
Indexing of Time Series by Major Minima and Maxima

Eugene Fink
Computer Science and Eng.
University of South Florida

Tampa, Florida 33620
eugene@csee.usf.edu

Kevin B. Pratt
Computer Science Innovations

1235 Evans Road
Melbourne, Florida 32904
kpratt@csi-inc.com

Harith Suman Gandhi
Computer Science and Eng.
University of South Florida

Tampa, Florida 33620
g reddy@tvratings.com

Abstract – We describe a technique for fast compres-
sion of time series and indexing of compressed series.
We have tested it on three data sets: stock prices, air
and sea temperatures, and wind speeds.

Keywords: Compression, indexing, retrieval.

Introduction: A time series is a sequence of real values
measured at equal intervals. We describe an algorithm
for compressing a time series by extracting its major
minima and maxima, and then present a technique for
indexing a database of compressed series, which sup-
ports retrieval of series similar to a given pattern. We
have tested it on three data sets, summarized in Table 1.

Stock prices: We have used stocks from the Standard
and Poor’s 100 listing for the period from January 1998
to April 2000. We have discarded the newly listed and
de-listed stocks, and used prices of ninety-eight stocks.

Air and sea temperatures: We have experimented
with daily temperature readings by sixty-eight buoys
in the Pacific Ocean, from 1980 to 1998, downloaded
from an archive at the University of California at Irvine
(kdd.ics.uci.edu).

Wind speeds: We have used daily wind speeds
at twelve sites in Ireland, from 1961 to 1978, ob-
tained from an archive at Carnegie Mellon University
(lib.stat.cmu.edu/datasets).

Previous work: Researchers have considered a variety
of techniques for compressing time series. In particular,
Perng and his colleagues investigated a compression pro-
cedure based on extraction of “landmark points,” which
included minima and maxima [9]. Keogh and Pazzani
used the endpoints of best-fit line segments to compress
a series [6]. Keogh and his colleagues reviewed and com-
pared the compression techniques based on approxima-
tion of a series by a sequence of line segments [5].

Researchers have also studied various methods for in-
dexing of time series. In particular, Chan and Fu com-
bined wavelet transforms with R-trees [2]. Bozkaya and
Özsoyoglu used vantage-point trees to index series by
numeric features [1]. Park, Lee, and Chu indexed series
by their minima and maxima [8]. Li, Yu, and Castelli

0-7803-7952-7/03/$17.00 c
 2003 IEEE.

proposed a retrieval technique based on a multi-level ab-
straction hierarchy of features [7]. We have developed a
new technique for indexing of compressed series by their
minima and maxima [4, 10].

Compression: We compress a time series by selecting
its major minima and maxima, and dropping the other
points, as shown in Figures 1(a,b). We use a positive pa-
rameter R to control the compression rate; an increase
of R leads to selection of fewer points.

A point a[m] of a series a[1..n] is a major minimum
if there are indices i and j, where i < m < j, such that

• a[m] is a minimum among a[i..j], and
• a[i] − a[m] ≥ R and a[j] − a[m] ≥ R.

Intuitively, a[m] is a minimal value of some segment
a[i..j], and the endpoint values of this segment are much
larger than a[m]. Similarly, a[m] is a major maximum
if there are indices i and j, where i < m < j, such that

• a[m] is a maximum among a[i..j], and
• a[m] − a[i] ≥ R and a[m] − a[j] ≥ R.

In Figure 3, we give a procedure for identifying major
minima and maxima, which performs one pass through
a series; it takes linear time and constant memory. We
have implemented it in Visual Basic 6 and tested on
a 2.4-GHz Pentium computer; for an n-point series, it
takes 1.8 · n microseconds.

Indexing: The indexing of a time-series database is
based on the notion of major inclines, illustrated in Fig-
ure 1(c). A segment a[i..j] is a major upward incline if

• a[i] is a major minimum;
• a[j] is a major maximum;
• for every m ∈ [i..j], a[i] ≤ a[m] ≤ a[j].

The definition of a major downward incline is symmet-
ric. The length of a major incline a[i..j] is j − i, and its
height is a[j] − a[i]; note that the height of an upward
incline is positive, whereas the height of a downward
incline is negative. We identify all major inclines of all
series in the database, and index these inclines by their
length and height using a range tree, which is a standard
structure for indexing points by two co-ordinates [3].

In Figure 4, we give a procedure for identifying the
major upward inclines of a series; the procedure for the

Figure 1: Major minima and maxima.

Figure 2: Retrieving a segment that may match the pattern.

major downward inclines is similar. We denote the num-
ber of major minima in the series by u, and the number
of major maxima by v. The procedure inputs a list of
major minima and a list of major maxima, and identifies
the major upward inclines. First, for every major maxi-
mum a[iMax[m]], it identifies the next larger maximum
and stores its number in next[m]. Second, it uses this
information to identify the major inclines. Its running
time is linear in the number of major inclines.

Retrieval: The retrieval procedure inputs a pattern
series and searches for similar segments in a database
(Figure 5). First, it finds the pattern’s major incline
with the greatest absolute value of a height; we denote
the length of this incline by l, and its height by h. Sec-
ond, it retrieves all major inclines in the database that
have a similar length and height; an incline is consid-
ered similar if its length is between l/C and l · C, and
its height is between h/D and h ·D, where C and D are
parameters for controlling the retrieval process. Third,
it identifies the segments that contain the selected in-
clines (Figure 2), applies a given similarity test to com-
pare them with the pattern, and outputs the segments
that pass this test.

Experiments: To evaluate the retrieval accuracy, we
have compared the retrieval results with the matches
identified by a slow exhaustive search. We have ranked
the matches found by the retrieval procedure from the
most to the least similar. In Figures 6 and 7, we plot the
ranks of matches found by the fast procedure versus the
ranks of the exhaustive-search matches. For instance, if
the fast procedure has found only three among the seven
closest matches, the graph includes the point (3, 7). If
the fast procedure has found all matches, the graph is a
forty-five degree line; otherwise, it is steeper.

We have measured the retrieval speed of a Visual-
Basic implementation on a 2.4-GHz Pentium computer.
Note that, if we increase C and D, the procedure misses
fewer matches, but the retrieval is slower. In Figures 6
and 7, we give time measurements for different retrieval
accuracies. For the stock database with 60,000 points,
the retrieval takes from 0.01 to 0.31 seconds. For the
database of air and sea temperatures, which includes
450,000 points, the time is between 0.1 and 1.2 seconds.

For the wind-speed database with 80,000 points, the
time varies from 0.08 to 0.20 seconds.

Acknowledgments: We are grateful to Dmitry Gold-
gof, Rafael Perez, Mark Last, and Eamonn Keogh for
their comments and suggestions.

References
[1] Tolga Bozkaya and Z. Meral Özsoyoglu. Indexing

large metric spaces for similarity search queries.
acm Transactions on Database Systems, 24(3):361–
404, 1999.

[2] Kin-Pong Chan and Ada Wai-Chee Fu. Efficient
time series matching by wavelets. In Proceedings
of the Fifteenth International Conference on Data
Engineering, pages 126–133, 1999.

[3] Herbert Edelsbrunner. A note on dynamic range
searching. Bulletin of the European Association for
Theoretical Computer Science, 15:34–40, 1981.

[4] Eugene Fink and Kevin B. Pratt. Indexing of
compressed time series. In Mark Last, Abraham
Kandel, and Horst Bunke, editors, Data Mining in
Time Series Databases, pages 51–78. World Scien-
tific, Singapore, 2003.

[5] Eamonn J. Keogh, Selina Chu, David Hart, and
Michael J. Pazzani. An online algorithm for seg-
menting time series. In Proceedings of the ieee
International Conference on Data Mining, pages
289–296, 2001.

[6] Eamonn J. Keogh and Michael J. Pazzani. An en-
hanced representation of time series which allows
fast and accurate classification, clustering and rel-
evance feedback. In Proceedings of the Fourth acm
International Conference on Knowledge Discovery
and Data Mining, pages 239–243, 1998.

[7] Chung-Sheng Li, Philip S. Yu, and Vittorio
Castelli. malm: A framework for mining sequence
database at multiple abstraction levels. In Proceed-
ings of the Seventh International Conference on In-
formation and Knowledge Management, pages 267–
272, 1998.

[8] Sanghyun Park, Sang-Wook Kim, and Wesley W.
Chu. Segment-based approach for subsequence
searches in sequence databases. In Proceedings of
the Sixteenth acm Symposium on Applied Comput-
ing, pages 248–252, 2001.

[9] Chang-Shing Perng, Haixun Wang, Sylvia R.
Zhang, and D. Scott Parker. Landmarks: A new
model for similarity-based pattern querying in time
series databases. In Proceedings of the Sixteenth In-
ternational Conference on Data Engineering, pages
33–42, 2000.

[10] Kevin B. Pratt and Eugene Fink. Search for pat-
terns in compressed time series. International Jour-
nal of Image and Graphics, 2(1):89–106, 2002.

Table 1: Data sets used in the experiments.

data set description num. of points total num.
series per series of points

stock prices 98 stocks, 2.3 years 98 610 60,000

air and sea 68 buoys, 18 years, 136 1,800–6,600 450,000
temperatures 2 sensors per buoy

wind speeds 12 stations, 18 years 12 6,570 80,000

compression

The procedure inputs a time series a[1..n], and

outputs the indices of major minima and maxima.

i = find-first

if i < n and a[i] > a[1] then i = find-max(i)

while i < n do

i = find-min(i)

i = find-max(i)

find-first

Finding the first major minimum or maximum.

iMin = 1; iMax = 1; i = 2

while i<n and a[i]− a[iMin]<R and a[iMax]− a[i]<R do

if a[i] < a[iMin] then iMin = i

if a[i] > a[iMax] then iMax = i

i = i + 1

if i < n and iMin < iMax then output iMin

if i < n and iMax < iMin then output iMax

return i

find-min(i)

Finding the first major minimum after the ith point.

iMin = i

while i < n and a[i] − a[iMin] < R do

if a[i] < a[iMin] then iMin = i

i = i + 1

if i < n or a[iMin] < a[i] then output iMin

return i

find-max(i)

Finding the first major maximum after the ith point.

iMax = i

while i < n and a[iMax] − a[i] < R do

if a[i] > a[iMax] then iMax = i

i = i + 1

if i < n or a[iMax] > a[i] then output iMax

return i

Figure 3: Compression procedure. It processes a time series
a[1..n] and identifies the major minima and maxima.

upward-inclines

The procedure inputs a series a[1..n], the indices of the major

minima in this series, iMin[1..u], and the indicies of the major

maxima, iMax[1..v]; it outputs the major upward inclines.

initialize an empty stack S

push(S, 1)

for m = 2 to v do

while S is not empty and a[iMax[top(S)]]≤a[iMax[m]] do

next[top(S)] = m

pop(S)

push(S, m)

while S is not empty do

next[top(S)] = v + 1

pop(S)

k = 1; m = 1

while k ≤ u and m ≤ v do

while m ≤ v and iMax[m] < iMin[k] do

m = m + 1

w = m

while w 6= v + 1 do

output incline (iMin[k], iMax[w])

w = next[w]

k = k + 1

Figure 4: Identification of the major upward inclines. We
assume that the major minima in a series are numbered from
1 to u, and the major maxima are numbered from 1 to v.

retrieval

The procedure inputs a pattern series, and identifies the

segments in a time-series database that match the pattern.

Identify the pattern’s major incline with

the greatest absolute value of a height.

Determine the length l and height h of this incline.

Retrieve all major inclines in the database such that

• their lengths are between l/C and l · C, and

• their heights are between h/D and h · D.

For every retrieved incline:

Identify the corresponding segment (Figure 2).

Compare this segment with the pattern,

using a given similarity test.

Figure 5: Search for segments similar to a given pattern.
The procedure includes two control parameters, C and D.

Figure 6: Retrieval of stock charts. The horizontal axes
show the ranks of matches retrieved by the fast procedure,
and the vertical axes are the ranks assigned to the same
matches by a slow exhaustive search. We also give the re-
trieval times.

Figure 7: Retrieval of weather patterns. The horizontal
axes show the ranks of matches assigned by the fast proce-
dure, and the vertical axes are the exaustive-search ranks.
In addition, we show the retrieval times.

