We show
that, if every strongly O-convex flat is the intersection of strongly O-convex hyperplanes,
then every strongly O-convex halfflat is the intersection of strongly O-convex halfspaces, in
which case all strongly O-convex sets are formed by the intersections of strongly O-convex
halfspaces.

Theorem 20 Fvery closed strongly O-convex set is the intersection of strongly O-convex
halfspaces if and only if every strongly O-convex flat is the intersection of strongly O-convex
hyperplanes.

Proof. Suppose that every closed strongly O-convex set is the intersection of strongly
O-convex halfspaces and consider a strongly O-convex flat . We note that, if a halfspace
contains 7, then either 5 is wholly contained in the interior of the halfspace or 5 is wholly
in the boundary of the halfspace. We consider the collection C' of all the strongly O-convex
halfspaces whose boundaries contain 7.

Clearly, the intersection of this collection C of halfspaces is equal to the intersection of
the collection of all the strongly O-convex halfspaces that contain 7. Since 1 is a closed
strongly O-convex set, this intersection is exactly 5. Since 5 is wholly contained in the
boundary of every halfspace in C', we conclude that 7 is the intersection of the boundaries
of the halfspaces in C'. By Theorem 16, the boundaries of strongly O-convex halfspaces
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are strongly O-convex hyperplanes; therefore, 7 is the intersection of strongly O-convex
hyperplanes.

Now suppose, conversely, that every strongly O-convex flat is the intersection of strongly
O-convex hyperplanes. To prove that every closed strongly O-convex set is the intersection of
strongly O-convex halfspaces, we use the definition and properties of the lower-dimensional
orientation set O, presented in the proot of Lemma 19.

We consider a strongly O-convex set P with the affine hull . By Lemma 19, P is the
intersection of strongly O-convex n-halfflats. We demonstrate that P is the intersection of
strongly O-convex halfspaces by proving that every strongly O-convex n-halfflat @) is the
intersection of strongly O-convex halfspaces.

Let H be the boundary of ) in 5 (H is a (k— 1)-dimensional flat). We have shown in the
proof of Lemma 19 that strong O,-convexity is equivalent to strong O-convexity. Since () is
strongly O-convex, it is strongly O,-convex; therefore, its boundary H is also strongly O, -
convex (Theorem 9) and, hence, H is strongly O-convex. Therefore, H is the intersection of
strongly O-convex hyperplanes. At least one of these hyperplanes, say H, does not contain
n. We then readily see that the n-halfflat ) is the intersection of 5 and a halfspace with
boundary H.

Finally, we note that, since 7 is strongly O-convex, it is the intersection of strongly
O-convex hyperplanes and every strongly O-convex hyperplane is the intersection of two
strongly O-convex halfspaces. Thus, 7 is the intersection of strongly O-convex halfspaces.
Since () is the intersection of n with a strongly O-convex halfspace, we conclude that @) is
the intersection of strongly O-convex halfspaces. O

We next show that, for closed countable orientation sets and for all orientation sets
in three dimensions, every strongly O-convex flat is the intersection of strongly O-convex
hyperplanes.

It O is a finite or closed countably infinite orientation set, then every strongly O-convex
flat is O-oriented (Corollary 10). Therefore, every strongly O-convex flat is the intersection
of O-oriented hyperplanes, which are strongly O-convex.

In three dimensions, there are only three types of flats: planes, lines, and points. A
strongly O-convex plane in three dimensions is a strongly O-convex hyperplane. Strongly
O-convex lines and points are O-oriented (Theorem 11); therefore, they are formed by inter-
sections of O-oriented hyperplanes. Thus, every strongly O-convex flat in three dimensions
is the intersection of strongly O-convex hyperplanes, even for uncountable O.

Applying Theorem 20 to these two special cases, we obtain the following results.

Corollary 21

1. If O s a closed countable orientation set, then every closed strongly O-convex set is
the intersection of strongly O-convex halfspaces.

2. In three dimensions, every closed strongly O-convez set is the intersection of strongly
O-convex halfspaces.

To summarize, we have demonstrated that a strongly O-convex set can be characterized
in terms of halfspace intersection if at least one of the following three conditions holds: the
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interior of the set is nonempty, the orientation set O is finite or countably infinite, or the
space is three-dimensional. If none of these conditions hold, we can characterize a strongly
O-convex set through the intersection of halfflats of the set’s affine hull.

If an orientation set O is finite, then the intersection of strongly O-convex halfspaces is
a convex polytope with O-oriented facets. Thus, the following result describes strongly O-
convex sets for finite O; this result is analogous to Property 6 of planar strong O-convexity
(see Lemma 2).

Corollary 22 For a finite orientation set O, a set with a nonempty interior is strongly
O-convez if and only if it is a convex polytope whose facets are O-oriented.

If O is an infinite orientation set, a polytope may be strongly O-convex even if its
facets are not O-oriented. For example, if O is a (countable or uncountable) set whose
closure contains all hyperplanes through o, then strong O-convexity is equivalent to standard
convexity and, hence, every convex polytope is strongly O-convex.

7 Concluding Remarks

We described a generalization of standard convexity in higher dimensions, called strong O-
convexity, and demonstrated that a number of the major properties of strongly O-convex
sets are similar to properties of standard convex sets.

We also established three important properties of strongly O-convex sets: the character-
ization of strongly O-convex flats in terms of O-flats (Theorem 9), the strong O-convexity
of the affine hull of a strongly O-convex set (Lemma 15), and a condition of the equivalence
of strong convexity for two different orientation sets (Theorem 12).

The presented work is just a beginning; it leaves many unanswered questions, which
we are currently trying to address. First, we have not studied the computational aspects
of strong convexity, such as finding strongly O-convex hulls. Second, we are exploring
an alternative generalization of convexity, called restricted-orientation convexity [Rawlins,
1987], in higher dimensions [Fink and Wood, 1995a, Fink and Wood, 1995b]. Third, we plan
to explore other generalizations of convexity. For example, the notion of NESW convexity
[Rawlins, 1987, Rawlins and Wood, 1989] can be generalized to higher dimensions.
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