Restricted-Orientation Convexity in Higher-Dimensional Spaces

Eugene Fink Derick Wood

University of Waterloo, Waterloo, Ont., Canada N2L3G1 {efink, dwood}@violet.waterloo.edu

ABSTRACT

A restricted-oriented convex set is a set whose intersection with any line from a fixed set of orientations is either empty or connected. This notion generalizes both orthogonal convexity and normal convexity. The aim of this paper is to establish a mathematical foundation for the theory of restricted-oriented convex sets in higher-dimensional spaces.

1 Introduction

Restricted-orientation geometry is the study of the properties of geometric objects, whose facet orientations are restricted, and interaction of such restricted objects with unrestricted geometrical objects. The study of restricted-oriented objects was initiated by Guting [2, 3] and further developed by Widmayer et al. [9]. The restricted-orientation convexity was introduced by Rawlins as a subarea of restricted-orientation geometry [4, 5]. The research in this area was continued by Schuierer [8]. In all cases, only planar sets have been studied.

In this paper we explore properties of restricted-oriented convex sets in a higher-dimensional space \mathcal{R}^d . We show that some of planar-case results may be generalized to a higher-dimensional case. It turns out that planar-case theorems are considerably harder to prove for higher-dimensional spaces, and many of them do not hold, or hold only partially. Also, we show a connection between properties of restricted-oriented convex objects in the space \mathcal{R}^d and in the lower-dimensional subspaces of \mathcal{R}^d .

All results are presented without proofs, but the proofs may be found in [1].

2 Basic definitions and notation

We are going to work with a higher-dimensional Euclidean space \mathcal{R}^d . We use the letter d to denote the dimension of \mathcal{R}^d . All geometrical objects discussed in the paper are assumed to be closed, unless otherwise specified.

We denote subsets of \mathbb{R}^d by capital letters, usually P or Q, and points by lower case letters, usually p or q. We denote a straight line by the letter l, or, if it passes through points p and q, by (p,q), a curve by the letter c, and a curvilinear segment with endpoints p and q by c[p,q].

A k-flat in \mathcal{R}^d is a subset of \mathcal{R}^d which is itself a k-dimensional space. For example, a 1-flat is a straight line, a 2-flat is a usual 2-dimensional plane, and a 0-flat is a point. We denote flats by the Greek letters η and μ . (d-1)-flats are called *hyperplanes*. A hyperplane is denoted by \mathcal{H} , and a halfspace bounded by \mathcal{H} is denoted by $[\mathcal{H}, p)$, where p is some point in the interior of the halfspace.

A solid angle is a union of rays in \mathbb{R}^d with a common endpoint o, such that the intersection of this union with any hyperplane is connected (see Fig. 1). The point o is called the *vertex* of the solid angle.

3 Sets of orientations and ranges

3.1 Orientations

We say that two k-flats have the same orientation if they are parallel. Thus, the orientation of a k-flat η may be viewed as the set of all k-flats parallel to η . The orientation of a k-flat is called a k-orientation, and the orientation of a hyperplane is called a hyperorientation. We denote the orientation of η by $\bar{\eta}$ (the same letter with the bar above it).

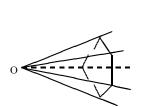


Fig. 1. Solid angle

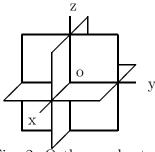


Fig. 2. Orthogonal set of orientations

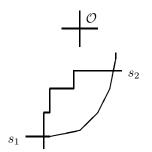


Fig. 3. Intersection of two \mathcal{O} -connected curves

Let us fix some point o in \mathbb{R}^d . It's easy to see that for each k-orientation, there is exactly one k-flat of this orientation that contains o. Thus, there is a one-to-one correspondence between orientations and flats through o. We use this correspondence as one of our basic tools in presenting properties of orientations.

Let l be a straight line through o, and η be a flat containing o. If $l \subseteq \eta$, we say that $\bar{l} \in \bar{\eta}$. Thus, we represent every k-orientation as a set of line orientations. We consider the empty set to be a 0-orientation, which is the orientation of a point. We define the inclusion relationship between orientations as the usual set inclusion and the intersection of orientations as the set intersection:

Inclusion:
$$\bar{\eta} \subseteq \bar{\mu} \iff (\forall \bar{l} \in \bar{\eta}) \ \bar{l} \in \bar{\mu}$$
 Intersection: $\bigcap_{i \in I} \bar{\eta}_i = \{\bar{l} \mid (\forall i \in I) \ l \in \bar{\eta}_i\}$

The following properties of orientations show the correspondence between orientations and their representation as flats through a fixed point o.

- (1) Let η and μ be two flats whose intersection is not empty. Then $\eta \subseteq \mu$ if and only $\bar{\eta} \subseteq \bar{\mu}$.
- (2) Let $\{\eta_i\}_{i\in I}$ be a family of flats, and $\{\bar{\eta}_i\}_{i\in I}$ be the corresponding family of orientations. Then $\bar{\eta} = \bigcap_{i\in I} \bar{\eta}_i$ is an orientation. Moreover, if $\bigcap_{i\in I} \eta_i$ is not empty, then it is a flat, whose orientation is $\bar{\eta}$.

3.2 Sets of orientations

We use the symbol \mathcal{O} to refer to a *closed* set of hyperorientations. (To define a *closed* set we need some notion of the *distance* between two orientations. We use the *angle* between flats as a measure of the distance between them.) The elements of \mathcal{O} are called \mathcal{O} -hyperorientations. We will slightly abuse notation by writing $\mathcal{H} \in \mathcal{O}$ in the case when $\overline{\mathcal{H}} \in \mathcal{O}$. If $\mathcal{H} \in \mathcal{O}$, we call \mathcal{H} an \mathcal{O} -hyperplane. An *orthogonal* set of orientations \mathcal{O}_{\perp} is a set of d hyperplane orientations in \mathcal{R}^d such that any two orientations are perpendicular to each other.

We denote by \mathcal{O}^k the set of all k-orientations formed by the intersections of elements of \mathcal{O} :

$$\mathcal{O}^k = \{ \bar{\eta} \mid \dim(\bar{\eta}) = k \text{ and } \bar{\eta} = \bigcap_{i \in I} \overline{\mathcal{H}}_i, \text{ where } \{ \overline{\mathcal{H}}_i \}_{i \in I} \subseteq \mathcal{O} \}$$

The elements of \mathcal{O}^k are called k-dimensional \mathcal{O} -orientations or, shortly, \mathcal{O}^k -orientations (see Fig. 2). If $\bar{\eta} \in \mathcal{O}^k$, we write $\eta \in \mathcal{O}^k$ and call η an \mathcal{O} -oriented flat or, shortly, \mathcal{O} -flat. The elements of \mathcal{O}^1 are called \mathcal{O} -lines. We define the d-dimensional \mathcal{O} -orientation as the orientation of the whole space \mathcal{R}^d , that is the set of all line orientations. The following are basic properties of \mathcal{O} -orientations:

- (1) For all $k \in [1..d]$, the set \mathcal{O}^k is closed.
- (2) The intersection of \mathcal{O} -orientations is always an \mathcal{O} -orientation.
- (3) The intersection of \mathcal{O} -flats is either empty or an \mathcal{O} -flat.
- (4) For any natural numbers $k \leq m \leq d$, every \mathcal{O}^k -orientation is a subset of some \mathcal{O}^m -orientation.
- (5) Let n be the number of \mathcal{O} -hyperorientations, $n = |\mathcal{O}|$. Then the number of distinct \mathcal{O}^k -orientations is no greater than $C_n^{d-k} = \frac{n!}{(d-k)! \cdot (n-d+k)!}$.

Now let us consider some \mathcal{O} -hyperplane \mathcal{H} . We define $\mathcal{O}(\mathcal{H})$ as the set of the intersections of $\overline{\mathcal{H}}$ with all other \mathcal{O} -orientations: $\mathcal{O}(\mathcal{H}) = \{\overline{\mathcal{H}} \cap \overline{\mathcal{H}}' \mid \overline{\mathcal{H}}' \in (\mathcal{O} - \{\overline{\mathcal{H}}\})\}$. Clearly, $\mathcal{O}(\mathcal{H})$ is a set of (d-2)-orientations, and all elements of $\mathcal{O}(\mathcal{H})$ are subsets of the orientation $\overline{\mathcal{H}}$: $(\forall \overline{\eta} \in \mathcal{O}(\mathcal{H}))$ $\overline{\eta} \subseteq \overline{\mathcal{H}}$. A hyperplane \mathcal{H} is a

(d-1)-dimensional space, and $\mathcal{O}(\mathcal{H})$ may be viewed as a set of hyperorientations in this space. It may be shown that $\mathcal{O}(\mathcal{H})$ is closed. The set $\mathcal{O}(\mathcal{H})$ in the space \mathcal{H} has properties similar to the properties of \mathcal{O} in \mathcal{R}^d . In particular, the intersections of elements of $\mathcal{O}(\mathcal{H})$ produce the lower-dimensional orientations. We define $\mathcal{O}^k(\mathcal{H})$ as the set of k-orientations produced by the intersections of elements of $\mathcal{O}(\mathcal{H})$. It may be shown that a k-flat is an $\mathcal{O}(\mathcal{H})$ -oriented if and only if it is \mathcal{O} -oriented and contained in \mathcal{H} :

$$(\forall k \in [1..d-2]) \ \mathcal{O}^k(\mathcal{H}) = \{\bar{\eta} \in \mathcal{O}^k \mid \bar{\eta} \subseteq \overline{\mathcal{H}}\}\$$

3.3 Hyperranges

Let us represent a set of orientations as a set of flats through a fixed point o. Consider a solid angle Θ with the vertex o, such that the interior of Θ is non-empty and connected, and Θ is the closure of its own interior. Informally, Θ is a closed solid angle, and each point of its boundary is "infinitely close" to the interior. We define $\overline{\Theta}$ as the set of orientations of all lines through o that intersect Θ not only in o: $\overline{\Theta} = \{\overline{(o,p)} \mid p \in (\Theta - \{o\})\}$. $\overline{\Theta}$ is called a hyperrange of orientations. The interior of a hyperrange $\overline{\Theta}$ is defined as the set of orientations of all lines through o that intersect the interior of Θ : $\overline{\Theta}_{int} = \{\overline{(o,p)} \mid p \in \Theta_{int}\}$.

A hyperrange $\overline{\Theta}$ is called \mathcal{O} -free if the intersection of its interior with any \mathcal{O} -hyperrange is empty: $(\forall \overline{\mathcal{H}} \in \mathcal{O}) \ \overline{\Theta}_{int} \cap \overline{\mathcal{H}} = \emptyset$. Equivalently, we can say that no \mathcal{O} -hyperplane through o intersects the interior of the corresponding solid angle Θ . An \mathcal{O} -free range which is not a proper subset of any other \mathcal{O} -free range is called an \mathcal{O} -hyperrange. The solid angles corresponding to \mathcal{O} -hyperranges are called \mathcal{O} -hyperangles.

Lemma 3.1 Let o and p be two points in \mathbb{R}^d not lying on the same \mathcal{O} -hyperplane, i.e. $(\not\exists \mathcal{H} \in \mathcal{O})$ o, $p \in \mathcal{H}$, and Θ be an \mathcal{O} -hyperangle with the vertex o that contains p. Then $\Theta = \bigcap \{ [\mathcal{H}, p) \mid \mathcal{H} \in \mathcal{O} \text{ and } o \in \mathcal{H} \}$.

Observe that according to this lemma, if line orientation is not lying within an \mathcal{O} -hyperorientation, it is contained in the unique \mathcal{O} -hyperrange. The lemma allows us to describe the set of all \mathcal{O} -hyperranges in terms of \mathcal{O} -hyperorientations. To present this description, we fix some point o and draw all possible \mathcal{O} -hyperplanes through o. The hyperplanes partition the space into solid angles. These solid angles, bounded by \mathcal{O} -hyperranges, are the \mathcal{O} -hyperangles with the vertex o. Fig. 2 presents the described picture for the orthogonal set of orientations in \mathcal{R}^3 , where three \mathcal{O} -hyperplanes partition the space into eight \mathcal{O} -hyperangles.

3.4 Ranges

Unfortunately, \mathcal{O} -hyperranges do not provide a disjoint partition of the set of line orientations. A line orientation on the boundary of \mathcal{O} -hyperranges belongs to two different \mathcal{O} -hyperranges. On the other hand, a line orientation may not belong to any \mathcal{O} -hyperrange. For example, if \mathcal{O} contains all hyperorientations, then there are no \mathcal{O} -hyperranges at all. In this subsection we show that the picture may be improved by introducing the notion of lower-dimensional \mathcal{O} -ranges.

Recall that every \mathcal{O} -hyperplane \mathcal{H} may be viewed as a (d-1)-dimensional space with the set of orientations $\mathcal{O}(\mathcal{H})$. An $\mathcal{O}(\mathcal{H})$ -hyperrange $\overline{\theta}$ in this space is called an \mathcal{O}^{d-1} -range. The interior of $\overline{\theta}$ in the space \mathcal{H} is denoted by $\overline{\theta}_{int}$. (Note that we define the interior of $\overline{\theta}$ in the (d-1)-dimensional space \mathcal{H} , not in the whole space \mathcal{R}^d , where the interior of $\overline{\theta}$ is trivially empty.) Similarly, we may define \mathcal{O}^k -ranges and their interiors for all $k \in [1..d]$. The solid angles corresponding to \mathcal{O} -ranges are called \mathcal{O} -angles.

 \mathcal{O} -ranges may be described informally by representing them as \mathcal{O} -angles with a common vertex (see Fig. 2). The facets of hyperangles are \mathcal{O}^{d-1} -angles (e.g. the planar angle $\angle xoy$ on Fig. 2), the subfacets are \mathcal{O}^{d-2} -angles, and so on. Generally, a solid angle is an \mathcal{O}^k -angle if and only if it is a k-dimensional face of some \mathcal{O} -hyperangle. Observe that \mathcal{O}^1 -angles are \mathcal{O} -lines, and the interiors of such angles (in 1-dimensional space) are the whole \mathcal{O} -lines themselves. One can easily see that every point except the common vertex o belongs to the interior of exactly one \mathcal{O} -angle. This gives rise to the following theorem.

Theorem 3.1 (The Partition Theorem) The set of interiors of all O-ranges is a disjoint partition of the set of all line orientations.

The last theorem in this section generalizes Lemma 3.1. It presents a formal description of \mathcal{O} -angles in terms of hyperplanes.

Theorem 3.2 (The Range Theorem) Let o and p be two points in \mathbb{R}^d , and o be the \mathcal{O} -angle with the vertex o whose interior contains p. Then $\theta = \bigcap \{ [\mathcal{H}, p) \mid \mathcal{H} \in \mathcal{O} \text{ and } o \in \mathcal{H} \}.$

4 Restricted orientation convexity

4.1 Abstract convexity

Before discussing restricted orientation convexity, we review basic definitions from abstract convexity theory. Given a set S and a family C of subsets of S, the structure (S,C) is said to be a convexity space if \emptyset , $S \in C$ and C is closed under intersection: $(\forall C' \subseteq C) \cap C' \in C$. For example, the convex sets in \mathbb{R}^d form a convexity space. In this convexity space $S = \mathbb{R}^d$ and C is the set of the usual convex sets. Another example of a convexity space is the set of \mathcal{O} -orientations, where S is the set of all line orientations, and $C = \mathcal{O}^0 \cup \mathcal{O}^1 \cup \ldots \cup \mathcal{O}^d$. (Recall that the intersection of \mathcal{O} -orientations is always an \mathcal{O} -orientation.)

Given a convexity space (S, C), we define the *hull* of a subset P of S as the intersection of all convex sets containing P: $hull(P) = \bigcap \{Q \mid P \subseteq Q \text{ and } Q \in C\}$.

A nested chain is a (possibly infinite) sequence of sets P_0, P_1, P_2, \ldots such that $P_0 \subseteq P_1 \subseteq P_2 \subseteq \ldots$ A convexity space is called *aligned* if, for any nested chain \mathcal{N} of convex sets, the union of all elements of \mathcal{N} is also a convex set: $(\forall \text{ chain } \mathcal{N} \subseteq C) \cup \mathcal{N} \in C$. Alignment is an important property that allows to us prove several basic facts about convexity spaces [5].

4.2 O-convexity

The following definition of higher-dimensional \mathcal{O} -convexity, which we use in this article, was stated in [4].

Definition 4.1 (\mathcal{O} -convexity)

- (1) Let P be a planar set, $P \subseteq \mathbb{R}^2$, and \mathcal{O} be a set of orientations in \mathbb{R}^2 (in this case \mathcal{O} is a set of line orientations). P is \mathcal{O} -convex if for every $l \in \mathcal{O}$, $P \cap l$ is connected. (We consider the empty set to be connected.)
- (2) Let P be a d-dimensional set, $P \subseteq \mathbb{R}^d$, and \mathcal{O} be a set of orientations in \mathbb{R}^d . P is \mathcal{O} -convex if for every \mathcal{O} -hyperplane \mathcal{H} , $P \cap \mathcal{H}$ is $\mathcal{O}(\mathcal{H})$ -convex, that is $P \cap \mathcal{H}$ is \mathcal{O} -convex in (d-1)-dimensional space \mathcal{H} , w.r.t. the set of orientations $\mathcal{O}(\mathcal{H})$.

The next theorem shows that this recursive definition may be considerably simplified.

Theorem 4.1 Let $P \subseteq \mathbb{R}^d$, and \mathcal{O} be a set of orientations in \mathbb{R}^d . Then P is \mathcal{O} -convex if and only if for every \mathcal{O} -line $l \in \mathcal{O}^1$, $P \cap l$ is connected.

This theorem allows us to prove basic properties of \mathcal{O} -convex sets, presented below. (For the planar case, the first three of these properties were presented in [7].)

- (1) For any set of orientations \mathcal{O} , if P is convex then P is \mathcal{O} -convex.
- (2) The intersection of \mathcal{O} -convex sets is an \mathcal{O} -convex set.
- (3) A set is \mathcal{O} -convex if and only if it is the union of disjoint connected components such that each component is \mathcal{O} -convex and no \mathcal{O} -line intersects any pair of components.
- (4) For any \mathcal{O} , the set of all connected \mathcal{O} -convex sets is aligned.
- (5) Let \mathcal{H} be an \mathcal{O} -hyperplane, and $P \subseteq \mathcal{H}$. Then P is \mathcal{O} -convex if and only if it is $\mathcal{O}(\mathcal{H})$ -convex.

Since the empty set and the whole space \mathcal{R}^d are clearly \mathcal{O} -convex, and the intersection of \mathcal{O} -convex sets is always \mathcal{O} -convex, we conclude that \mathcal{O} -convex sets form a convexity space. We denote the hull of a set P in this space by \mathcal{O} -hull(P). Below we present two properties of \mathcal{O} -hulls. (For the planar case, these properties were stated in [4].)

- (1) The \mathcal{O} -hull of a connected set is connected.
- (2) Let $\{\mathcal{O}_i\}_{i\in I}$ be a family of sets of orientations, and \mathcal{O} be such a set of orientations that $\mathcal{O}^1 = \bigcup \{\mathcal{O}_i^1\}$. Then for any set P, $\bigcup_{i\in I}(\mathcal{O}_i\text{-hull}(P))\subseteq \mathcal{O}\text{-hull}(P)$.

4.3 O-connectedness

Definition 4.2 (\mathcal{O} -connectedness) A planar set is \mathcal{O} -connected if it is \mathcal{O} -convex and connected. A d-dimensional set P is \mathcal{O} -connected if it is connected, and for every \mathcal{O} -hyperplane \mathcal{H} , $P \cap \mathcal{H}$ is $\mathcal{O}(\mathcal{H})$ -connected.

 \mathcal{O} -connected sets are similar to convex sets in many respects. However, they do *not* form a convexity space, because the intersection of two \mathcal{O} -connected sets may not be \mathcal{O} -connected. Fig. 3 shows an example of \mathcal{O} -connected polygonal curves s_1 and s_2 whose intersection is disconnected. Below we list basic properties of \mathcal{O} -connected sets.

- (1) Every O-connected set is O-convex and connected. (The reverse does not hold.)
- (2) Let \mathcal{H} be an \mathcal{O} -hyperplane, and $P \subseteq \mathcal{H}$. Then P is \mathcal{O} -connected if and only if it is $\mathcal{O}(\mathcal{H})$ -connected.
- (3) The intersection of an \mathcal{O} -connected set with any \mathcal{O} -flat is \mathcal{O} -connected.
- (4) Let P be a connected subset of \mathbb{R}^d . P is \mathcal{O} -connected if and only if for any \mathcal{O} -flat η , $P \cap \eta$ is connected.
- (5) The set of all \mathcal{O} -connected sets in \mathcal{R}^d is aligned.
- (6) This property holds only for orthogonal convexity. Let P be an \mathcal{O}_{\perp} -connected set, and \mathcal{H} be an \mathcal{O}_{\perp} -hyperplane. Then the perpendicular projection of P onto \mathcal{H} is $\mathcal{O}_{\perp}(\mathcal{H})$ -connected.

The important property of \mathcal{O} -connected sets that makes them similar to usual convex sets is simple connectedness. Unfortunately, we have proved this property only for the planar and three-dimensional cases.

Conjecture 4.1 (The Connectedness Conjecture) If the set of \mathcal{O} -line orientations \mathcal{O}^1 is not empty, then every \mathcal{O} -connected set is simply connected.

4.4 O-stairlines

In this section we introduce the notion of \mathcal{O} -stairlines, which play the same role for restricted-orientation convexity as lines do for usual convexity.

Definition 4.3 (O-stairlines) An O-stairline is an O-connected curve. An O-stairsegment is an O-connected curvilinear segment (see Fig. 3).

We denote an \mathcal{O} -stairline by the letter s, and a stairsegment with endpoints p and q by s[p,q]. To describe \mathcal{O} -stairlines in terms of \mathcal{O} -ranges, we introduce the notion of the span of a curve. The span of c is the set of orientations of all lines that intersect c in at least two points: $span(c) = \{\overline{(p,q)} \mid p,q \in c\}$.

The next theorem gives us a convenient description of \mathcal{O} -stairlines and \mathcal{O} -stairsegments.

Theorem 4.2 A curve (curvilinear segment) is an \mathcal{O} -stairline (\mathcal{O} -stairsegment) if and only if its intersection with every \mathcal{O} -hyperplane is connected.

The following two properties of \mathcal{O} -stairlines are corollaries of the above theorem.

- (1) Let s[p,q] be an \mathcal{O} -stairsegment and $\overline{\theta}$ be an \mathcal{O} -range such that $\overline{(p,q)} \in \overline{\theta}$. Then $span(s[p,q]) \subseteq \overline{\theta}$.
- (2) Let s[p,q] be an \mathcal{O} -stairsegment and η be an \mathcal{O} -flat such that $p,q\in\eta$. Then $s[p,q]\subseteq\eta$.

Now we present the main theorem of this subsection, which describes sufficient and necessary conditions for a curve to be a stairline in terms of the span of the curve.

Theorem 4.3 (The Span Theorem) A curve (curvilinear segment) is an O-stairline (O-stairsegment) if and only if its span is completely contained within some O-range.

Below we state three corollaries of the Span Theorem that allow us to combine a long \mathcal{O} -stairsegment from several small pieces. (For the planar case, these properties were stated in [8].)

- (1) Let p, q, and r be points in \mathbb{R}^d , and there exists an \mathcal{O} -range $\overline{\theta}$ such that $\overline{(p,q)} \in \overline{\theta}$ and $\overline{(q,r)} \in \overline{\theta}$. If s[p,q] is an \mathcal{O} -stairsegment from p to q and s[q,r] is an \mathcal{O} -stairsegment from q to r, then $s[p,q] \cup s[q,r]$ is an \mathcal{O} -stairsegment from p to r.
- (2) Let v and w be points on the \mathcal{O} -stairsegment s[p,q]. If we replace the part of s[p,q] between v and w by some other \mathcal{O} -stairsegment, the resulting curvilinear segment s'[p,q] is still an \mathcal{O} -stairsegment.
- (3) Let s be a polygonal line consisting of the edges e_1, e_2, \ldots, e_n . Then s is an \mathcal{O} -stairsegment if and only if there exists an \mathcal{O} -hyperrange $\overline{\Theta}$ such that $\overline{e}_i \in \overline{\Theta}$ for all $i \in [1..n]$. (Here \overline{e}_i is the orientation of e_i .)

The next conjecture describes \mathcal{O} -connected sets via the notion of \mathcal{O} -stairsegments. The conjecture was proved for the planar case in [4]. In the higher-dimensional case, we found its proof only for the orthogonal convexity.

Conjecture 4.2 A set P is \mathcal{O} -connected if and only if any two points p and q in P may be connected by an \mathcal{O} -stairsegment s[p,q] such that $s[p,q] \subseteq P$.

We have proved that a similar result holds for O-convex sets and O-convex curvilinear segments.

Theorem 4.4 Let P be a connected set. P is \mathcal{O} -convex if and only if for all $p, q \in P$, there exists an \mathcal{O} -convex curvilinear segment c[p,q] such that $c[p,q] \subseteq P$.

4.5 \mathcal{O} -stairsurfaces and \mathcal{O} -halfspaces

An \mathcal{O} -stairsurface in a d-dimensional space \mathcal{R}^d is an \mathcal{O} -convex surface. An \mathcal{O} -halfspace candidate is a set P whose intersection with any \mathcal{O} -line is either empty, or a ray, or a line. Now let Q be the closure of the complement of P: $Q = \operatorname{closure}(\mathcal{R}^d - P)$. If both P and Q are \mathcal{O} -halfspace candidates, then P is called an \mathcal{O} -halfspace. The notion of \mathcal{O} -stairsurfaces corresponds to the notion of hyperplanes in usual geometry, and \mathcal{O} -halfspaces correspond to usual halfspaces. Unlike usual halfspaces, \mathcal{O} -halfspaces may not be connected. For example, the union of the right angles P_1 and P_2 on Fig. 4 is a disconnected \mathcal{O} -halfspace.

Now we present elementary properties of \mathcal{O} -halfspaces.

- (1) For any set of orientations \mathcal{O} , a usual halfspace is an \mathcal{O} -halfspace.
- (2) Let $Q = \operatorname{closure}(\mathcal{R}^d P)$. If P is an \mathcal{O} -halfspace, then Q is also an \mathcal{O} -halfspace.
- (3) A set P is an \mathcal{O} -halfspace (\mathcal{O} -halfspace candidate) if and only if for any \mathcal{O} -hyperplane \mathcal{H} , $P \cap \mathcal{H}$ is an $\mathcal{O}(\mathcal{H})$ -halfspace ($\mathcal{O}(\mathcal{H})$ -halfspace candidate).
- (4) A set is an \mathcal{O} -halfspace (\mathcal{O} -halfspace candidate) if and only if it is the union of disjoint connected components such that each component is an \mathcal{O} -halfspace (\mathcal{O} -halfspace candidate), and no \mathcal{O} -line intersects any pair of components.

The next theorem shows the connection between \mathcal{O} -stairsurfaces and \mathcal{O} -halfspaces.

Theorem 4.5 (The Boundary Theorem for \mathcal{O} -halfspaces) A set P is an \mathcal{O} -halfspace if and only if its boundary consists of \mathcal{O} -stairsurfaces, and no \mathcal{O} -line intersects any pair of these \mathcal{O} -stairsurfaces.

The last result stated in this section, the Separation Conjecture, was proved in [4] for the planar case. It probably works in higher-dimensional spaces too, but we found a proof only for the case of the orthogonal \mathcal{O} -convexity in the three-dimensional space.

Conjecture 4.3 (The Separation Conjecture) Let P be an O-connected set, and p be a point outside P. Then there exists an O-halfspace that completely contains P and does not contain p.

A corollary of this result would be:

Corollary 4.1 (of the Separation Conjecture) An O-connected set is the intersection of all O-halfspaces containing it.

4.6 Characterizing \mathcal{O} -convex sets

Consider some arbitrary surface in \mathcal{R}^d . Intuitively, we wish to divide this surface into \mathcal{O} -convex regions. We call such regions \mathcal{O} -stairfacets. Formally, a curvilinear facet is an open connected subset of a surface together with its boundary, and an \mathcal{O} -stairfacet is an \mathcal{O} -convex curvilinear facet.

Definition 4.4 (\mathcal{O} -extremal points) A point p is said to be an \mathcal{O} -extremal point of a surface if p is a point of support of this surface with respect to some \mathcal{O} -line.

Theorem 4.6 A curvilinear facet is O-convex if and only if none of its interior points are O-extremal.

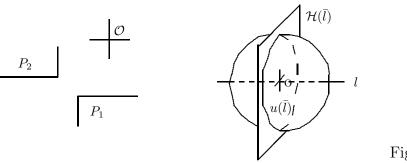


Fig. 4. $(P_1 \cup P_2)$ is an \mathcal{O} -halfspace

Fig. 5.

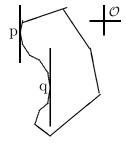


Fig. 6. \mathcal{O} -convexity point p and \mathcal{O} -concavity point q

Thus, we may view a surface as a collection of \mathcal{O} -stairfacets, whose boundaries consist of \mathcal{O} -extremal points. Pictorially, this view may be presented as follows. Consider a unit sphere U and some \mathcal{O} -line orientation \bar{l} . Let $\mathcal{H}(\bar{l})$ be the hyperplane through the center of U perpendicular to \bar{l} , and $u(\bar{l}) = U \cup \mathcal{H}(\bar{l})$ (see Fig. 5). It may be shown that $u(\bar{l})$ is the set of points of support of U w.r.t. \bar{l} -oriented lines. Thus if we draw $u(\bar{l})$ for every $\bar{l} \in \mathcal{O}$, we find all \mathcal{O} -extremal points of the sphere, and regions on the sphere bounded by $u(\bar{l})$'s are \mathcal{O} -stairfacets. Now consider some surface S. We define the direction of each point p of S as the direction of the normal vector to S at p (we assume that all normal vectors point to the "same side" of the surface), and consider the mapping from S to the sphere U such that each point of S is mapped onto the point of S with the same direction. This mapping has two important properties:

- (1) The image of every \mathcal{O} -extremal point of S is an \mathcal{O} -extremal point of U. (The reverse does not hold.)
- (2) A curvilinear facet on the surface S is \mathcal{O} -convex if and only if the image of its interior is completely contained in some \mathcal{O} -stairfacet of U.

The second property means that intuitively we may envision S as the collection of \mathcal{O} -stairfacets that are preimages of the stairfacets of U.

Next consider a simply connected set P, and let S be its boundary. We may divide the \mathcal{O} -extremal points of the surface S into two groups. The first kind is the points where the supporting \mathcal{O} -lines lie in the exterior of P, and thus these \mathcal{O} -lines are also lines of support of the set P. These points are called *points of* \mathcal{O} -convexity. The second kind is the points where the supporting lines "touch" the surface from the interior of P. More formally, in some neighborhood of the extremal point the supporting \mathcal{O} -line lies within P. Such points are called *points of* \mathcal{O} -concavity (see Fig. 6).

Theorem 4.7 (The Boundary Theorem for \mathcal{O} -convex **Sets)** A simply connected set P is \mathcal{O} -convex if and only if its boundary does not contain any points of \mathcal{O} -concavity.

This theorem means that we may envision the boundary of a simply connected \mathcal{O} -convex set as a collection of \mathcal{O} -stairfacets, whose boundaries consist of points of \mathcal{O} -convexity. If \mathcal{O} contains all orientations, that is if we consider the usual convexity, then \mathcal{O} -stairfacets become usual facets of a polytope, and the Boundary Theorem states that a polytope is convex if and only if all angles between adjacent facets are convex.

4.7 Strong \mathcal{O} -convexity

A set P is said to be *strongly* \mathcal{O} -convex if, for every two points $p, q \in P$, every \mathcal{O} -stairsegment joining p and q is contained in P. The union of all stairsegments joining p and q is called an \mathcal{O} -parallelotope and denoted by \mathcal{O} - $\|[p,q]$. The next two propositions give us a convenient description of \mathcal{O} - $\|[p,q]$.

- (1) Let $\mathcal{O} \neq \emptyset$, and $\overline{\mathcal{H}} \in \mathcal{O}$. Consider $\overline{\mathcal{H}}$ -oriented hyperplanes \mathcal{H}_p and \mathcal{H}_q such that $p \in \mathcal{H}_p$ and $q \in \mathcal{H}_q$. We define $\overline{\mathcal{H}}$ -layer(p,q) as the set of all points between \mathcal{H}_p and \mathcal{H}_q , including \mathcal{H}_p and \mathcal{H}_q themselves. Then \mathcal{O} - $\|[p,q] = \bigcap \{\overline{\mathcal{H}}$ -layer $(p,q) \mid \overline{\mathcal{H}} \in \mathcal{O}\}$.
- (2) Let $\overline{\theta}$ be the \mathcal{O} -range such that $(p,q) \in \overline{\theta}_{int}$. Let θ_p be the $\overline{\theta}$ -oriented angle with the vertex p that contains q, and θ_q be the $\overline{\theta}$ -oriented angle with the vertex q that contains p. Then \mathcal{O} - $\|[p,q] = \theta_p \cap \theta_q$.

¹This mapping may not be a function, since if S is not smooth, some points of S have more than one direction.

Using the above description of \mathcal{O} -parallelotopes, we may prove the following properties of strongly \mathcal{O} -convex sets. (For the planar case, the first two properties were presented in [4].)

- (1) P is strongly O-convex if and only if the intersection of P and every O-stairline is connected.
- (2) P is strongly O-convex if and only if P is a convex polytope all facets of which are O-oriented.
- (3) A flat is strongly \mathcal{O} -convex if and only if it is \mathcal{O} -oriented.
- (4) Let \mathcal{H} be an \mathcal{O} -hyperplane, and $P \subseteq \mathcal{H}$. Then P is strongly \mathcal{O} -convex if and only if it is strongly $\mathcal{O}(\mathcal{H})$ -convex.
- (5) The intersection of a strongly \mathcal{O} -connected set with any \mathcal{O} -flat is strongly \mathcal{O} -convex.
- (6) If a set P is strongly \mathcal{O} -convex, it is also \mathcal{O} -connected.
- (7) The intersection of strongly \mathcal{O} -convex sets is strongly \mathcal{O} -convex.
- (8) For any \mathcal{O} , the set of all \mathcal{O} -convex sets is aligned.

Observe that both the empty set and the whole space is strongly \mathcal{O} -convex, and therefore it follows from the seventh property that strongly \mathcal{O} -convex sets form a convexity space.

5 Conclusion

We have presented four types of objects: \mathcal{O} -convex sets, \mathcal{O} -connected sets, \mathcal{O} -halfspaces, and strongly \mathcal{O} -convex sets. In the case when \mathcal{O}^1 is the set of all line orientations, \mathcal{O} -halfspaces become usual halfspaces, and the three other types become usual convex sets. We have shown that these four kinds of objects have a lot of similar properties. (However the proofs of the same properties are quite different for different objects.)

 \mathcal{O} -convex and strongly \mathcal{O} -convex sets have many properties similar to the properties of usual convex objects and form abstract convexity spaces, and \mathcal{O} -halfspaces are similar to usual halfspaces. The main characteristic of convex sets and halfspaces that we have lost in the generalization to \mathcal{O} -convexity is connectedness: convex sets are always connected, while \mathcal{O} -convex sets may be disconnected.

References

- [1] E. Fink and D. Wood. Restricted-orientation geometry in higher-dimensional spaces. Forthcoming.
- [2] R. H. Guting. Stabbing C-oriented polygons. Information processing letters, 16, 1983.
- [3] R. H. Guting. Dynamic C-oriented polygonal intersection searching. Information and control, 63, 1984.
- [4] G. J. E. Rawlins. *Explorations in restricted-orientation geometry*. PhD thesis, Department of Computer Science, University of Waterloo, Waterloo, 1987. Research report CS-87-57.
- [5] G. J. E. Rawlins, S. Schuierer, and D. Wood. Visibility, skulls, and kernels in convexity spaces. Department of Computer Science, University of Waterloo, Waterloo, 1989. Research report CS-89-48.
- [6] G. J. E. Rawlins, S. Schuierer, and D. Wood. Convexity, visibility, and orthogonal polygons. Contemporary mathematics, 119, 1991.
- [7] G. J. E. Rawlins and D. Wood. Restricted-orientation convex sets. Information sciences, 54, 1991.
- [8] S. Schuierer. On generalized visibility. PhD thesis, Universitat Freiburg, Germany, 1991.
- [9] P. Widmayer, Y. F. Wu, M. D. F. Schlag, and C. K. Wong. On some union and intersection problems for polygons with fixed orientations, *Computing*, 36, 1986.