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ABSTRACT

A restricted-oriented convex set is a set whose intersection with any line from a fixed set of orientations
is either empty or connected. This notion generalizes both orthogonal convexity and normal convexity. The
aim of this paper is to establish a mathematical foundation for the theory of restricted-oriented convex sets
in higher-dimensional spaces.

1 Introduction

Restricted-orientation geometry is the study of the properties of geometric objects, whose facet orientations
are restricted, and interaction of such restricted objects with unrestricted geometrical objects. The study of
restricted-oriented objects was initiated by Guting [2, 3] and further developed by Widmayer et al. [9]. The
restricted-orientation convexity was introduced by Rawlins as a subarea of restricted-orientation geometry
[4, 5]. The research in this area was continued by Schuierer [8]. In all cases, only planar sets have been
studied.

In this paper we explore properties of restricted-oriented convex sets in a higher-dimensional space Rd.
We show that some of planar-case results may be generalized to a higher-dimensional case. It turns out that
planar-case theorems are considerably harder to prove for higher-dimensional spaces, and many of them do
not hold, or hold only partially. Also, we show a connection between properties of restricted-oriented convex
objects in the space Rd and in the lower-dimensional subspaces of Rd.

All results are presented without proofs, but the proofs may be found in [1].

2 Basic definitions and notation

We are going to work with a higher-dimensional Euclidean space Rd. We use the letter d to denote the
dimension of Rd. All geometrical objects discussed in the paper are assumed to be closed, unless otherwise
specified.

We denote subsets of Rd by capital letters, usually P or Q, and points by lower case letters, usually p or
q. We denote a straight line by the letter l, or, if it passes through points p and q, by (p, q), a curve by the
letter c, and a curvilinear segment with endpoints p and q by c[p, q].

A k-flat in Rd is a subset of Rd which is itself a k-dimensional space. For example, a 1-flat is a straight
line, a 2-flat is a usual 2-dimensional plane, and a 0-flat is a point. We denote flats by the Greek letters η
and µ. (d− 1)-flats are called hyperplanes. A hyperplane is denoted by H, and a halfspace bounded by H is
denoted by [H, p), where p is some point in the interior of the halfspace.

A solid angle is a union of rays in Rd with a common endpoint o, such that the intersection of this union
with any hyperplane is connected (see Fig. 1). The point o is called the vertex of the solid angle.

3 Sets of orientations and ranges

3.1 Orientations

We say that two k-flats have the same orientation if they are parallel. Thus, the orientation of a k-flat η
may be viewed as the set of all k-flats parallel to η. The orientation of a k-flat is called a k-orientation, and
the orientation of a hyperplane is called a hyperorientation. We denote the orientation of η by η̄ (the same
letter with the bar above it).
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Let us fix some point o in Rd. It’s easy to see that for each k-orientation, there is exactly one k-flat of
this orientation that contains o. Thus, there is a one-to-one correspondence between orientations and flats
through o. We use this correspondence as one of our basic tools in presenting properties of orientations.

Let l be a straight line through o, and η be a flat containing o. If l ⊆ η, we say that l̄ ∈ η̄. Thus, we
represent every k-orientation as a set of line orientations. We consider the empty set to be a 0-orientation,
which is the orientation of a point. We define the inclusion relationship between orientations as the usual
set inclusion and the intersection of orientations as the set intersection:

Inclusion: η̄ ⊆ µ̄ ⇐⇒ (∀l̄ ∈ η̄) l̄ ∈ µ̄ Intersection:
⋂

i∈I η̄i = {l̄ | (∀i ∈ I) l ∈ η̄i}
The following properties of orientations show the correspondence between orientations and their representa-
tion as flats through a fixed point o.

(1) Let η and µ be two flats whose intersection is not empty. Then η ⊆ µ if and only η̄ ⊆ µ̄.
(2) Let {ηi}i∈I be a family of flats, and {η̄i}i∈I be the corresponding family of orientations. Then η̄ =

⋂
i∈I η̄i

is an orientation. Moreover, if
⋂

i∈I ηi is not empty, then it is a flat, whose orientation is η̄.

3.2 Sets of orientations

We use the symbol O to refer to a closed set of hyperorientations. (To define a closed set we need some
notion of the distance between two orientations. We use the angle between flats as a measure of the distance
between them.) The elements of O are called O-hyperorientations. We will slightly abuse notation by writing
H ∈ O in the case when H ∈ O. If H ∈ O, we call H an O-hyperplane. An orthogonal set of orientations O⊥
is a set of d hyperplane orientations in Rd such that any two orientations are perpendicular to each other.

We denote by Ok the set of all k-orientations formed by the intersections of elements of O:

Ok = {η̄ | dim(η̄) = k and η̄ =
⋂

i∈I

Hi, where {Hi}i∈I ⊆ O}

The elements of Ok are called k-dimensional O-orientations or, shortly, Ok-orientations (see Fig. 2). If
η̄ ∈ Ok, we write η ∈ Ok and call η an O-oriented flat or, shortly, O-flat. The elements of O1 are called
O-lines . We define the d-dimensional O-orientation as the orientation of the whole space Rd, that is the set
of all line orientations. The following are basic properties of O-orientations:

(1) For all k ∈ [1..d], the set Ok is closed.
(2) The intersection of O-orientations is always an O-orientation.
(3) The intersection of O-flats is either empty or an O-flat.
(4) For any natural numbers k ≤ m ≤ d, every Ok-orientation is a subset of some Om-orientation.
(5) Let n be the number of O-hyperorientations, n = |O|. Then the number of distinct Ok-orientations is

no greater than Cd−k
n = n!

(d−k)!·(n−d+k)! .

Now let us consider some O-hyperplane H. We define O(H) as the set of the intersections of H with all
other O-orientations: O(H) = {H ∩ H′ | H′ ∈ (O − {H})}. Clearly, O(H) is a set of (d − 2)-orientations,
and all elements of O(H) are subsets of the orientation H: (∀η̄ ∈ O(H)) η̄ ⊆ H. A hyperplane H is a



(d − 1)-dimensional space, and O(H) may be viewed as a set of hyperorientations in this space. It may be
shown that O(H) is closed. The set O(H) in the space H has properties similar to the properties of O in Rd.
In particular, the intersections of elements of O(H) produce the lower-dimensional orientations. We define
Ok(H) as the set of k-orientations produced by the intersections of elements of O(H). It may be shown that
a k-flat is an O(H)-oriented if and only if it is O-oriented and contained in H:

(∀k ∈ [1..d − 2]) Ok(H) = {η̄ ∈ Ok | η̄ ⊆ H}

3.3 Hyperranges

Let us represent a set of orientations as a set of flats through a fixed point o. Consider a solid angle Θ
with the vertex o, such that the interior of Θ is non-empty and connected , and Θ is the closure of its
own interior. Informally, Θ is a closed solid angle, and each point of its boundary is “infinitely close” to
the interior. We define Θ as the set of orientations of all lines through o that intersect Θ not only in o:
Θ = {(o, p) | p ∈ (Θ−{o})}. Θ is called a hyperrange of orientations. The interior of a hyperrange Θ is defined
as the set of orientations of all lines through o that intersect the interior of Θ: Θint = {(o, p) | p ∈ Θint}.

A hyperrange Θ is called O-free if the intersection of its interior with any O-hyperrange is empty:
(∀H ∈ O) Θint ∩H = ∅. Equivalently, we can say that no O-hyperplane through o intersects the interior of
the corresponding solid angle Θ. An O-free range which is not a proper subset of any other O-free range is
called an O-hyperrange. The solid angles corresponding to O-hyperranges are called O-hyperangles.

Lemma 3.1 Let o and p be two points in Rd not lying on the same O-hyperplane, i.e. (6 ∃H ∈ O) o, p ∈ H,
and Θ be an O-hyperangle with the vertex o that contains p. Then Θ =

⋂{[H, p) | H ∈ O and o ∈ H}.
Observe that according to this lemma, if line orientation is not lying within an O-hyperorientation, it

is contained in the unique O-hyperrange. The lemma allows us to describe the set of all O-hyperranges in
terms of O-hyperorientations. To present this description, we fix some point o and draw all possible O-
hyperplanes through o. The hyperplanes partition the space into solid angles. These solid angles, bounded
by O-hyperranges, are the O-hyperangles with the vertex o. Fig. 2 presents the described picture for the
orthogonal set of orientations in R3, where three O-hyperplanes partition the space into eight O-hyperangles.

3.4 Ranges

Unfortunately, O-hyperranges do not provide a disjoint partition of the set of line orientations. A line
orientation on the boundary of O-hyperranges belongs to two different O-hyperranges. On the other hand,
a line orientation may not belong to any O-hyperrange. For example, if O contains all hyperorientations,
then there are no O-hyperranges at all. In this subsection we show that the picture may be improved by
introducing the notion of lower-dimensional O-ranges.

Recall that every O-hyperplane H may be viewed as a (d−1)-dimensional space with the set of orientations
O(H). An O(H)-hyperrange θ in this space is called an Od−1-range. The interior of θ in the space H is
denoted by θint. (Note that we define the interior of θ in the (d− 1)-dimensional space H, not in the whole
space Rd, where the interior of θ is trivially empty.) Similarly, we may define Ok-ranges and their interiors
for all k ∈ [1..d]. The solid angles corresponding to O-ranges are called O-angles.

O-ranges may be described informally by representing them as O-angles with a common vertex (see
Fig. 2). The facets of hyperangles are Od−1-angles (e.g. the planar angle 6 xoy on Fig. 2), the subfacets are
Od−2-angles, and so on. Generally, a solid angle is an Ok-angle if and only if it is a k-dimensional face of
some O-hyperangle. Observe that O1-angles are O-lines, and the interiors of such angles (in 1-dimensional
space) are the whole O-lines themselves. One can easily see that every point except the common vertex o
belongs to the interior of exactly one O-angle. This gives rise to the following theorem.

Theorem 3.1 (The Partition Theorem) The set of interiors of all O-ranges is a disjoint partition of
the set of all line orientations.

The last theorem in this section generalizes Lemma 3.1. It presents a formal description of O-angles in
terms of hyperplanes.

Theorem 3.2 (The Range Theorem) Let o and p be two points in Rd, and o be the O-angle with the
vertex o whose interior contains p. Then θ =

⋂{[H, p) | H ∈ O and o ∈ H}.



4 Restricted orientation convexity

4.1 Abstract convexity

Before discussing restricted orientation convexity, we review basic definitions from abstract convexity theory.
Given a set S and a family C of subsets of S, the structure (S, C) is said to be a convexity space if ∅, S ∈ C
and C is closed under intersection: (∀C′ ⊆ C)

⋂
C′ ∈ C. For example, the convex sets in Rd form a

convexity space. In this convexity space S = Rd and C is the set of the usual convex sets. Another
example of a convexity space is the set of O-orientations, where S is the set of all line orientations, and
C = O0 ∪ O1 ∪ . . . ∪ Od. (Recall that the intersection of O-orientations is always an O-orientation.)

Given a convexity space (S, C), we define the hull of a subset P of S as the intersection of all convex sets
containing P : hull(P ) =

⋂{Q | P ⊆ Q and Q ∈ C}.
A nested chain is a (possibly infinite) sequence of sets P0, P1, P2, . . . such that P0 ⊆ P1 ⊆ P2 ⊆ . . . A

convexity space is called aligned if, for any nested chain N of convex sets, the union of all elements of N is
also a convex set: (∀ chain N ⊆ C)

⋃N ∈ C. Alignment is an important property that allows to us prove
several basic facts about convexity spaces [5].

4.2 O-convexity

The following definition of higher-dimensional O-convexity, which we use in this article, was stated in [4].

Definition 4.1 (O-convexity)
(1) Let P be a planar set, P ⊆ R2, and O be a set of orientations in R2 (in this case O is a set of line
orientations). P is O-convex if for every l ∈ O, P ∩ l is connected. (We consider the empty set to be
connected.)

(2) Let P be a d-dimensional set, P ⊆ Rd, and O be a set of orientations in Rd. P is O-convex if for every
O-hyperplane H, P ∩ H is O(H)-convex, that is P ∩ H is O-convex in (d − 1)-dimensional space H, w.r.t.
the set of orientations O(H).

The next theorem shows that this recursive definition may be considerably simplified.

Theorem 4.1 Let P ⊆ Rd, and O be a set of orientations in Rd. Then P is O-convex if and only if for
every O-line l ∈ O1, P ∩ l is connected.

This theorem allows us to prove basic properties of O-convex sets, presented below. (For the planar case,
the first three of these properties were presented in [7].)

(1) For any set of orientations O, if P is convex then P is O-convex.
(2) The intersection of O-convex sets is an O-convex set.
(3) A set is O-convex if and only if it is the union of disjoint connected components such that each

component is O-convex and no O-line intersects any pair of components.
(4) For any O, the set of all connected O-convex sets is aligned.
(5) Let H be an O-hyperplane, and P ⊆ H. Then P is O-convex if and only if it is O(H)-convex.

Since the empty set and the whole space Rd are clearly O-convex, and the intersection of O-convex sets
is always O-convex, we conclude that O-convex sets form a convexity space. We denote the hull of a set P in
this space by O-hull(P ). Below we present two properties of O-hulls. (For the planar case, these properties
were stated in [4].)

(1) The O-hull of a connected set is connected.
(2) Let {Oi}i∈I be a family of sets of orientations, and O be such a set of orientations that O1 =

⋃{O1
i }.

Then for any set P ,
⋃

i∈I(Oi-hull(P )) ⊆ O-hull(P ).

4.3 O-connectedness

Definition 4.2 (O-connectedness) A planar set is O-connected if it is O-convex and connected. A d-
dimensional set P is O-connected if it is connected, and for every O-hyperplane H, P ∩H is O(H)-connected.



O-connected sets are similar to convex sets in many respects. However, they do not form a convexity space,
because the intersection of two O-connected sets may not be O-connected. Fig. 3 shows an example of
O-connected polygonal curves s1 and s2 whose intersection is disconnected. Below we list basic properties
of O-connected sets.

(1) Every O-connected set is O-convex and connected. (The reverse does not hold.)
(2) Let H be an O-hyperplane, and P ⊆ H. Then P is O-connected if and only if it is O(H)-connected.
(3) The intersection of an O-connected set with any O-flat is O-connected.
(4) Let P be a connected subset of Rd. P is O-connected if and only if for any O-flat η, P ∩ η is connected.
(5) The set of all O-connected sets in Rd is aligned.
(6) This property holds only for orthogonal convexity. Let P be an O⊥-connected set, and H be an

O⊥-hyperplane. Then the perpendicular projection of P onto H is O⊥(H)-connected.

The important property of O-connected sets that makes them similar to usual convex sets is simple
connectedness. Unfortunately, we have proved this property only for the planar and three-dimensional cases.

Conjecture 4.1 (The Connectedness Conjecture) If the set of O-line orientations O1 is not empty,
then every O-connected set is simply connected.

4.4 O-stairlines

In this section we introduce the notion of O-stairlines, which play the same role for restricted-orientation
convexity as lines do for usual convexity.

Definition 4.3 (O-stairlines) An O-stairline is an O-connected curve. An O-stairsegment is an O-
connected curvilinear segment (see Fig. 3).

We denote an O-stairline by the letter s, and a stairsegment with endpoints p and q by s[p, q]. To describe
O-stairlines in terms of O-ranges, we introduce the notion of the span of a curve. The span of c is the set of
orientations of all lines that intersect c in at least two points: span(c) = {(p, q) | p, q ∈ c}.

The next theorem gives us a convenient description of O-stairlines and O-stairsegments.

Theorem 4.2 A curve (curvilinear segment) is an O-stairline (O-stairsegment) if and only if its intersection
with every O-hyperplane is connected.

The following two properties of O-stairlines are corollaries of the above theorem.

(1) Let s[p, q] be an O-stairsegment and θ be an O-range such that (p, q) ∈ θ. Then span(s[p, q]) ⊆ θ.
(2) Let s[p, q] be an O-stairsegment and η be an O-flat such that p, q ∈ η. Then s[p, q] ⊆ η.

Now we present the main theorem of this subsection, which describes sufficient and necessary conditions
for a curve to be a stairline in terms of the span of the curve.

Theorem 4.3 (The Span Theorem) A curve (curvilinear segment) is an O-stairline (O-stairsegment) if
and only if its span is completely contained within some O-range.

Below we state three corollaries of the Span Theorem that allow us to combine a long O-stairsegment
from several small pieces. (For the planar case, these properties were stated in [8].)

(1) Let p, q, and r be points in Rd, and there exists an O-range θ such that (p, q) ∈ θ and (q, r) ∈ θ. If
s[p, q] is an O-stairsegment from p to q and s[q, r] is an O-stairsegment from q to r, then s[p, q]∪ s[q, r]
is an O-stairsegment from p to r.

(2) Let v and w be points on the O-stairsegment s[p, q]. If we replace the part of s[p, q] between v and w
by some other O-stairsegment, the resulting curvilinear segment s′[p, q] is still an O-stairsegment.

(3) Let s be a polygonal line consisting of the edges e1, e2, . . . , en. Then s is an O-stairsegment if and only
if there exists an O-hyperrange Θ such that ēi ∈ Θ for all i ∈ [1..n]. (Here ēi is the orientation of ei.)



The next conjecture describes O-connected sets via the notion of O-stairsegments. The conjecture was
proved for the planar case in [4]. In the higher-dimensional case, we found its proof only for the orthogonal
convexity.

Conjecture 4.2 A set P is O-connected if and only if any two points p and q in P may be connected by an
O-stairsegment s[p, q] such that s[p, q] ⊆ P .

We have proved that a similar result holds for O-convex sets and O-convex curvilinear segments.

Theorem 4.4 Let P be a connected set. P is O-convex if and only if for all p, q ∈ P , there exists an
O-convex curvilinear segment c[p, q] such that c[p, q] ⊆ P .

4.5 O-stairsurfaces and O-halfspaces

An O-stairsurface in a d-dimensional space Rd is an O-convex surface. An O-halfspace candidate is a set
P whose intersection with any O-line is either empty, or a ray, or a line. Now let Q be the closure of the
complement of P : Q = closure(Rd − P ). If both P and Q are O-halfspace candidates, then P is called an
O-halfspace. The notion of O-stairsurfaces corresponds to the notion of hyperplanes in usual geometry, and
O-halfspaces correspond to usual halfspaces. Unlike usual halfspaces, O-halfspaces may not be connected.
For example, the union of the right angles P1 and P2 on Fig. 4 is a disconnected O-halfsapce.

Now we present elementary properties of O-halfspaces.

(1) For any set of orientations O, a usual halfspace is an O-halfspace.
(2) Let Q = closure(Rd − P ). If P is an O-halfspace, then Q is also an O-halfspace.
(3) A set P is an O-halfspace (O-halfspace candidate) if and only if for any O-hyperplane H, P ∩H is an

O(H)-halfspace (O(H)-halfspace candidate).
(4) A set is an O-halfspace (O-halfspace candidate) if and only if it is the union of disjoint connected

components such that each component is an O-halfspace (O-halfspace candidate), and no O-line
intersects any pair of components.

The next theorem shows the connection between O-stairsurfaces and O-halfspaces.

Theorem 4.5 (The Boundary Theorem for O-halfspaces) A set P is an O-halfspace if and only if its
boundary consists of O-stairsurfaces, and no O-line intersects any pair of these O-stairsurfaces.

The last result stated in this section, the Separation Conjecture, was proved in [4] for the planar case. It
probably works in higher-dimensional spaces too, but we found a proof only for the case of the orthogonal
O-convexity in the three-dimensional space.

Conjecture 4.3 (The Separation Conjecture) Let P be an O-connected set, and p be a point outside
P . Then there exists an O-halfspace that completely contains P and does not contain p.

A corollary of this result would be:

Corollary 4.1 (of the Separation Conjecture) An O-connected set is the intersection of all O-halfspaces
containing it.

4.6 Characterizing O-convex sets

Consider some arbitrary surface in Rd. Intuitively, we wish to divide this surface into O-convex regions.
We call such regions O-stairfacets. Formally, a curvilinear facet is an open connected subset of a surface
together with its boundary, and an O-stairfacet is an O-convex curvilinear facet.

Definition 4.4 (O-extremal points) A point p is said to be an O-extremal point of a surface if p is a
point of support of this surface with respect to some O-line.

Theorem 4.6 A curvilinear facet is O-convex if and only if none of its interior points are O-extremal.
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Thus, we may view a surface as a collection of O-stairfacets, whose boundaries consist of O-extremal points.
Pictorially, this view may be presented as follows. Consider a unit sphere U and some O-line orientation l̄.
Let H(l̄) be the hyperplane through the center of U perpendicular to l̄, and u(l̄) = U ∪H(l̄) (see Fig. 5). It
may be shown that u(l̄) is the set of points of support of U w.r.t. l̄-oriented lines. Thus if we draw u(l̄) for
every l̄ ∈ O, we find all O-extremal points of the sphere, and regions on the sphere bounded by u(l̄)’s are
O-stairfacets. Now consider some surface S. We define the direction of each point p of S as the direction of
the normal vector to S at p (we assume that all normal vectors point to the “same side” of the surface), and
consider the mapping from S to the sphere U such that each point of S is mapped onto the point of U with
the same direction1. This mapping has two important properties:

(1) The image of every O-extremal point of S is an O-extremal point of U . (The reverse does not hold.)
(2) A curvilinear facet on the surface S is O-convex if and only if the image of its interior is completely

contained in some O-stairfacet of U .

The second property means that intuitively we may envision S as the collection of O-stairfacets that are
preimages of the stairfacets of U .

Next consider a simply connected set P , and let S be its boundary. We may divide the O-extremal
points of the surface S into two groups. The first kind is the points where the supporting O-lines lie in the
exterior of P , and thus these O-lines are also lines of support of the set P . These points are called points of
O-convexity. The second kind is the points where the supporting lines “touch” the surface from the interior
of P . More formally, in some neighborhood of the extremal point the supporting O-line lies within P . Such
points are called points of O-concavity (see Fig. 6).

Theorem 4.7 (The Boundary Theorem for O-convex Sets) A simply connected set P is O-convex if
and only if its boundary does not contain any points of O-concavity.

This theorem means that we may envision the boundary of a simply connected O-convex set as a collection
of O-stairfacets, whose boundaries consist of points of O-convexity. If O contains all orientations, that is
if we consider the usual convexity, then O-stairfacets become usual facets of a polytope, and the Boundary
Theorem states that a polytope is convex if and only if all angles between adjacent facets are convex.

4.7 Strong O-convexity

A set P is said to be strongly O-convex if, for every two points p, q ∈ P , every O-stairsegment joining p and
q is contained in P . The union of all stairsegments joining p and q is called an O-parallelotope and denoted
by O-‖[p, q]. The next two propositions give us a convenient description of O-‖[p, q].

(1) Let O 6= ∅, and H ∈ O. Consider H-oriented hyperplanes Hp and Hq such that p ∈ Hp and q ∈ Hq.
We define H-layer(p, q) as the set of all points between Hp and Hq, including Hp and Hq themselves.
Then O-‖[p, q] =

⋂{H-layer(p, q) | H ∈ O}.
(2) Let θ be the O-range such that (p, q) ∈ θint. Let θp be the θ-oriented angle with the vertex p that

contains q, and θq be the θ-oriented angle with the vertex q that contains p. Then O-‖[p, q] = θp ∩ θq.

1This mapping may not be a function, since if S is not smooth, some points of S have more than one direction.



Using the above description of O-parallelotopes, we may prove the following properties of strongly O-
convex sets. (For the planar case, the first two properties were presented in [4].)

(1) P is strongly O-convex if and only if the intersection of P and every O-stairline is connected.
(2) P is strongly O-convex if and only if P is a convex polytope all facets of which are O-oriented.
(3) A flat is strongly O-convex if and only if it is O-oriented.
(4) Let H be an O-hyperplane, and P ⊆ H. Then P is strongly O-convex if and only if it is strongly

O(H)-convex.
(5) The intersection of a strongly O-connected set with any O-flat is strongly O-convex.
(6) If a set P is strongly O-convex, it is also O-connected.
(7) The intersection of strongly O-convex sets is strongly O-convex.
(8) For any O, the set of all O-convex sets is aligned.

Observe that both the empty set and the whole space is strongly O-convex, and therefore it follows from
the seventh property that strongly O-convex sets form a convexity space.

5 Conclusion

We have presented four types of objects: O-convex sets, O-connected sets, O-halfspaces, and strongly O-
convex sets. In the case when O1 is the set of all line orientations, O-halfspaces become usual halfspaces,
and the three other types become usual convex sets. We have shown that these four kinds of objects have a
lot of similar properties. (However the proofs of the same properties are quite different for different objects.)

O-convex and strongly O-convex sets have many properties similar to the properties of usual convex
objects and form abstract convexity spaces, and O-halfspaces are similar to usual halfspaces. The main
characteristic of convex sets and halfspaces that we have lost in the generalization to O-convexity is con-
nectedness: convex sets are always connected, while O-convex sets may be disconnected.
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