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Exchanges for Complex Commodities:
Toward a General-Purpose System for On-Line Trading
John Hershberger
ABSTRACT

The modern economy includes a variety of markets, and the Internet has opened oppor-
tunities for efficient on-line trading. Researchers have developed algorithms for various
auctions, which have become a popular means for on-line sales. They have also designed
algorithms for exchange-based markets, similar to the traditional stock exchange, which
support fast-paced trading of rigidly standardized securities. In contrast, there has been
little work on exchanges for complex nonstandard commodities, such as used cars or
collectible stamps.

We propose a formal model for trading of complex goods, and present an automated
exchange for a limited version of this model. The exchange allows the traders to describe
commodities by multiple attributes; for example, a car buyer may specify a model, options,
color, and other desirable properties. Furthermore, a trader may enter constraints on the
acceptable items rather than a specific item; for example, a buyer may look for any car
that satisfies certain constraints, rather than for one particular vehicle.

We present an extensive empirical evaluation of the implemented exchange, using
artificial data, and then give results for two real-world markets, used cars and commercial
paper. The experiments show that the system supports markets with up to 260,000 orders,

and generates one hundred to one thousand trades per second.

vi



Chapter 1

Introduction

1.1 Motivation

Economists define market as “an arrangement which permits numerous buyers and sellers
of related commodities to carry on extensive business transactions on a regular, organized
basis” [Trenton, 1964]. The modern economy includes a wide variety of markets, from
cars to software to office space.

The supply chain between a manufacturer and customer may include several middle-
men. For instance, customers usually buy cars through dealerships, which in turn acquire
cars from manufacturers; the sale of used cars may also involve dealers, who serve as
middlemen in the secondary market. This problem exists not only in broker-to-consumer
transactions, but also in broker-to-broker markets, where many transactions are slow and
require either salespeople on both sides or intermediary brokers. The most certain sign
of inefficiency in the modern economy is the army of salespeople and brokers, who make
their living by acting as middlemen.

In addition, most items are bought and sold not only from the manufacturer, but
also on a secondary market, that is, they may be bought and re-sold multiple times. For
example, phone companies often re-sell unused phone minutes, and airlines re-sell unused
seats. Liquidity is essential, since the commodity may be lost if it is not sold by some
predetermined time. For example, unsold seats in an airplane become useless once the
airplane is off the ground. These resales increase the cost of goods, since they include

commissions for the middlemen. To improve the efficiency of the economy, a more efficient



secondary market is necessary. This market would not require highly paid brokers and
middlemen, a significant investment of time and effort, or a considerable risk of trading
at a sub-optimal price. The recent growth of the Internet has opened opportunities for
reducing the number of middlemen [Klein, 1997; Turban, 1997; Wrigley, 1997], and many
companies have experimented with direct sales over the web. Middlemen are also using
the Internet to increase the volume of their sales and reduce expenses. Furthermore,
many companies specialize in the development of electronic marketplaces, which include
bulletin boards, auctions, and exchanges.

Electronic bulletin boards are similar to traditional newspaper classifieds. These
boards vary from newsgroup postings to on-line sale catalogs, and they help buyers and
sellers find each other; however, they often require a user to invest significant effort into
searching among multiple ads. For this reason, many buyers prefer on-line auctions, such
as eBay (www.ebay.com).

Auctions have their own problems, which include significant computational costs,
transaction delays, and asymmetry between buyers and sellers. A traditional auction
requires a buyer to bid on a specific item. It helps sellers to obtain the highest price,
but limits buyers’ flexibility. A reverse auction requires a seller to bid on a customer’s
order; thus, it benefits buyers, and restricts the sellers’ flexibility. Furthermore, auctions
limit the liquidity, that is, they may cause significant transaction delays. For example, if
a seller posts an item on eBay, she can sell it in three or more days, depending on the
selected duration of the auction, but not sooner. Thus, auctions are not appropriate for
fast sales, which are essential in many markets.

An exchange-based market does not have these problems: it ensures symmetry be-
tween buyers and sellers, and supports fast-paced trading. Examples of liquid markets
include the traditional stock and commodity exchanges, such as the New York Stock Ex-

change and Chicago Mercantile Exchange, as well as currency and bond exchanges. For



instance, a trader can buy or sell any public stock in seconds, at the best available price.
Although stocks have long served as an example of an efficient market, trading in other
industries has not reached this efficiency.

The main limitation of traditional exchanges is rigid standardization of tradable
items. For instance, the New York Stock Exchange allows trading of about 3,100 securi-
ties, and the buyer or seller has to indicate a specific item, such as IBM stock. For most
goods and services, however, the description is much more complex. For instance, a car
buyer may need to specify a make, model, options, color, and other desirable features.
Furthermore, she usually has a certain flexibility and may accept any car that satisfies
her constraints, rather than looking for one specific vehicle. For example, she may be
willing to get any red Mustang with air conditioning.

Building an exchange for such complex commodities is a major open problem. An

effective trading system should satisfy the following requirements:

e Allow complex constraints in specifications of buy and sell orders

Support fast-paced trading for large markets, with millions of orders

Include optimization techniques that maximize the traders’ satisfaction

Ensure the “fairness” of the market, according to financial industry standards

e Allow a user to select preferred trades among matches for her order

1.2 Example

We give an example of an exchange for trading new and used cars. To simplify this
example, we assume that a trader can describe a car by four attributes: model, color,
year, and mileage. For instance, a seller may offer a red Mustang, made in 1999, with

35,000 miles.



Buy: Sl
Red Mustang, Any color Mustang,
made after 1999, Fill: made in 2001,
at most 20,000 miles, Red Mustang, O miles,
less than $19,000 made in 2001, more than $18,000

0 miles,
$18,500

Figure 1.1: Matching orders and the resulting trade. When the system finds a match
between two orders, it generates a fill, which is a trade that satisfies both parties.

Buy: Sl Sl
Mustang Mustang Mustang
$19,000 $18,000 $17,000

Fill:

Mustang
$18,000

Figure 1.2: Choosing the match with the best price.

The exchange allows placing buy and sell orders, analogous to the orders in a stock
market. A prospective buyer can place a buy order, which includes a description of the
desired vehicle and a maximal acceptable price. For instance, she may indicate that she
wants a red Mustang, made after 1999, with at most 20,000 miles, and she is willing to
pay $19,000. Similarly, a seller can place a sell order; for instance, a manufacturer may
offer a brand-new Mustang of any color for $18,000.

The exchange system searches for matches between buy and sell orders, and gener-
ates corresponding fills, that is, transactions that satisfy both buyers and sellers. In the
previous example, it will determine that a brand-new red Mustang for $18,500 satisfies
both the buyer and the seller (Figure 1.1).

If the system finds several matches for an order, it chooses the match with the best
price. For example, the buy order in Figure 1.2 will trade with the cheaper of the two

sell orders.



Buy: Sl
Mustang Mustang
2cars 4 cars
T T
Completely filled Partially filled
removed redt!ced
SCIK
Mustang
2 cars

Figure 1.3: Example of order sizes. When the system finds a match, it completely fills
the smaller order and reduces the size of the larger order.

The system allows a user to trade several identical items by specifying a size for an
order. For example, a dealer can place an order to sell four Mustangs; then, the system
can match it with a smaller buy order (Figure 1.3) and later find a match for the remaining
cars. In addition, the user can specify a minimal acceptable size of a transaction. For
instance, the dealer may place an order to sell four Mustangs, and indicate that she wants
to trade at least two cars.

A user can specify that she is willing to trade any of several items. For example, she
can place an order to buy either a Mustang or Camaro. If a user describes a set of items,
she can indicate that the price depends on an item. For instance, she may offer $18,500
for a Mustang and $17,500 for a Camaro; furthermore, she may offer an extra $500 if a
car is red, and subtract $1 for every ten miles on its odometer. A user can also specify
her preferences for choosing among potential trades; for example, she may indicate that
a red Mustang is better than a white Mustang, and that a Mustang for $19,000 is better

than a Camaro for $18,000.

1.3 Previous work

Economists and computer scientists have long realized the importance of auctions and
exchanges, and studied a variety of trading models. The related computer science research

has been focused on effective auction systems [Bichler, 2000b; Bichler and Werthner,



2000; Ronen, 2001; Ronen and Saberi, 2002], optimal matching in various auctions [Ygge
and Akkermans, 1997; Monderer and Tennenholtz, 2000; Kastner et al., 2002], bidding
strategies [Tesauro and Das, 2001; He and Leung, 2001], and general-purpose systems
for auctions and exchanges. It has led to successful Internet auctions, such as eBay
(www.ebay.com) and Yahoo Auctions (auctions.yahoo.com). Recently, researchers have
developed several efficient systems for combinatorial auctions, which allow buying and
selling sets of commodities rather than individual items. They have considered not only
auctions with completely specified commodities, but also markets that allow the user to

negotiate desirable features of merchandise.

1.3.1 Combinatorial auctions

A traditional combinatorial auction allows bidding on a set of fully specified items. For
example, a buyer may bid on a red Mustang and black Corvette for a total price of
$40,000; in this case, she will get both cars together or nothing. An advanced auction
may allow disjunctions; for instance, a buyer may specify that she wants either a red
Mustang and black Corvette or, alternatively, two silver BMws. On the other hand,
standard combinatorial auctions do not allow incompletely specified items, such as a
Mustang of any color.

Rothkopf et al. [1998] gave a detailed analysis of combinatorial auctions and de-
scribed semantics of combinatorial bids that allowed fast matching. Nisan discussed
alternative semantics for combinatorial bids, formalized the problem of searching for opti-
mal and near-optimal matches, and proposed a linear-programming solution [Nisan, 2000;
Lavi and Nisan, 2000]. Zurel and Nisan [2001] developed a system for finding near-optimal
matches, based on a combination of approximate linear programming with optimization

heuristics. It could quickly clear an auction with 1,000 items and 10,000 bids, and its



average approximation error was less than 1%. Hu and Shi [2002] later refined Rothkopf’s
analysis, helping to improve optimal matching in combinatorial auctions.

Sandholm [1999] developed several efficient algorithms for one-seller combinatorial
auctions, and showed that they scaled to a market with about 1,000 bids. Sandholm
and his colleagues later improved the original algorithms and implemented a system that
processed several thousand bids [Sandholm, 2000a; Sandholm and Suri, 2000; Sandholm
et al., 2001a; Sandholm, 2002; Sandholm and Suri, 2003]. They developed a mechanism
for determining a trader’s preferences and converting them into a compact representation
of combinatorial bids [Conen and Sandholm, 2001]. They also described several special
cases of bid processing that allowed polynomial solutions, proved the NP-completeness of
more general cases, and tested various heuristics for NP-complete cases [Sandholm et al.,
2001b).

Sakurai et al. [2000] developed an algorithm for finding near-optimal matches in com-
binatorial auctions based on a synergy of iterative-deepening A* with limited-discrepancy
search. It processed auctions with up to 5,000 bids, and its approximation error was un-
der 5%. Hoos and Boutilier [2000] applied stochastic local search to finding near-optimal
matches; their system could clear auctions with 500 items and 10,000 bids. Akcoglu et
al. [2000] represented a combinatorial auction as a graph; its nodes were bids, and its edges
were conflicts between bids. This representation led to the development of a linear-time
approximation algorithm for clearing the auction.

Fujishima proposed an approach for enhancing standard auction rules, analyzed
trade-offs between optimality and running time, and presented two related algorithms [Fu-
jishima et al., 1999a; Fujishima et al., 1999b]. The first algorithm ensured optimal match-
ing and scaled to about 1,000 bids, whereas the second found near-optimal matches for a

market with 10,000 bids.



Leyton-Brown et al. [2000] investigated combinatorial auctions that allowed bid-
ders to specify a number of items; for instance, a buyer could bid on ten identical cars.
They described a branch-and-bound search algorithm for finding optimal matches, which
could quickly process markets with fifteen item types and 2,500 bids. They later an-
alyzed the empirical hardness of optimizing combinatorial auctions, which can lead to
more consistent combinatorial auction benchmarks, and improved combinatorial auction
algorithms [Leyton-Brown et al., 2002].

Tennenholtz [2002] developed polynomial-time algorithms for finding optimal matches
in several types of restricted combinatorial auctions.

Lehmann et al. [1999] investigated heuristic algorithms for combinatorial auctions
and identified cases that allowed truthful bidding, which meant that users did not bene-
fit from providing incorrect information about their intended maximal bids. Gonen and
Lehmann [2000, 2001] studied branch-and-bound heuristics for processing combinatorial
bids and integrated them with linear programming. Mu’alem and Nisan [2002] also inves-
tigated truthful-bidding combinatorial auctions, described conditions for ensuring truthful
bidding, and proposed approximation algorithms for clearing the auctions that satisfied
these conditions.

Xia et al. [2003] investigated multiple techniques of pricing bundles of goods and
market clearing, while ensuring the truthfulness of all bidders. They also studied various
methods of determining individual item prices, which is useful for evaluating combina-
torial auctions. They concluded that popular pricing mechanisms are too restrictive in
combinatorial auctions, and they fall short in guaranteeing truthful bids, which lowers
the optimality of the auction.

Yokoo et al. [2001a, 2001b] considered a problem of false-name bids, that is, manip-
ulation of prices by creating fictitious users and submitting bids without intention to buy;

they proposed auction rules that discouraged such bids. Suzuki and Yokoo [2002] studied



another security problem in combinatorial auctions; they investigated techniques for clear-
ing an auction without revealing the content of bids to the auctioneer. They described
a distributed dynamic-programming algorithm that found matches without revealing the
bids to the auction participants or to any central “auctioneer” system; however, its com-
plexity was exponential in the number of items.

Andersson et al. [2000] compared the main techniques for combinatorial auctions
and proposed an integer-programming representation that allowed richer bid semantics.
Wurman et al. [2001] analyzed a variety of previously developed auctions and identified
the main components of an automated auction, including bid semantics, clearing mech-
anisms, rules for placing and canceling bids, and policies for hiding information from
other users. They proposed a standardized format for describing the components of each
specific auction.

Researchers have also investigated the application of auction algorithms to nonfinan-
cial settings, such as scheduling problems [Wellman et al., 2001], management of resources
in wide-area networks [Chen et al., 2001], and co-ordination of services performed by dif-
ferent companies [Preist et al., 2001].

The reader may find a detailed survey of combinatorial auctions in the review article
by de Vries and Vohra [2001]. Although the developed systems can efficiently process
several thousand bids, their running time is super-linear in the number of bids, and they

do not scale to larger markets.

1.3.2 Advanced semantics

Several researchers have studied techniques for specifying the dependency of an item price
on the number and quality of items. They have also investigated techniques for processing
“flexible” bids, specified by hard and soft constraints. Moore et al. [1990] gave a decision-

theoretic approach to information retrieval, in which the best available record in a file is



retrieved based on user prefereces. The primary drawback of their method is that some
user preferences are not representable according to their restrictions. Cagno et al. [2001]
studied the probability of winning in competitive bidding with multi-attribute decision
making techniques. Uncertainty stemmed from the evaluation criteria of the seller and
the bidding profiles of the competing bidders. They described a technique that accounts
for this uncertainty and attempts to maximize the probability of a winning bid, based on
current knowledge of the seller and competitors.

Che [1993] analyzed auctions that allowed negotiating not only the price but also
the quality of a commodity. A bid in these auctions was a function that specified a desired
trade-off between price and quality. Cripps and Ireland [1994] considered a similar setting
and suggested several strategies for bidding on price and quality.

Sandholm and Suri [2001b] described a mechanism for imposing nonprice constraints
in combinatorial auctions, such as budget constraints and limit on the number of win-
ners; they showed that these constraints sometimes increased the auction complexity,
and sometimes reduced the complexity. They have also studied combinatorial auctions
that allowed bulk discounts [Sandholm and Suri, 2001a]; that is, they enabled a bidder
to specify a dependency between item price and order size. Lehmann et al. [2001] also
considered the dependency of price on order size, showed that the corresponding problem
of finding best matches was Np-hard, and developed a greedy approximation algorithm.

Bichler discussed a market that would allow negotiations on any attributes of a
commodity [Bichler and Kaukal, 1999; Bichler et al., 1999; Bichler, 2000al; for instance, a
car buyer could set a fixed price and negotiate the options and service plan. He analyzed
several alternative versions of this model, and concluded that it would greatly increase
the economic utility of auctions; however, he pointed out the difficulty of implementing

it and did not propose any computational solution.

10



Jones extended the semantics of combinatorial auctions and allowed buyers to use
complex constraints [Jones, 2000; Jones and Koehler, 2000; Jones and Koehler, 2002]; for
instance, a car buyer could bid on a vehicle that was less than three-years old, or on the
fastest available vehicle. They suggested an advanced semantics for these constraints,
which allowed compact description of complex bids; however, they did not allow com-
plex constraints in sell orders. They implemented an algorithm that found near-optimal
matches, but it scaled only to one thousand bids.

Tewari et al. [2003] devised a location-based brokering scheme allowing for geograph-
ically nearby bidders to gain preference over those bidding from afar. Their system was
useful for markets in which fast delivery is essential, such as restaurants and “impulse
shopping” from consumers.

Boutilier and Hoos [2001] developed a general propositional language for specifying
bids in combinatorial auctions, which allowed a compact representation of most bids. Co-
nen and Sandholm [2002] described a system that helped the participants of combinatorial
auctions to specify their bids; it elicited the preferences of an auction participant and used
them to define appropriate bids. Burmeister et al. [2002] designed a “package-oriented”
approach to bidding in multi-attribute auctions. A package consisted of a combination
of multiple attributes, which the buyer assigns a value to as a whole, rather than to
each attribute separately. However, in this approach the individual attribute evaluations
become transparent to the seller.

This initial work leaves many open problems, which include the use of complex
constraints with general preference functions, symmetric treatment of buy and sell orders,

and design of efficient matching algorithms for advanced semantics.

11



1.3.3 Exchanges

Economists have extensively studied traditional stock exchanges; for example, see the
historical review by Bernstein [1993] and the textbook by Hull [1999]. They have focused
on exchange dynamics and related mathematics, rather than on efficient algorithms [Cason
and Friedman, 1996; Cason and Friedman, 1999; Bapna et al., 2000]. Several computer
scientists have also studied trading dynamics and proposed algorithms for finding the
market equilibrium [Reiter and Simon, 1992; Cheng and Wellman, 1998; Andersson and
Ygge, 1998].

Successful on-line exchanges include electronic communication networks, such as
REDI (www.redibook.com) and Island (www.island.com). In addition to the securities
exchanges, exchanges for other goods and services have been developed. For instance,
GREENONLINE (www.greenonline.com) allows traders to exchange goods and services
within a variety of environmental markets. These environmental exchanges are specialized
auctions in which public, private, and non-profit buyers and sellers trade environmental
pollution credits, assets associated with regulatory offsets, and other goods and services.
Keever and Alcorn [2000] gives a brief overview of the evolution of GREENONLINE and
environmental exchanges.

Contreras et al. [2001] built a system to simulate the power exchange market of a
deregulated electric energy industry. Bidding proposals and interaction between supplier
and consumer was simulated. The system could be used to evaluate how the selection
of winning bids depends on the auction model used in the exchange. Richter and She-
ble [1998] developed a system composed of companies buying and selling power in a
regional exchange. Genetic algorithms encoded the bidding strategies used by traders,
and the bidding strategies adapted as the traders’ behavior changed. The system was
useful for evaluating whether or not a bidding strategy will be successful in a practical

electricity exchange; however, the system’s use in other markets has not been determined.
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The directors of large stock and commodity exchanges are also considering elec-
tronic means of trading. For example, the Chicago Mercantile Exchange has deployed the
Globex system, which supports trading around the clock. Weinhardt and Gomber [1999]
developed a prototype multi-agent system for automating single auctions within an off-
exchange bond market. The agents widened the search space of potential traders, accel-
erated the trading process, and helped reduce the need for intermediary brokers.

Some auction researchers have investigated the related theoretical issues; they have
viewed exchanges as a variety of auction markets, called continuous double auctions. In
particular, Wurman et al. [1998a] proposed a theory of exchange markets and imple-
mented a general-purpose system for auctions and exchanges, which processed traditional
fully specified orders. Sandholm and Suri [2000] developed an exchange for combinatorial
orders, but it could not support markets with more than 1,000 orders. Blum et al. [2002]
explored methods for improving liquidity of standardized exchanges. Kalagnanam et
al. [2000] investigated techniques for placing orders with complex constraints and identi-
fying matches between them. They developed network-flow algorithms for finding optimal
matches in simple cases, and showed that more complex cases were NP-complete. The
complexity of their algorithms was super-linear in the number of orders, and the resulting
system did not scale beyond a few thousand orders.

The related open problems include development of scalable systems for large com-

binatorial markets, as well as support for flexible orders with complex constraints.

1.3.4 General-purpose systems

Computer scientists have developed several systems for auctions and exchanges, which
vary from specialized markets to general-purpose tools for building new markets. The

reader may find a survey of most systems in the review articles by Guttman et al. [1998a,

1998b], Maes et al. [1999], and Huhns and Vidal [1999].
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Kumar and Feldman [1998] built an Internet-based system that supported several
standard auctions, including open-cry auctions, single-round sealed-bid auctions, and
multiple-round auctions. Chavez and his colleagues designed an on-line agent-based auc-
tion; they built intelligent agents that negotiated on behalf of buyers and sellers [Chavez
and Maes, 1996; Chavez et al., 1997]. Vetter and Pitsch [1999] constructed a more
flexible agent-based system that supported several types of auctions. Preist [1999a;
1999b] developed a similar distributed system for exchange markets. Bichler designed
an electronic brokerage service that helped buyers and sellers to find each other and to
negotiate through auction mechanisms [Bichler et al., 1998; Bichler and Kaukal, 1999;
Bichler and Segev, 1999]. Bichler later developed an advanced decision analysis engine
capable of incorporating many attributes into bid selection [Bichler et al., 2001]. The
system was able to make proper decisions with hundreds of bids, and only required the
user to initially rank a subset of the bids on desirability.

Benyoucef et al. [2001] considered a problem of simultaneous negotiations for in-
terdependent goods in multiple markets, and applied a workflow management system to
model the negotiation process. Their system helped a user to purchase a combinatorial
package of goods in noncombinatorial markets. Boyan et al. [2001] also built a system for
simultaneous bidding in multiple auctions; they applied beam search with simple heuris-
tics to the problem of buying complementary goods in different auctions. Babaioff and
Nisan [2001] studied the problem of integrating multiple auctions across a supply chain,
and proposed a mechanism for sharing information among such auctions. Piccinelli et
al. [2001] designed a distributed negotiation system allowing service providers to sub-
contract aspects of its service to other providers, and determine the price to pay each.
Service roles were negotiated within a reverse-combinatorial-auction, in which potential

subcontractors bid on combinations of service roles of the original service provider.
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Dumas et al. [2002] presented a formal model of negotiating agent behavior, consist-
ing of numerous modules and a knowledge base. The model helped in the development
of agents able to carry out simultaneous negotiations; however, communication between
agents was limited to simple messages, and it did not allow transmitting trading rules.

Wurman and Wellman built a general-purpose system, called the Michigan Inter-
net AuctionBot, that could run a variety of different auctions [Wellman, 1993; Wellman
and Wurman, 1998; Wurman et al., 1998b; Wurman and Wellman, 1999]; however, they
restricted the users to simple fully specified bids. Their system included scheduler and
auctioneer procedures, related databases, and advanced interfaces. Hu et al. [1999] cre-
ated agents for bidding in the Michigan AuctionBot; they used regression and learning
techniques to predict the behavior of other bidders. Later, Hu et al. [2000] designed three
types of agents and showed that their relative performance depended on the strategies of
other auction participants.

Rahwan et al. [2002] created trading agents that would each individually negotiate
with other traders, and a coordinating agent to direct any further action. In this sys-
tem, agents could be introduced or removed dynamically; however, the trading agents
had no knowledge of each other’s progress. Hu and Wellman [2001] developed an agent
that learned the behavior of its competitors and adjusted its strategy accordingly. Wur-
man [2001] considered a problem of building general-purpose agents that simultaneously
bid in multiple auctions.

Cliff [1998] designed agents that utilized genetic algorithms in order to optimize
their bidding strategies. The genetic algorithms automated the setting of a learning rate,
which was defined as the rate at which the system adjusts its output toward some target
output. He later showed that a genetic algorithm could also optimize the particular
market mechanism under which the trader agents operate [Cliff, 2002]. Sample market

mechanisms include the continuous double auction, Dutch auction, and English auction.
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The genetic algorithm was able to evolve traditional market mechanisms into new hybrid
mechanisms, which had no real-world representation; thus, they were only suited for
artificial traders.

Parkes built a fast system for combinatorial auctions, but it worked only for markets
with up to one hundred users [Parkes, 1999; Parkes and Ungar, 2000]. Sandholm created
a more powerful auction server, configurable for a variety of markets, and showed its
ability to process several thousand bids [Sandholm, 2000a; Sandholm, 2000b; Sandholm
and Suri, 2000].

Maamar [2002] investigated the abilities required for a software agent to perform ad-
equately in an auction setting. He found that agent-based e-commerce systems required
human interaction at multiple stages of the trading process, concluding that further re-
search is needed before fully automated e-commerce support becomes realistic.

All these systems have the same limitation as commercial on-line exchanges; they

require fully specified bids and do not support the use of constraints.

1.3.5 Industrial systems

Several companies have released software products useful in the e-commerce industry.
These systems can typically be used to provide e-Sourcing solutions for businesses around
the world. e-Sourcing refers to the process by which a company determines the optimal
distributor(s) from which to buy its supply of a needed commodity, with optimality
based on buyer preferences. The e-Sourcing process usually involves order planning,
RFQ generation, RF(Q evaluation, negotiation, settlement, and order execution. With
the creation and evaluation of an RFQ (Request-for-Quote) comes the need for a decision
support and auction system to determine which bid the buyer should purchase from. An

optimal sourcing mechanism will result in lower total acquisition costs for the buyer.
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I1BM Research has developed the Multidimensional Analysis Platform, or MAP, to
provide decision support for e-Sourcing. MAP consists of tools to elicit buyer preferences
for multi-attribute bid evaluation using decision analysis techniques, a bid evaluation
engine that determines the optimal set of bids a buyer should accept, and a visualization
tool to compare multiple bids across multiple attributes. In addition, the system may be
linked to an existing auction platform to carry out complex auctions for practical business
trading.

The Emptoris Sourcing Platform from Emptoris and the Profit Optimization Suite
from Rapt are e-Sourcing systems that provide commercial bid analysis via integer pro-
gramming and constraint programming. These products analyze bids from multiple sup-
pliers, and then select an optimal set of bids, based on user preferences. These products
are well-suited for simple objectives, such as minimizing the total cost for the buyer.
However, these systems do not handle the optimization of multiple attributes well, which
is vital in the trading of complex commodities. Moreover, these systems also do not
give users a thorough explanation of results, and they do not allow users to readily look
through the available bids themselves.

Another approach to bid-analysis may be found in Frictionless Commerce’s Enter-
prise Software and Perfect Commerce’s Perfect Application Suite. These systems carry
out complex decision making by decomposing complex decisions into smaller, simpler
pieces that can later be recombined into the larger aggregate decision. These systems
rely on the user to assign relative weights to different attribute values found in a poten-
tial bid. These weights may then be added to yield a numeric overall value for a bid.
The system then sorts the bids based on the their overall value and the user selects the
winning bids. The major drawback with this approach is that it relies heavily on the

appropriate setting of weights by the user, which is often hard to guarantee. The user

17



normally has little help in assigning relative weights, and will encounter difficulty when
the number of attributes grows into the dozens.

California Software Company, Ltd. released the eBiz Market Server software, which
includes engines for both auctions and exchanges. The eBiz Auction Engine supports
several popular auction types, such as Dutch, English, and Sealed Bid. The software can
be used to provide an auction platform for business trading. The eBiz Exchange Engine
provides an exchange architecture that allows for periodic clearing and continuous clearing
exchanges. The exchange can return to a trader the best matching orders in the system,
and traders can then commence negotiation and order execution. The eBiz Market Server
software also offers e-Sourcing solutions via its RFQ Engine. Businesses may investigate
potential suppliers based on specified criteria, and the system can determine the optimal
set of suppliers for the buyer.

TripleHop Technologies developed the ShopMatcher software, which uses artificial
intelligence methods to learn the buying behavior of a potential customer. ShopMatcher
learns a customer’s shopping patterns with repeated transactions with the consumer. It
then adapts itself to meet the demands of the consumer by making product recommen-
dations that are most apt to lead to a transaction. This enhances the trading experience
for both the buyer and seller, allowing the consumer to quickly find what she is looking
for, while increasing the seller’s chances of completing a transaction. For companies with

a large number of online customers, this technology could lead to increased revenue.

1.3.6 Contributions

The review of previous work has shown that techniques for trading complex commodi-
ties are still limited. Researchers have investigated several auction models, as well as
exchanges for standardized securities, but they have not applied the exchange model to

complex goods. The main open problems are (1) design of an automated exchange for
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complex securities, (2) analysis of related trading rules, and (3) development of a rig-
orous theory of complex exchanges. The work reported here is a step toward addressing
these problems.

A recent project at the University of South Florida has been aimed at developing
an electronic exchange for complex goods. Johnson [2001] has defined related trading
semantics and developed an exchange system that supports a market with 300,000 or-
ders. Hu [2002] has extended order semantics and developed indexing structures for fast
identification of matches between buy and sell orders. Gong [2002] has developed algo-
rithms for fast identification of most preferable matches, which maximize the satisfaction

of market participants.

1.3.7 Chapter summaries

Chapter 1: Introduction.

We give the primary motivation of this work and the current limitations found in modern
trading systems, such as electronic bulletin boards, auctions, and exchanges. We present
an example exchange that allows transactions involving multi-attribute goods between
a buyer and seller. We then review previous research in combinatorial auctions, seman-
tics, exchanges, general-purpose systems, and industry, while specifying the related open

problems.

Chapter 2: General exchange model.
We introduce a general model for trading complex goods, and formally define market
concepts including orders, buyers and sellers, market attributes, order execution, and

market fairness. We also describe additional components within the exchange system,

such as order flexibility, quality heuristics, and price averaging.
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Chapter 3: Order representation.

We specify an instance of the general exchange model in a used-car market, and thor-
oughly describe order semantics including item sets, price, quality, and size. We also
delineate user interaction and order manipulation, such as cancellation, modification, and

confirmation.

Chapter 4: Indexing structure.

We explain the high-level architecture of the exchange system, along with the data struc-
tures and algorithms used to maintain the matcher engine. We discuss and illustrate the
steps involved in matching a buy order to a sell order, and present typical order scenarios

that the exchange system may encounter.

Chapter 5: Search for matches.

We give algorithms for two search strategies of order matching, describe the constituent
data necessary to carry out the searches, and examine possible variations of these strate-
gies. In addition, we discuss the advantages and drawbacks of each search method, and

the inherent trade-offs between them.

Chapter 6: Performance.

We describe experiments with both artificial and real market data, and enumerate the
control variables and measured variables. We summarize the performance of the exchange
system in each data set, while comparing the performance of the different search methods

with one another.

Chapter 7: Concluding remarks.

We reexamine the motivation of this work and its contribution to pertinent research, and

discuss future challenges.
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Chapter 2

General Exchange Model

We describe a general model of trading complex commodities, using an example car
market. We formalize the concept of buy and sell orders, consider a trading environment
that allows hard and soft constraints in the order specification, and discuss methods for
representing combinations of purchases and sales. In Chapters 3 and 4, we present an

automated exchange supporting a limited version of this general model.

2.1 Orders

We begin by defining buy and sell orders, which include descriptions of commodities, price
and size specifications, and traders preferences among acceptable transactions. We then

state conditions of a match between a buy order and sell order.

2.1.1 Buyers and sellers

When a buyer looks for a certain item, she usually has some flexibility; that is, she is
willing to buy any of several acceptable items. For example, suppose that a buyer is
looking for a sports car; then, she may be willing to buy one of several models, such as
a Corvette, Camaro, or Viper. For each of these models, the buyer has to determine the
maximal acceptable price. In addition, a buyer usually has preferences among acceptable
items; for instance, the buyer may prefer Corvettes to other models, and she may prefer
black cars to red ones. The preferences may depend on the price, features, or other

factors, such as service quality or delivery date.
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Similarly, when a dealer sells a vehicle she has to decide on a minimal acceptable
price. For instance, a seller may be selling a Camaro for no less than $15,000 and a
Corvette for no less than $20,000. If the seller offers multiple items, she may prefer some
sales to others. For example, a seller may prefer to sell the Corvette for $20,000, rather
than the Camaro for $15,000. If the buyer came to the seller to purchase a sports car,
then the seller would try to sell the Corvette before offering the Camaro.

If a buyer’s constraints match a seller’s constraints, then they may trade; that is,
the buyer may purchase an item from the seller. If a buyer finds several acceptable items,
possibly provided by different sellers, she will buy the best available item, where the
notion of “best” depends on her subjective preferences. Likewise, a seller may be able to
choose the most attractive deal among several offers.

We use the term buy order to refer to a buyer’s set of constraints, particularly
requirements and preferences. For example, a buyer’s wish to purchase a sports car can
be expressed as an order for a sports car, and her price limits and preferences will be
a part of this order. When a buyer announces her desire to trade, we say that she has
placed an order.

Similarly, a sell order is a seller’s set of constraints, defining the offered merchandise.
For example, a seller may place an order to sell a Camaro or Corvette, and her order may
also include price limits and preferences. If a buy and sell order match, they may result

in a trade between the corresponding parties.

2.1.2 Definition of an order

A specific market includes a certain set of items that can potentially be bought and sold;
we denote it by M, which stands for market set. This set may be very large or even
infinite; in the car market, it includes all vehicles that have ever been made, as well as

the cars that can be made in the future. The choice of a market set limits the objects
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that may be traded, but it does not guarantee that all of the objects will be trade. For
instance, if we restrict M to cars, the market will not allow trading of bicycles or golf
carts. On the other hand, if the market includes an item such as a Star Wars pod racer,
it may never be traded.

When a customer makes a purchase or sale, she needs to specify a set of acceptable
items, denoted I, which stands for item set; it must be a subset of M, that is, I C M.
For example, if a buyer shops for a brand-new sports car, then her set [ includes all new
sports vehicles.

In addition, a customer should specify a limit on the acceptable price, which may
depend on specific items in I. For instance, a buyer may be willing to pay $17,000 for a red
Mustang, but only $16,000 for a black Mustang, and even less for a Camaro. Formally,
a price limit is a real-valued function defined on the set I, whose values are nonnegative;
for each item ¢ € I, it defines a certain limit, Price(i). If a customer is buying an item,
then Price(7) is the maximal acceptable price. For a seller, on the other hand, it is the
minimal acceptable price. To summarize, a buy or sell order must include two elements

(see Figure 2.1a):
e a set of items, I C M, and

e a price function, Price: I — R,

where R is the set of nonnegative real-valued prices.

The prices in consumer markets are usually in dollars or other currencies; however,
traders in some specialized markets may use different price measures. For example, mort-
gage brokers often view the interest rate as the price of a mortgage. The properties of
such price measures may differ from those of dollar prices. In particular, the price may
not be additive; for instance, if a customer takes a 8% loan and a 6% loan, the overall

interest is not 14%.
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Figure 2.1: An example of a buy order (a) and a match (b). The horizontal plane
represents the market set M, and the vertical axis is price R. The buyer is interested
in a certain set I, of cars, with different price limits; in particular, she would buy a red
Mustang for $20,000. Her order matches the sell order shown on the right.

We allow such price measures and do not require the use of dollar prices. The only
requirement is that a price increase always benefits a seller, and a price decrease always
benefits a buyer. In other words, the buyer is interested in finding the lowest available
price for a given item, whereas the seller tries to get the maximum possible price. For
instance, bank customers look for low-interest loans, whereas bankers try to get high
interests.

We say that a buy order matches a sell order if the buyer’s constraints are consistent
with the seller’s constraints, thus allowing a mutually acceptable trade (Figure 2.1b). For

example, if a buyer is willing to pay $20,000 for a red Corvette, and a seller is ready to

sell a red Corvette for $19,000, then their orders match.
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Formally, let (I, Pricey) be a buy order and (I, Prices) be a sell order. These orders

match if some item 7 satisfies both buyer and seller, at a mutually acceptable price:

there exists i € I, N I, such that Price,(i) > Prices(i).

2.1.3 Quality function

Buyers and sellers may have preferences among acceptable trades, which depend on a
specific item ¢ and its price p. For instance, a buyer may prefer a red Mustang for $20,000
to a black Corvette for $22,000.

We define these preferences as a real-valued function Qual(i,p), which assigns a
numeric quality to each pair. The larger values correspond to “better” items; that is, if
Qual(ii, p1) > Qual(ia, p2), then a customer would rather pay p; for i; than py for i5. For

example, a buyer’s quality function would satisfy the following inequality:

Qual(red-Mustang, $25,000) > Qual(black-Chevrolet, $20,000).

Each customer may use her own quality function; furthermore, she may specify
different functions for different orders. Note that we define quality as a totally ordered
function, which is a simplification. In real life, customers sometimes reason in terms of
partially ordered functions. For instance, a buyer may believe that a $25,000 Mustang is
better than a $20,000 Corvette, but she may be undecided between a $25,000 Mustang
and an $18,000 Corvette.

Also note that buyers prefer lower prices, whereas sellers try to get as much money

as possible, which means that all quality functions must be monotonic on price.

e Buy monotonicity: If Qualy, is a quality function for a buy order, and p; < po, then,

for every item i, Qual,(i,p1) > Qualy (i, p2).
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o Sell monotonicity: If Qual, is a quality function for a sell order, and p; < po, then,

for every item i, Qual,(i,p1) < Qual,(i,po).

We do not require a user to specify a quality function for each order; by default,
quality is defined through price. This default quality is a function of a transaction price
and its difference from the users price limit. For example, buying a Toyota Echo for
$11,000 is better than buying it for $12,000; as another example, if a user has specified a
$12,000 price limit for an Echo and a $19,000 limit for a Mustang, then buying a Mustang
for $11,000 is better than buying an Echo for $11,000.

To formalize this rule, we denote the users price function by Price, and the price of
an actual purchase or sale of an item 7 by p. The default quality function must satisfy

the following conditions for every item ¢ and price p:
e For buy orders: If Price; (i) < Pricey(i), then Qual,(i,p) < Qualy(i,p).
e For sell orders: If Price;(i) < Prices(i), then Qual,(i,p) > Qualy(i, p).

Naturally, the larger the gap between the price limit and actual price, the better the deal;
that is, the more the user saves, the more she likes the transaction. Note that if the price
limit is a constant then the quality is simply based on prices, that is, a cheaper match is
better for a buyer, and a more expensive match is preferable for a seller.

We have considered two default functions, and a user can choose either of them.

The first function is the difference between the price limit and actual price:
e For buy orders: Qualy(i,p) = Price(i) — p.
e For sell orders: Qual,(i,p) = p — Price(i).

This default is typical for financial and wholesale markets; intuitively, the quality of a
transaction depends on a users savings. For example, suppose that a car dealer wants to

purchase either ten Mustangs for $19,000 each or ten Echoes for $12,000 each. Suppose
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further that she finds Mustangs for $17,500 and Echoes for $11,000. If she buys Mustangs,
she saves ($19,000 — $17,500) - 10 = $15,000. On the other hand, if she acquires Echoes,
her savings are only ($12,000 — $11,000) - 10 = $10,000. Thus, the first transaction is
more attractive.

The other default function is the ratio of the price difference to the price limit:

e For buy orders: Qualy(i,p) = “til
e For sell orders: Qual,(i,p) = I%W

This default is traditional for consumer markets; it shows a users percentage savings.

For instance, if a customer is willing to pay $19,000 for a Mustang, and she gets an

$19,000 — $17,500 _
$19,000 = 0.08.

If she is also willing to pay $12,000 for an Echo and finds that it is available for $11,000,

opportunity to buy it for $17,500, then the transaction quality is

the quality of buying it is W = 0.09, which is preferable to the Mustang.

2.1.4 Order sizes

If a user wants to buy or sell several identical items, she may include their number in
the order specification; for example, a buyer can place an order to buy two sports cars,
and a seller can announce a sale of one thousand Corvettes. We assume that the order
size is a natural number, that is, the market participants buy and sell whole items.
This assumption is somewhat restrictive, since it enforces discretization of continuous
commodities, such as copper or orange juice.

The user may specify not only the overall order size, but also the minimal acceptable
size. For instance, suppose that a wholesale agent for Chevrolet needs to sell one thousand
cars. Furthermore, she has no time for individual sales, and works with dealerships that
are buying at least ten cars at once. She may then specify that the overall size of her sell

order is one thousand, and the minimal acceptable size is ten. If the minimal size equals
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the overall size, we say that the order is all-or-none. For example, the agent may offer
ten cars and specify that her minimal size is also ten; then, she will sell either nothing or
ten cars at once.

In addition, the user can indicate that a transaction size must be divisible by a
certain number, called a size step. For example, stock traders often buy and sell stocks in
blocks of hundred. As another example, a wholesale agent may specify that she is selling
cars in blocks of twenty; in this case, she would be willing to sell twenty or forty cars, but
not thirty.

To summarize, an order may include six elements:

Item set, [

Price function, Price: [ - R

Quality function, Qual: I x R = R

Order size, Maz

Minimal acceptable size, Min

Size step, Step

The item set, price limit, and size specification are hard constraints that determine
whether a buy order matches a sell order, whereas the quality function serves as both
hard and soft constraints. Rejection of a negative quality is a hard constraint, whereas
choice of large values among positive-quality transactions is a soft constraint.

To define the matching conditions, we denote the item set of a buy order by
Iy, its price function by Price,, its quality function by Qual,, and its size parame-
ters by Mazy, Min,, and Step,. Similarly, we denote the parameters of a sell order by
Iy, Prices, Qual,, Mazxs, Mins, and Step,. The two orders match if they satisfy the follow-
ing constraints.
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SR Sall: SHl:
10 Echoes, 10 Echoes, 10 Echoes,
$12,000 at least 2, at least 5,
$11,500 $11,000

Figure 2.2: Example of a bulk discount. If a dealer is offering a lower price for bulk
purchases, she has to place several orders with different prices and minimal sizes.

e There is an item ¢ € I, N I, such that Prices(i) < Pricey(q).
e There is a price p, such that

e Prices(i) < p < Pricey(i), and

e Qualy(i,p) > 0 and Qual,(i,p) >0
e There is a mutually acceptable size value size, such that

o Miny < size < Maz,,
o Ming; < size < Maxg, and

e size is divisible by Step, and Step,

The price and quality functions in this model do not depend on a transaction size,
which is a simplification, because sellers sometimes offer discounts for bulk orders. For
example, a car dealer may give a discount to a customer who purchases two cars at once,
and an even larger discount to a buyer of five cars. In such cases, a seller can place several
orders with different price limits and minimal sizes, as illustrated in Figure 2.2. If a seller
wants to complete only one of these orders, she can use the disjunctive-order mechanism

described in Section 2.3.1.

2.1.5 Market attributes

The set M of all possible items may be very large, which means that we cannot explicitly

represent all items. For example, we probably cannot make a catalog of all feasible cars,
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since it would include a separate entry for each possible combination of models, colors,
features, and other attributes that describe a specific vehicle. To avoid this problem,
we define a set M by a list of attributes and possible values of each attribute. As a
simplified example, we may define a used car by four attributes: Model, Color, Year, and
Mileage. Then, a user describes a specific car by substituting values for these attributes;
for example, a seller may offer a red Mustang, made in 1998, with 30,000 miles.
Formally, every attribute is a set of values; for instance, the Model set may include
all car models, Color may include all visible wavelengths, Year may include the integer
values from 1896 to 2001, and Mileage may include real values from 0 to 500,000. The
market set M is a Cartesian product of these attribute sets; in this example, M = Model x
Color x Year x Mileage. If the market includes n attributes, then each item is an n-tuple;
in the car example, it is a quadruple that specifies the model, color, year, and mileage.
The Cartesian-product representation is a simplification, based on the assumption
that all items in the market have the same attributes. Some markets do not satisfy this
assumption; for example, if we trade chariots and Star Wars pod-racers on the same
market, we may need two different sets of attributes. We further limit the model by

assuming that every attribute set has one of three types:
e A set of explicitly listed values, such as car models
e An interval of integer numbers, such as year

e An interval of real values, such as mileage

The value of a commodity may monotonically depend on some of its attributes. For
example, the quality of a car decreases with an increase in mileage. If a customer is willing
to buy a certain car with 20,000 miles, she will agree to accept an identical vehicle with
10,000 miles for the same price. That is, a buyer will always accept smaller mileage if it

does not affect other aspects of the transaction.
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When a market attribute has this property, we say that it is monotonically decreas-
ing. To formalize this concept, suppose that a market has n attributes, and we consider
the kth attribute. We denote attribute values of a given item by 41,...,%,...,%,, and
a transaction price by p. The kth attribute is monotonically decreasing if all price and

quality functions satisfy the following constraints:

e Price monotonicity: If Price is a price function for a buy or sell order, and i, < i,
then, for every two items (i1, ..., %_1, %k, ikt1, - - - ,%n) and

(15 ey Bh—1s Ty Tkt 1y - - -5 i), We have Price(iv, ... ik, ..., 0,) > Price(iy, ..., 0, .., 0)-

e Buy monotonicity: If Qual, is a quality function for a buy order, and i) < i}, then,
for every two items (i1,...,05—1, %k tht1s---s0n) ADA (1, .y Gp—1, 0, Tht1y - - -y 0n),s

and every price p, we have Qual,(i1,..., %k, ..., in,p) > Qual (i, ..., i, .., 0, D).

o Sell monotonicity: If Qual, is a quality function for a sell order, and i < 4}, then, for
every two items (i1, ..., 0k—1, 0k, bttty ---0n) ANA (G1, .oy Gk—1, 0, Tpt1y- -, 0n), and

every price p, we have Qual,(i1,... 0k, ...,0n,p) < Qual(iy,..., 0, .., 0, D).

Similarly, if the quality of commodities grows with an increase in an attribute value,
we say that the attribute is monotonically increasing. For example, the quality of a car
increases with the year of making.

Note that monotonic attributes are numeric, and we cannot apply this notion to an
unordered set of values, such as car models. Also note that we do not consider partially
ordered attribute sets, which is a simplification, because some attributes may be “partially

»

monotonic.” For example, Camry LX (a deluxe model) is definitely better than Camry
CE (a basic model), whereas the choice between Camry CE and Sienna CE depends on
a specific customer. In addition, observe that a monotonic attribute is a generalization

of price, that is, it may be subject for negotiation, with the other attributes fixed. For

example, the shipping service may negotiate a delivery date.
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Theoretically, we can view the price as one of the monotonic attributes; however,

its use in the implemented system is different from the other attributes.

2.2 Order execution

We introduce the notion of a fill, which is a specific transaction between buyers and
sellers. We first consider a trade between one buyer and one seller, and then define fills
for transactions that involve multiple buyers and sellers. We use this notion to define

conditions of an acceptable multi-order transaction.

2.2.1 Fills

When a buy order matches a sell order, the corresponding parties can complete a trade,
which involves the delivery of appropriate items to the buyer for an appropriate price. We
use the term fill to refer to the traded items and their price. For example, suppose that
a buyer has placed an order for two sports cars, and a seller is selling three red Mustangs.
If the prices of these orders match, the buyer may purchase two red Mustangs from the
seller; in this case, we say that two red Mustangs is a fill for her order. Formally, a fill
consists of three parts: a specific item i, its price p, and the number of purchased items,
denoted size.

If (L, Pricey, Qual,, Max,, Min,, Step,) is a buy order, and (I, Prices, Qual,, Maz,,
Ming, Step,) is a matching sell order, then a fill (i, p, size) must satisfy the following
conditions:

e € I, N I

o Prices(i) < p < Pricey(i)

Qualy(i,p) > 0 and Qualy(i,p) > 0

e max(Min,, Mins) < size < min(Mazy, Mazx,)

size is divisible by Step, and Step,
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Note that a fill consists of a specific item, price, and size; unlike an order, it cannot
include a set of items or a range of sizes. Furthermore, all items in a fill have the same
price; for instance, a fill (red-Mustang, $18,000, 2) means that a buyer has purchased two
red Mustangs for $18,000 each. If she had bought these cars for different prices, we would
represent them as two different fills for the same order.

If both buyer and seller specify a set of items, the resulting fill can contain any item
1 € I, N I,. Similarly, we may have some freedom in selecting the price and size of the

fill; the heuristics for making these choices depend on a specific implementation.

e [tem choice: If I, N I, includes several items, we may choose an item to maximize
either the buyers quality or the sellers quality. A more complex heuristic may search

for an item that maximizes the overall satisfaction of the buyer and seller.

e Price choice: The default strategy is to split the price difference between a buyer

Pricey(d) < Prices@)  Another standard option is to

and seller, which means that p =
favor either the buyer or the seller; that is, we may always use p = Pricey(i) or,

alternatively, we may always use p = Price,(i).

e Size choice: We assume that buyers and sellers are interested in trading at the
maximal size, or as close to the maximum as possible; thus, the fill has the largest

possible size. This default is the same as in financial markets.

In Figure 2.3, we give an algorithm that finds the maximal fill size for two matching
orders. The GcD function determines the greatest common divisor of Step, and Step,

using Euclid’s algorithm. The main procedure finds the least common multiple of Step,

Stepyp - Steps

Gon(Stepn, Steps)” Then, it computes the greatest

and Step,, denoted step, which equals
size, divisible by step, that is between max(Min,, Ming) and min(Maz,, Mazs). If no fill
size satisfies these constraints, the algorithm returns zero, which means that the size

specification of the buy order does not match that of the sell order.
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FILL-PRICE( Pricey, Prices, 1)
The algorithm inputs the price functions of a buy and sell order, and an item 7 that matches both
orders.

Pricep(i)+Prices(3) .
2

7

If Pricey(i) > Prices (i), then return
else, return NONE (no acceptable price)

FILL-SIZE( Mazy, Miny, Stepy; Mazg, Ming, Step,)
The algorithm inputs the size specification of a buy order, Maz,, Miny, andStepy,
and the size specification of a matching sell order, Maz, Min,, and Step,.

Find the least common multiple of Step, and Step,:

Stepy, - Steps
GeD(Stepy,Steps)

Find the maximal acceptable size, divisible by step:

step =

min(Mazy,Mazs) J
step

Verify that it is not smaller than the minimal acceptable sizes:
If size > Min, and size > Ming, then return size
Else, return 0 (no acceptable size)

size = |

GCD(Stepy, Step,)
small = min(Stepy, Step,)
large = max(Step,, Step,)
Repeat while small # 0:
rem = large mod small
large = small
small = rem
Return large

Figure 2.3: Computing the price (FILL-PRICE) and size (FILL-SIZE) of a fill for two match-
ing orders.

After getting a fill, the trader may keep the initial order, reduce its size, or remove
the order; the default option is the size reduction. For example, if a seller has ordered
a sale of three cars and gotten a two-car fill, the size of her order becomes one. If the
reduced size is zero, we remove the order from the market. If the size remains positive
but drops below the minimal acceptable size Min, the order is also removed. The process
of generating a fill and then reducing the buy and sell order is called the execution of

these orders. In Figure 2.4, we illustrate four different scenarios of order execution.
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Buy: Sll: Buy: Sl: Buy: 4S§Ia|r:s
3cars 3cars 1 car 3cars 3cars ||atleast 2

@

removed removed reduced removed removed removed
Buy: (the reduced size
1 car is smaller than
the minimal size)
Figure 2.4: Examples of order execution.
Sl Buy: Sl Sl Buy: Sl
2 Echoes, || 6 Echoes, || 2 Echoes, 1 Echo, || 6Echoes, || 3 Echoes,
$11,000 || Aleast3 11 ¢4 909 $11,000 || 2 || $11,000
’ $11,000 ' ’ $11,000 '
Fill: Fill: Fill: Fill:
2 Echoes, || 2 Echoes, 1 Echoes, || 3 Echoes,
$11,000 $11,000 $11,000 $11,000

(b)

Figure 2.5: Examples of multi-order transactions.

2.2.2 Multi-fills

If a user specifies a minimal order size, she may indicate that she will accept a trade
with multiple matching orders if their total size is no smaller than her minimal size.
For example, the buy order in Figure 2.5(a) does not match either of the sell orders;
however, if the user allows trades with multiple matching orders, we can generate the
transaction shown in Figure 2.5(a). If the user specifies the size step, then the total size
of a multi-order transaction must be divisible by this step (Figure 2.5b).
To formalize this concept, suppose that a buyer has placed an order
(Iy, Pricey, Qual,, Mazy,, Min,, Step,), and she is willing to trade with multiple sell orders.

Suppose further that sellers have placed k orders, denoted as follows:
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(11, Price;, Qual,, Maz,, Min,, Step,)

(I, Pricey, Qualy, Mazy, Miny, Step,)

(I, Priceg, Qual,, Maxy,, Miny, Step,,)

Then, the buy order matches these k sell orders if they satisfy the following conditions.

e For every j € [l...k], there is an item ¢; € I, N I;, such that

Pricej( i;) < Pricey( i;)
e For every j € [l...k], there is a price p;, such that

o Pricej( i;) < pj < Pricey( i})

o Qualy( ij, p;) >0 and Qual;( i;, p;) >0

e There are acceptable sizes, size;, sizes, ..., size, such that

For every j € [1...k|, Min; < size; < Maz,

For every j € [1...k|], size; is divisible by Step,

Miny, < size; + sizeg + ... + size, < Maxy

size; + sizes + ... + sizey is divisible by Step,

Similarly, we can define a match between a sell order and multiple buy orders. In
addition, we can allow transactions that involve multiple buy orders and multiple sell
orders, as shown in Figure 2.6. We will define the conditions for such transactions in
Section 2.2.3.

We refer to the result of a multi-order transaction as a multi-fill, which is a set of
several fills for a given order. Since a multi-fill can include both purchases and sales, we
denote the purchase sizes by positive integers, and the sale sizes by negative integers. For

instance, the orders in Figure 2.6 get the following multi-fills:

36



Buy: Sl Buy: Sl
1 Echo 2 Echoes, || 3 Echoes, || 2 Echoes,
$1100(’) atleast 2, || atleast 3, || atleast 2,
' $11,000 $11,000 $11,000

IR R R N A
Fill: Fill: Fill:
1 Echo, 1 Echo, 2 Echoes,
$11,000 $11,000 $11,000

Figure 2.6: Example of a transaction that involves multiple buy and sell orders.

e Buy,: (Echo, $11,000, 1)

Selly: (Echo, $11,000, —1), (Echo, $11,000, —1)

Buys,: (Echo, $11,000, 1), (Echo, $11,000, 2)

Selly: (Echo, $11,000, —2)

As another example, the multi-fill (Camry, $20,000, 1), (Echo, $11,000, —2) means that a
trader has bought a Camry for $20,000 and sold two Echoes for $11,000 each.

We say that two multi-fills have the same item set if they include the same com-
modities, not necessarily at the same price. For example, the multi-fill (Echo, $11,000,
1), (Echo, $12,000, 1) has the same item set as (Echo, $11,000, 2); in this example, both
multi-fills represent the purchase of two Echoes. As another example, (Camry, $20,000,
2), (Echo, $11,000, 1), (Echo, $12,000, —2) includes the same item set as (Camry, $20,000,
3), (Camry, $21,000, —1), (Echo, $11,000, —1); both multi-fills represent a purchase of two
Camries and sale of an Echo. Finally, we define the empty multi-fill, denoted 0, as the

empty set of fills.

2.2.3 Equivalence of multi-fills

We next observe that different multi-fills may be equivalent from a traders point of view.
For instance, buying two Echoes for $10,000 each and immediately selling one of them for
the same price is equivalent to buying one car; that is, the multi-fill (Echo, $10,000, 2),

(Echo, $10,000, —1) is equivalent to (Echo, $10,000, 1). As another example, if two fills
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include the same set of items and the same total price, most traders would consider them
identical; thus, (Echo, $10,000, 1), (Tercel, $12,000, 1) is equivalent to (Echo, $11,000, 1),
(Tercel, $11,000, 1). If a multi-fill M-Fill; is equivalent to M-Filly, we write “M-Fill; =
M-Fill,.”

An exact definition of equivalence may vary across markets. For example, if the
price is in dollars, buying two identical items for prices p; and po is equivalent to buying
each item for ’% . On the other hand, if we consider the sale of mortgages and view
the interest rate as a price, this averaging rule may not work because of nonlinear growth
of compound interests.

To formalize the concept of equivalence, we first define the union of multi-fills, which
is the set of all transactions contained in these multi-fills. For example, the union of (Echo,
$10,000, 1) and (Echo, $10,000, 1), (Tercel, $12,000, 1) is a three-element multi-fill (Echo,
$10,000, 1), (Echo, $10,000, 1), (Tercel, $12,000, 1). This definition is different from
the standard union of sets since a multi-fill may include multiple identical elements. We
denote the multi-fill union by “+” to distinguish it from the set union:

(111, p1y, sizelq), ..., (i1, D1y, Sizely,) + (121, p21, Si2€21), . . ., (12, P2k, Size2y)
= (i1y, p1y, sizely), ..., (ily, Pln, Sizely,), (121, P21, Siz€21), . . ., (12k, P2, Size2y).

A multi-fill equivalence is defined for a specific market, and it may be different for
different markets. Formally, it is a relation between multi-fills that satisfies the following

properties:
e Standard properties of equivalence:
e M-Fill = M-Fill (reflexivity)
o If M-Filly = M-Filly, then M-Fill, = M-Fill; (symmetry).

o If M-Filly = M-Fill, and M-Fill, = M-Fills, then

M-Fill, = M-Filly (transitivity).
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e A transaction that involves zero items is equivalent to the empty multi-fill:

(4,p,0) =0

e Buying or selling identical items separately, at the same price, is equivalent to buying
or selling them together:

(1, p, sizey), (i, p, sizeg) = (1, p, size; + sizey).

e The union operation preserves the equivalence:

If M-Filly, = M-Filly, then M-Filly + M-Filly = M-Fill, + M-Fills.

These conditions are the required properties of the multi-fill equivalence in all mar-
kets; in a specific market, the equivalence may have additional properties. For exam-
ple, (i,p, 1), (i,p, 1) is always equivalent to (7, p,2). On the other hand, (i, p;,1), (¢, pe, 1)
may be equivalent to (i, 22, 2) in some markets, such as car trading, but not in other
markets, such as mortgage sales.

We use the concept of equivalence to define conditions for a multi-order transaction,

such as the trade in Figure 2.6. Specifically, we can execute a transaction that involves k
orders, denoted Ordery, Orders, ..., Ordery, if there exist multi-fills M-Filly, M-Filly, . . ., M-Filly,

such that
e For every j € [l...k], M-Fill; matches Order;
o M-Filly + M-Filb + ...+ M-Fill, =0
For example, we can select the following multi-fills for orders in Figure 2.6:
e (Echo, $11,000, 1) matches Buy,
e (Echo, $11,000, —1), (Echo, $11,000, —1) matches Sell,

e (Echo, $11,000, 1), (Echo, $11,000, 2) matches Buys item (Echo, $11,000, —2)

matches Selly
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) Buy: )

Sall: 2 Echoes, i
1 Echo, o least 2 1 Echo,
$10,000 $11,000 $12,000

Fill:

1 Echo,
$10,000

Figure 2.7: Example of price averaging.
The union of these multi-fills is equivalent to the empty multi-fill:

(Echo, $11,000, 1) + (Echo, $11,000, —1), (Echo, $11,000, —1)

+ (Echo, $11,000, 1), (Echo, $11,000, 2) + (Echo, $11,000, —2) = 0.

2.2.4 Price averaging

A trader may sometimes accept a multi-fill even if it does not satisfy the conditions of a
multi-fill. For example, consider the transaction in Figure 2.7. The price of the second
fill does not match the buy order, but the overall price of the two fills is acceptable.
The buyer pays $22,000 for two cars; thus, their average price matches the buyers price
limit. When placing an order, the trader has to specify whether she will accept such price
averaging.

Since the price may not be in dollars, we cannot directly compute the total price of
a multi-fill. For example, if the price of a mortgage is the interest rate, the overall interest
of a multi-fill is not the sum of its elements rates. To allow price averaging, we define a
payment for a multi-fill. Intuitively, it represents a dollar amount delivered by a buyer or
received by a seller, and the units of payment may differ from price units. For example,
when a homebuyer negotiates a mortgage, she may use interest as a price measure; after
receiving the mortgage, she will repay it in dollars. Formally, a payment is a real-valued

function Pay on multi-fills that has the following properties:
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e If a trader does not buy or sell any items, the payment is zero:

Pay(0) = 0.

e The payment is proportional to the number of items:

Pay((i, p, size)) = size - Pay((i,p,1)).

e The payment for multiple fills equals the sum of respective payments:

Pay((i1, p1, sizer), - - -, (ix, Dk, Sizex))

= Pay((i1, p1, size1)) + . .. + Pay((ig, pr, sizer)).

e Equivalent multi-fills incur the same payment:

It M-Fill, = M-Filly, then Pay(M-Fill,) = Pay(M-Fill,).

e A buyers payment is monotonically increasing on price:

If b1 S D2, then Pa'y((iapla 1)) S Pa'y((iap% 1))

Since a payment is monotonic on price, both buyers and sellers want to reduce their
payments. For buyers, this reduction means paying less money; for sellers, it means
getting more money, which is represented by a smaller negative value. For example, a car
seller would rather get the —$12,000 payment than the —$11,000 payment, which means
that she prefers selling her vehicle for $12,000 rather than for $11,000. A buyer’s payment
may be negative, which means that a seller pays the buyer for accepting an undesirable
item. For example, if the seller wants to dispose of a broken car, she may pay $100 for
pulling it away; in this case, the buyers payment is —$100.

Note that a payment depends not only on price but also on specific items; that is,
Pay((i1,p, 1)) may be different from Pay((is, p,1)). For example, the payment for a 6%
fifteen-year mortgage is different from the payment for a 6% thirty-year mortgage. Also
note that the total payment of all transaction participants is zero. For example, consider

the trade in Figure 2.7. The buyer’s payment is $22,000, the first selle’rs payment is

41



—$10,000, and the second seller’s payment is —$12,000; thus, the overall payment is
$22,000 - $10,000 - $12,000 = 0.
We can decompose the payment for a multi-fill into the payments for its elements:

Pay((i1, p1, sizer), ... , (i, Pk, Sizey)) = sizey-Pay((i1, p1,1))+ ... +sizex-Pay((ix, px, 1))-
To simplify this notation, we will usually write Pay(i, p) instead of Pay((i,p,1)).
A user can also define a quality function for multi-fills. Formally, it is a real-valued

function Qual, on multi-fills that satisfies the following constraints:

e If the user does not trade any items, the quality is zero:

Qual,,(0) = 0.
e The quality function is consistent with the quality of simple fills:

o If size > 0, then Qual,,((7,p, size)) = Qualy(i,p).

o If size < 0, then Qual,((7,p, size)) = Qualy(i,p).

e Equivalent fills have the same quality:

If M-Fill; = M-Filly, then Qual,,(M-Filly) = Qual,,(M-Fill).

e The multi-fill union preserves relative quality of multi-fills:
If Qual,,(M-Filly) < Qual,,(M-Fill), then
Qual,,(M-Fill, + M-Filly) < Qual,,(M-Fill, + M-Filly).

Recall that the quality of simple fills is monotonic on price (Section 2.1.3), which implies

that the multi-fill quality is also monotonic on price:
o If size > 0 and p; < po, then Qual,((7, p1, size)) > Qual,,((i, p2, size)).

o If size < 0 and p; < po, then Qual,((7, p1, size)) > Qual,,((i, p2, size)).
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If the user does not provide a multi-fill quality function, we define it as the weighted
mean quality of a multi-fills elements. If the multi-fill includes purchases
(i1, p1, sizer), ..., (ij,pj, size;) and sales (i1, Pjt1, —Siz€j41), - - -, (ik, Pk, —Sizeg), the de-
fault quality is:

Qual,((11,p1, sizer), . .., (i, 0, s12€;), (141, Pjs1, —S12€j41), - - -, (3, Pk, —Size))

_ sizer - Qualy(i1,p1) + ... + size; - Qualy(i;,p;) + sizejy1 + Quals(ijy1,pj41) + ... + sizeg - Quals(ig,Pr)
- sizer + ... + size; + sizej11 + ... + sizeg

Now suppose that a trader has placed an order (I, Price, Qual,,, Maz, Min, Step),
and that she accepts price averaging. Then, a multi-fill (i1, p1, size), - . ., (ix, Pk, Sizey) is
acceptable if it satisfies the following conditions.

® iy,....0 € 1

size; - Pay(iv,p1) + ... + sizey, - Pay(ig, px)

< size; - Pay(iy, Price(i1)) + ... + sizey, - Pay(iy, Price(iy))

Qual,,((i1, p1, sizer), . . ., (ig, Pk, Sizex)) > 0

o Min < size; + ...+ sizer, < Maz

size; + ... + sizeg is divisible by Step

2.2.5 Fair trading

Fairness rules are based on the standards of the financial industry: the users must get the
best available price for a given quality, the best price must be selected among competing
orders, and the system must prefer earlier orders when the price is equal.
Formally, fair trading must satisfy the following constraints:
e When an order gets a fill, there is no better fill on the market, according to the
order’s preference function.
e When an order gets a fill, there is no equally good fill on the market with an older

order.
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Note that these conditions do not guarantee optimization; for example, the maxi-
mum surplus, which is defined as the difference between the respective buyer and seller
price limits, is not guaranteed.

A more general concept of fairness is based on the “boys-and-girls” condition. Specif-

4

ically, each order “wants” other orders, and the orders are prioritized. In this condition,
fair trading must ensure that when A matches B and C matches D, it is not the case that

(A wants D more than B) and (D wants A more than C).

2.3 Combinatorial orders

A combinatorial order is a collection of several orders with constraints on their execution.
A simple example is a spread, often used in futures trading, which consists of a buy order
and sell order that must be executed at the same time; for instance, a trader may place
an order to buy gold futures and simultaneously sell silver futures.

Combinatorial auctions allow larger combinations of bids; for example, a trader can
order a simultaneous purchase of a sport utility vehicle, trailer, boat, and two bicycles.
Some auctions also support mutually exclusive bids; for instance, a user can indicate that
she needs either a boat or two bicycles.

We describe combinatorial orders in the proposed exchange model, which include

mutually exclusive orders, simultaneous transactions, and chains of consecutive trades.

2.3.1 Disjunctive orders

A disjunctive-order mechanism is for traders who want to execute one of several alterna-
tive transactions. For example, if the buyer wants to sell one of her three cars, she can
place the order in Figure 2.8(a). As another example, if a buyer has a trailer, she can
either buy an old sport utility vehicle (suv) for pulling it or sell the trailer (Figure 2.8b).

We have to guarantee that a trader does not get fills for two different elements of a dis-
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or or

| | |

Sl i Sl Buy: i
1Mustang, || 1 Tercel 1 Camry, 1Suv, 1 Trailer,
$18,000 $11,000 $15,000 $3,000 $2,000
@ ®
or or
. Sl Buy: Sl
1 CSeIl. 2 Tercels 1 Camry, 1 Camry,
anry, || ot least 2, $18,000 || $20,000
$15,000 $11.000 -
' size 100, at least 10, step 5
(© (d)

Figure 2.8: Examples of disjunctive orders.

junctive order. For example, if a buyer places the order in Figure 2.8(a), she will sell at
most one of her cars.

If a trader specifies a size for some elements of a disjunctive order, these elements
must be all-or-none orders; that is, their minimal sizes must be the same as the overall
sizes. For example, a buyer may place an order to sell a Camry or two Tercels, as shown
in Figure 2.8(c).

A disjunctive order as a whole can also have a size, which is equivalent to placing
several identical orders. For example, suppose that a buyer has specified size five for the
order in Figure 2.8(a). Then, she will sell five cars, and each car will be a Mustang, Tercel,
or Camry. As another example, if she specifies size five for the order in Figure 2.8(b), she
will complete five transactions, and each transaction will be either a purchase of a sport
utility vehicle or a sale of a trailer; for instance, she may end up buying two sport utility
vehicles and selling three trailers.

In addition, a disjunctive order can have a minimal size and size step. For example,
suppose that a dealer is buying Camries for $18,000 and reselling them for $20,000, and
she is interested in bulk transactions that involve at least ten cars. She may place the

order in Figure 2.8(d); its minimal size is ten, and its step is five. If the minimal size

45



of a disjunctive order is the same as the maximal size, it is an all-or-none order. In this
case, it may be an element of another disjunctive order; it may also be an element of a
conjunctive order, described in Section 2.3.2.

If a trader uses quality functions in a disjunctive order, she must specify a function
for every element of a disjunction. If the trader does not specify quality functions, we use
the same default as for simple orders. We utilize quality functions not only for selecting
the best fill for each element of a disjunction, but also for selecting among fills for different
elements. For example, suppose that a trader has placed the disjunction in Figure 2.8(b),
and that she has specified a quality function Qual, for the buy element and Qual, for the
sell element. Suppose further that she has found an old Explorer for $2,500, and that she
can sell the trailer for $2,200. If Qual,(Explorer, $2,500) > Qual,(Trailer, $2,200), the
trader prefers the purchase of the Explorer to the sale of the trailer.

To summarize, a disjunctive order consists of five parts:

Set of all-or-none orders, Order;, Orders, ..., Ordery

Optional permission for price averaging

Overall order size, Max

Minimal acceptable size, Min

Size step, Step

A multi-fill M-Fill matches a disjunctive order if we can decompose it into m multi-fills,
denoted Sub-Filly, Sub-Filly, ..., Sub-Fill,, that match elements of the disjunction and

satisfy the following constraints.

e Min < m < Maz, and m is divisible by Step

e BEvery multi-fill Sub-Fill; matches some element of the disjunction; that is,

for every j € [1.m], thereis [ € [1..k]| such that Sub-Fill; matches Order,.
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e If the order does not allow price averaging, then
M-Fill = Sub-Fill, + Sub-Filly + ... + Sub-Fill,,.
If the order allows price averaging, then
M-Fill includes the same items as Sub-Fill; + Sub-Fill, + ...+ Sub-Fill,,,
and Pay(M-Fill) = Pay(Sub-Fill, + Sub-Fill, + . .. 4+ Sub-Fill,).

For example, suppose that a trader has placed the disjunctive order in Figure 2.8(c),
and specified that its overall size is six and its minimal acceptable size is three. Then,
the multi-fill (Camry, $16,000, —2), (Tercel, $11,500, —2) matches the order since we can
decompose this multi-fill into three parts:

(Camry, $16,000, —1) + (Camry, $16,000, —1) + (Tercel, $11,500, —2).
The first and second parts match the left element of the disjunction, and the third part
matches the right element. After completing this transaction, we reduce the size of the

disjunctive order, as shown in Figure 2.9.

2.3.2 Conjunctive orders

A trader places a conjunctive order if she needs to complete several transactions together.
For example, if a customer wants to sell her old Tercel and buy a new Echo, she may
place the order in Figure 2.10(a). As another example, if a trader plans to buy a sport
utility vehicle, trailer, and boat, she may place the order in Figure 2.10(b).

We have to guarantee that the trader gets a fill for all elements of a conjunction at
the same time. For example, the conjunction in Figure 2.10(a) can simultaneously trade
with two simple orders (Figure 2.11a). As a more complex example, it can be a part of a
transaction that involves several conjunctive orders (see Figures 2.11b and 2.11c).

A disjunctive order may be an element of a conjunction. For example, if a customer

wants to buy a trailer, boat, and one of several alternative vehicles, she can place the order
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| |
| |
Buy: | - Sdl: | Buy:
2 Camries,| | | 1Camry, Zat-ligsg 25 . | 2 Tercels,
17,000 | . 12,000
$ | $15000 11 11 000 : $
l size 6, at least 3 !

1 Camry,
$15,000

$11,000
size 3, at least 3

,,,,,,,,,,,,,,,,,,,

| 1
| |
1 Sell: 2 Tercéls, i
|

| 1

Figure 2.9: Example of a transaction that involves a disjunctive order.

and and
Sl Buy: Buy: Buy: Buy:
1 Tercdl, 1 Echo, 1 Sequoia, || 1 Trailer, 1 Boat,
$9,000 $12,000 $30,000 $2,000 $3,000
@ (b)

Figure 2.10: Examples of conjunctive orders.

in Figure 2.12(a). Furthermore, a conjunctive order may be an element of a disjunction,
and a trader may nest several conjunctions and disjunctions (Figure 2.12b).

If a trader specifies sizes for some elements of a conjunctive order, these elements
must be all-or-none. For example, a customer may place an order to sell an old Tercel
and buy two new Echoes (Figure 2.13a). As another example, she may sell a Tercel and
buy two new cars, where each new car is either an Echo or a Civic (Figure 2.13b).

A conjunctive order as a whole may have a size, which is equivalent to placing several

identical orders; in addition, it may have a minimal size and size step. For instance, if a
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and and and

1 1 1
Buy: Sl Buy: Sl: Sl: Buy: Buy: Sl
1 Tercel, 1 Tercel, 1 Echo, 1 Echo, 1 Tercdl, 1 Echo, 1Tercel, 1 Echo,
$10,000 $9,000 $12,000 $11,000 $9,000 $12,000 $10,000 $11,000

Fill:
1 Echo,

Fill:
1 Echo,
$11,500

$11,500

@ (b)

and and and
1 [ [ | 1
Buy: Sl Buy: Sl Buy: Buy: Sl Sl
1 Tercdl, 1 Tercel, 1 Echo, 1 Echo, 1 Sequoia, 1 Boat, 1 Sequoia, 1 Boat,
$10,000 $9,000 $12,000 $11,000 $30,000 $3,000 $29,000 $2,000

Fill: Fill: Fill:
1 Echo, 1 Sequoia, 1Boat,
$11,500 $29,500 $2,500
- J - J

(©

Figure 2.11: Example transactions that involve conjunctive orders.

trader places the order in Figure 2.14(a), she may complete two, four, or six conjunctive
transactions; each transaction will involve selling a Tercel and buying an Echo. If the
minimal size of a conjunctive order is the same as the overall size, then it is an all-or-none
order, and it can be an element of a disjunction or another conjunction.

When a trader places a conjunctive order, she is usually interested in the price of
the overall transaction rather than the prices of its elements. For example, suppose that a
customer is selling her old Tercel and buying an Echo, and she is willing to spend $3,000
for this transaction. She may sell the Tercel for $9,000 and buy an Echo for $12,000;
alternatively, she may sell her old car for $8,000 and buy a new one for $11,000.

We allow two mechanisms for specifying a price limit for the overall transaction.
First, a trader can set a payment limit for a conjunctive order, along with price limits for
its elements. For instance, she may place the order shown in Figure 2.14(b); in this case,

she wants to get at least $5,000 for her old Tercel and pay at most $15,000 for a new
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and

,,,,,,,,,,,, L. __

| or |

! [ [ | !

! Buy: Buy: Buy: | Buy: Buy:

| 1 Sequoiag, | |1 Explorer,|| 1Xterra, | 1 Trailer, 1 Bodt,

/| $30,000 || $27,000 || $26,000 | $2,000 $3,000

| |

3
or
,,,,,,,,,,,,, o _____
| and |
v [ 777777777 [
h or } X and :
[l [ﬁ | I [ﬁ 1
[ 11
o Buy: Buy: 3 Buy: o Buy: Buy: 3
x 1 Sequoia, 1 Explorer,|: | 1 Trailer g 1 Sienna, 1Tent, |
11| $30,000 $27,000 |1 | $2000 || $25000 $500 |
R I L |
(b)

and and
E— . I |
Sl Buy: sl | % |
1 Tercel, || 2 Echoes, 1Tercd, | ¢ . k
| Buy: Buy:
$0,000 || Aleast2, $9,000 | Y
! $12,000 ! | 1 EChO, 1 Civic, :
| $12,000 || $12,000 |!
| size2alease2 |
@ (b)

Figure 2.13: Examples of size specifications in conjunctive orders.

Echo, and her total cash spending must be at most $3,000. Thus, she is willing to sell
her Tercel for $5,000 and buy an Echo for $8,000, and she is also willing to sell her car for
$12,000 and buy a new one for $15,000. If the overall conjunctive order has a size, then
the price limit is for size 1. For example, if a buyer specifies a size of ten for a conjunctive
order and trades all ten, then the overall payment will by $80,000, not $8,000. Recall that
the units of payment may differ from price (Section 2.2.3); for example, mortgage brokers
may express the price as an interest rate, and the overall payment for a conjunctive order

as a dollar amount.

a0



and and

Sl Buy: Sl Buy:
1 Tercel, 1 Echo, 1 Tercel, 1 Echo,
$9,000 $12,000 $5,000 $15,000
size 6, at least 2, step 2 payment limit: $3,000
@ (b)

Figure 2.14: Conjunctive orders with a size specification (a) and payment limit (b).

Second, a trader can specify a price limit for each element of a conjunction, and
indicate that she will accept any multi-fill that leads to the same total payment, even if
the prices of individual elements do not satisfy the price limits. This option is similar
to price averaging for simple orders, described in Section 2.2.4. For example, suppose
that a trader uses this option for the order in Figure 2.12(a). If she gets a Sequoia with
a trailer and boat, the total payment must be at most $30,000 + $2,000 + $3,000 =
$35,000. If she gets an Explorer instead of a Sequoia, the total payment must be at most
$27,000 + $2, 000 + $3, 000 = $32, 000.

In addition, a trader can specify a multi-fill quality function for a conjunctive order.
For instance, suppose that a trader has placed the order in Figure 2.13(a), and she prefers
Sequoia to Explorer. Then, her quality function must satisfy the following constraint:

Qual,, ((Explorer, $27,000, 1), (Trailer, $2,000, 1), (Boat, $3,000, 1))

< Qual,,((Sequoia, $30,000, 1), (Trailer, $2,000, 1), (Boat, $3,000, 1)).
A trader can also specify quality functions for elements of a conjunction, but we do not use
them for selecting the best fill; their only use is to reject matches with negative quality.

To summarize, a conjunctive order consists of seven parts:
e Set of all-or-none orders, Order;, Orders, ..., Ordery
e Overall payment limit, Pay-Max
e Multi-fill quality function, Qual,,

e Optional permission for price averaging
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e Overall order size, Maz
e Minimal acceptable size, Min

e Size step, Step

We next define a multi-fill that matches a conjunctive order. We first consider a
conjunction of size one and then generalize the definition to larger sizes. A multi-fill
M-Fill matches a conjunctive order of size one if it can be decomposed into multi-fills for
the elements of the conjunction, denoted Sub-Fill;, Sub-Filly, ..., Sub-Fill,, that satisfy

the following conditions.

e For every j € [l..k], Sub-Fill; matches Order;

e If the order does not allow price averaging, then
M-Fill = Sub-Filly + Sub-Filly + .. . + Sub-Fully.
If the order allows price averaging, then
M-Fill includes the same items as Sub-Fill; + Sub-Filly + ...+ Sub-Filly,

and Pay(M-Fill) = Pay(Sub-Filly + Sub-Fill, + . .. + Sub-Fill).
e Pay(M-Fill) < Pay-Mazx
e Qual, (M-Fill) > 0

For example, the multi-fill (Tercel, $9,000, —1), (Echo, $12,000, 1), (Civic, $12,000, 1)
matches the conjunctive order in Figure 2.13(b). To show the match, we decompose it
into two parts:

(Tercel, $9, 000, —1) + (Echo, $12,000, 1), (Civic, $12, 000, 1).
The first part matches the sell element of the conjunction, and the second part matches
the disjunctive buy.

If a conjunctive order includes a size specification, then a multi-fill M-Fill; matches

the order if it can be decomposed into multi-fills M-Fill,, M-Fill,, ..., M-Fill that

size
satisfy the following conditions.
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SR
2 Tercels, |—_Keep
$9,000 — Buy: cancel Buy:
1 Sequoia, 1 Trailer
Sl $30,000 $2,000
1Rio, k/eep'
$8,000

Figure 2.15: Example of a chain order. The trader first sells two Tercels and a Rio, then
purchases a Sequoia, and finally acquires a trailer.

o Min < size < Max
e size is divisible by Step
e For every | € [l..size], M-Fill, matches the conjunctive order

e If the order does not allow price averaging, then
M-Fill; = M-Fill, + M-Filly + ... + M-Fillg; ..
If the order allows price averaging, then

M-Fill; includes the same items as M-Fill, + M-Fill, + ...+ M-Fillg; .,

and Pay(M_Fles) = Pay(M—F’Llll + M—F’Lllz + e + M_FZHS'LZG)

For instance, the conjunctive order in Figure 2.14(a) matches the multi-fill (Tercel,
$9,000, —2), (Echo, $12,000, 2), which can be decomposed into two parts:

(Tercel, $9,000, —1), (Echo, $12,000, 1) + (Tercel, $9,000, —1), (Echo, $12,000, 1).

2.3.3 Chain orders

The chain-order mechanism allows execution of several transactions in a sequence. To
illustrate it, suppose that a buyer plans to sell two Tercels and a Rio, and to purchase a
Sequoia. Because of budgetary constraints, she wants to sell all three cars before buying a
new one. Suppose further that a buyer wishes to acquire a trailer after buying a Sequoia.

In Figure 2.15, we show the sequence of a buyers transactions, which form a chain order.

93



! | ! | ! |
! Sl | ! Buy: | ! Sl |
| 1Tercel, |, '| 1camry, | '| 1 Sequoia, ||
'| $9,000 | ‘ | ! ! :
L ® 1 cancel ! $20,000 1 cancel ! $30,000 | cancel | BW:
! or — or > and — ™ 1Bod,
1 Sl | 3 Buy: | 3 Buy: ! $3,000
| 1Rio, | 1| 1 Corolla, | 1 Trailer, ||
| $8000 |! /| $15,000 |! /| $2,000 |!
I k
eep
1 Tercdl,
$9,000

Figure 2.16: Chain order with two simple orders, two disjunctions, and a conjunction.

Formally, a chain order is a directed acyclic graph; its nodes are orders, and edges
are temporal constraints. If the graph includes an edge from order; to orders, we can
execute ordery only after we have completely filled order;. For instance, we cannot
execute a buyer’s buy orders before she sells her Rio and both Tercels.

The elements of a chain order may be combinatorial orders; that is, the chain may
include disjunctive orders, conjunctive orders, and even other chains. We do not impose
any restrictions on the elements of a chain; in particular, they may not be all-or-none.
In Figure 2.16, we show a chain that includes two simple orders, two disjunctions, and a
conjunction.

If a trader cancels an element of a chain without getting a fill, she may want to
execute the following orders; alternatively, she may want to cancel them. For each edge
in the chain, the trader has to specify whether the cancellation of the earlier order causes
the cancellation of the later one; in Figure 2.15, we show such specifications. In this
example, if a buyer cancels either sale, she is still interested in buying a Sequoia. On the
other hand, if she cancels the purchase of a Sequoia, she will not buy a trailer. As another
example, the removal of the leftmost disjunction in Figure 2.16 will cause the cancellation

of all buy orders.
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Sl
2 Tercels \
Buy: Buy:
/ 1 Sequoia 1 Trailer

Sl:
1Rio

Figure 2.17: Active and inactive elements of a chain order. Thick boxes mark active
orders, which can lead to immediate trades.

When placing a chain order, a trader may specify its size, which is equivalent to
placing several identical orders. For example, if a buyer specifies that the size of her order
in Figure 2.15 is two, she may end up selling four Tercels and two Rios, and buying two
Sequoias and two trailers. On the other hand, a chain cannot have a minimal size or size
step.

To summarize, a chain order consists of the following parts:

Set of orders

Temporal constraints that form a directed acyclic graph
e “Keep” or “cancel” specification for each constraint

Overall order size

Since the execution of a chain includes several steps, it cannot be an all-or-none order;
hence, it cannot be an element of a disjunctive or conjunctive order.

Intuitively, some elements of a chain are inactive; that is, they cannot lead to a
trade. An element becomes active after the execution of all preceding elements. We
illustrate this concept in Figure 2.17, where thick boxes mark active orders. The use of
chain orders is a special case of activating an order upon certain conditions. We have
considered three types of activation conditions in the implemented system: completion
of the preceding orders in a chain, reaching a pre-set time, and a request from the user.
A related problem is to develop a more general activation mechanism, which we plan to

address in future research.
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Chapter 3

Order Representation

We have built an exchange system for a special case of the automated trading problem.
We describe the semantics of orders in the implemented exchange, and then explain its

functionality and overall architecture.

3.1 Item sets

We first describe the representation of item sets and prices in the implemented system,
and discuss the related limitations. The representation is less general than the formal
model in Chapter 2. In particular, it limits possible item sets and does not allow the use

of price and quality functions.

3.1.1 Buy item sets

A buyer may specify a set I of multiple items, but possible sets are limited by the rep-
resentation. A buyer has to give a set of acceptable values for each attribute, which is
called an attribute set. Thus, if the market includes n attributes, the buy-order descrip-
tion contains n attribute sets, and the set I is a Cartesian product of these attribute sets.
For example, a buyer may indicate that she wants a Mustang or Corvette, the acceptable
colors are red, silver, and black, the car should be made in 1998 or later, and it should
have no more than 30,000 miles.

To give a formal definition, suppose that the set of all possible values for the first

attribute is M, the set of all values for the second attribute is M,, and so on, which
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means that the market set of all possible items is M = M; x My X ...x M,. The buyer has
to specify a set I; of values for the first attribute, where I; C M, a set of values for the
second attribute, Ir C M, and so on. The resulting item set [ is the Cartesian product

of the specified sets:

I=1 xL x...x1,.

For instance, the buyer has specified the following item set in the automobile example:

I = {Mustang, Corvette} X {red, silver,black} x {1998,1999,...} x [0...30,000].

Note that an item set in the implemented matcher must be a Cartesian product of at-
tribute sets. For example, a buyer cannot describe an item set that includes red Mustangs

and black Corvettes, but no black Mustangs.

3.1.2 Sell item sets

A sell order has to include a specific item, rather than a set of acceptable items. For
example, a seller can order the sale of a red Mustang made in 1998, which has 10,000
miles; however, she cannot offer a set of various Mustangs made between 1990 and 2000.
If she is selling multiple different cars, she needs to place multiple orders.

This limitation is based on the assumption that sellers usually offer specific items;
however, some real-world markets do not satisfy this assumption. In particular, it creates
problems for trading of services, such as package delivery or carpet cleaning. For instance,
a maid service may offer to clean any carpets, rather than a specific carpet in a specific
building.

To describe an item, the seller has to provide a value for each attribute; for ex-

ample, the seller may define the model as Mustang, the color as red, and so on. If the
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market includes n attributes, then the definition of a sell item is a sequence of n values,
(41,149, -..,1,), where i; is the value of the first attribute, is is for the second attribute,

and so on. For example, the seller would define her car as (Mustang, red, 1998, 10,000).

3.1.3 Cartesian products

When a trader places an order, she has to specify a set of acceptable values for each
market attribute, which is called an attribute set. Thus, if a market includes n attributes,
the order description contains n attribute sets. For example, a buyer may indicate that
she is purchasing an Echo or Tercel, the acceptable colors are white, silver, and gold, the
car should be made after 1998, and it should have at most 30,000 miles.

To give a formal definition, suppose that the set of all possible values for the first
attribute is M, the set of all values for the second attribute is My, and so on, which means
that the market set is M = M; X My x ... X M,. The trader has to specify a set [; C M,
of values for the first attribute, a set I, C M2 of values for the second attribute, and so
on. The resulting set I of acceptable items is the Cartesian product of the attribute sets:

I=1L xLx...x1I,.
For instance, a buyer may specify the following item set:

I = {Echo, Tercel} X {white, silver, gold} x [1999...2001] x [0...30,000].

3.1.4 Unions and filters

A trader can define an item set I as the union of several Cartesian products. For example,
if she wants to buy either a used Camry or a new Echo, she can specify the following set:
I = {Camry} x {white, silver, gold} x [1995...2001] x [0...30,000]
U {Echo} X {white, silver, gold} x {2001} x [0...200].
Furthermore, the trader can indicate that she wants to avoid certain items; for instance,

a superstitious user may want to avoid black cars with 13 miles on the odometer. In this
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case, the user has to provide a filter function that prunes undesirable items. Formally, it
is a Boolean function on the set I that gives FALSE for unwanted items. We implement
it by an arbitrary C++ procedure that inputs an item description and returns TRUE or

FALSE. To summarize, the representation of an item set consists of two parts:

e A union of Cartesian products,

I=HN; xHyx...xN,UR{ xPyx...x12,U...Ulk X Ik x...x Ik,

e A filter function, Filter: | — {TRUE, FALSE},

implemented by a C++ procedure.

We do not impose restrictions on filter functions; however, if a filter prunes too many
items, the system may miss some matches. To avoid this problem, a user should choose

Cartesian products that tightly bound the set of acceptable items.

3.1.5 Attribute sets

A buyer may use specific values or ranges; for example, she may specify a desired year as
2001 or as a range from 1998 to 2001. Note that ranges work only for numeric attributes,
such as year and mileage.

The specification of a market may include certain standard sets of values, such as
“all sports cars” or “all American cars”, and the buyer may use them in her orders. For
example, she may place an order for any American car.

Moreover, the buyer may use unions and intersections in her specification of at-
tribute sets. For instance, suppose that a buyer is interested in Mustangs, Corvettes, and
European sports cars; suppose further that we have defined a standard set that includes
all European cars, and another standard set that comprises all sports cars. Then, the

buyer can represent the desired set of models as follows:

{Mustang, Corvette} U (European-cars M Sports-cars).
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REDUCE-SET (attribute values a1, a9, ... ,ay)
The algorithm inputs a disjunctive attribute set of n values.

Return a1 Uas U ... Ua,

Figure 3.1: Simplifying a disjunctive attribute set. The algorithm returns the union of
the attribute values.

A simplification mechanism within the system reduces the complexity of disjunctive
attribute sets, thus improving efficiency. For example, the attribute set “1-5 or 4-8”
simplifies to ”1-8.” This mechanism is located outside the matcher module, in the user
interface, we give the algorithm in Figure 3.1.

Formally, an attribute set may be:

A specific value, such as Mustang or 2001

A range of values, such as 1998-2001

A standard set of values, such as all European cars

An intersection of several attribute sets

e A union of several sets

3.2 Price, quality, and size

We now explain the representation of price functions, quality functions, and order sizes.

3.2.1 Price

If a price function is a constant, a trader specifies it by a numeric value, called a price
threshold. If an item set is the union of several Cartesian products, the trader can

specify a separate threshold for each product. For instance, if a buyers item set is the
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union of used Camries and new Echoes, she can indicate that she is paying $15,000 for
a Camry and $12,000 for an Echo. If several Cartesian products overlap, and the trader
has defined different thresholds for these products, then we use the tightest threshold for
their intersection; that is, we use the lowest threshold for buy orders, and the highest
threshold for sell orders.

We specify a price function by an arbitrary C++ procedure that inputs an item and
outputs the corresponding price limit. Note that a trader can specify different functions
for different orders. If an order includes both a threshold and price function, the system
uses the tighter of the two. For example, if a buyer’s threshold for buying an Echo is
$12,000, and her price function returns $12,500 for a specific vehicle, then the resulting
price limit is $12,000. Price thresholds help to prune unacceptable items, whereas C++
price functions allow more accurate evaluation of the remaining items. If the market
includes monotonic attributes, the price functions must satisfy the monotonicity condition
in Section 2.1.5. Note that if the price depends on “additional data,” then different orders
with identical item sets may have unequal price limits, requiring alternative price functions

and impacting the efficiency.

3.2.2 Quality

The representation of a quality function is also an arbitrary C++ procedure; it inputs an
item description and price, and outputs a numeric quality value. The system includes sev-
eral standard functions, and a trader can select among them and adjust the corresponding
parameters. The system allows specifying different quality functions for different orders.
If a user does not provide any quality function, the system uses a default quality measure
defined through the price function (Section 2.1.3). All quality functions must be mono-
tonic on price (Section 2.1.3); furthermore, if some attributes are monotonic, the quality

functions must also satisfy the monotonicity condition of Section 2.1.5.
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3.2.3 Size

The implemented size specification is the same as in the general model; it includes the
overall size, minimal acceptable size, and size step. A trader can specify whether the
system should preserve the minimal size in the case of a partial fill; if not, the system
removes the minimal size after a partial fill (see Figure 3.2). The trader can also indicate

whether she accepts multi-fills and allows price averaging.

3.3 Cancellations and inactive orders

We describe three mechanisms for removing an order from the market: immediate can-

cellation, expiration time, and temporary inactivation.

3.3.1 Cancellation

If a trader places an order and does not get a fill, she can later cancel it. If a trader has
placed a combinatorial order, she can cancel the entire order or some of its elements. If
she deletes an element of a disjunctive or conjunctive order, the other elements remain
on market. On the other hand, a cancellation of a chain-order element may cause the
deletion of other elements if the chain includes “cancel” constraints. For instance, the
removal of the middle element in Figure 2.15 causes the cancellation of the rightmost

element.

3.3.2 Expiration time

When placing an order, a trader can specify its expiration time with one-second precision.
If the system does not find a match by the specified time, it cancels the order. A trader
can also place an “immediate-or-cancel” order, which is removed if there is no immediate

match. When placing a combinatorial order, a trader can specify an expiration time for
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Buy: lI- Buy: Sl
6 cars, ) 6 cars, 3 '
atleast3 | | SCAS at least 3 cars

reduced removed reduced removed
Buy:
3cars, Buy:
at least 3 3cars
@ (b)

Figure 3.2: Examples of partial fills. If a trader specifies a minimal size, she indicates
whether the system should preserve it after a partial fill (a), or remove it after the first

fill (b).
the whole order, as well as different times for its elements. The expiration of the whole
order leads to the removal of all its elements, whereas the expiration of individual elements

does not affect the other elements.

3.3.3 Inactive order

We can mark some orders as inactive, which means that they cannot lead to a trade. We
have introduced this mechanism for efficiency; it allows temporary removal of an order
from the trading process without deleting it from the indexing structure. In particular, we
use it to delay trading with inactive elements of a chain. We also enable users to inactivate
their orders by hand, and to specify inactivation and reactivation times. The system allows
inactivation of combinatorial orders, but it does not support selective inactivation of their

elements.
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Sl Buy:
20 Echoes, 10 Echoes,
$11,500 $12,000

CHANGE-ORDER(old-order )

If size[old-order ] > 10,

Sall: then return "no change"
10 Echoes, new-order := old-order
$11,500 price[ new-order ] := $12,000
Y Return new-order
modified
IR
10 Echoes,
$12,000
@ (b)

Figure 3.3: Example of an order modification. If the size of the order drops to ten, the
system should increase its price (a). The modification request includes a procedure that
checks the size and adjusts the price (b).

3.4 Modifications

A trader can modify her order without removing it from the market. For example, if a
buyer has placed an order to buy a gold Toyota Echo for $11,500 and has not gotten a
fill, she can increase the price to $12,000. As another example, she can change the item
description from “gold Echo” to “any Echo or Tercel.” A trader can also define conditions
that trigger a modification. For instance, suppose that a seller is selling twenty Echoes
for $11,500 each. She can indicate that, if she gets a partial fill of at least ten cars, then
her price increases to $12,000 (Figure 3.3a).

We specify a modification request by a C++ procedure that inputs an order and
returns its modified version; if an order requires no modification, the procedure returns the
“no change” signal. For example, if a seller wants to increase her order price after its size
drops to ten, she can use the procedure in Figure 3.3(b). The system includes standard
modification functions, and a user can select among them and adjust the appropriate

parameters.
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A user can specify an activation and expiration time for a modification request.
When it becomes active, the system invokes the corresponding procedure. If it returns
“no change,” the system re-invokes it after any change to the order, which may be caused
by a partial fill or by another modification. If a trader changes her mind, she can manually

remove an old request. The system cancels a request in the following cases:

e The processing of the request has resulted in a modification

e The request has expired

e The corresponding order has been removed from the market

e The user has manually removed the request

A trader can also place an “immediate-or-cancel” request; if it does not result in an

immediate modification, the system does not re-invoke it later.

3.5 Fairness heuristics

If the system identifies multiple matches between buy and sell orders, it may need to
choose among them before generating fills. For example, if a buy order matches two
different sell orders, the system has to select between the two, and the users usually
expect a “fair’choice. We have used help from Michael Foster, a professional trader
working for PowerL.oom Corporation, to identify standard fairness expectations.

First, if the system has found several matches for the same trade, it should prefer
the best-price match. For instance, if a buyer is looking for a sports car and the matcher
has found two different orders to sell sports cars, then it has to match the buyer’s buy
order with the cheaper sell.

Second, if several users compete for the same trade, the system should give priority

to the user who offers a better price. For instance, suppose that Seller; and Sellery are
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both selling a Corvette, and Seller;,’s price is better. Then, the system should fill Seller;’s
order before Sellery’s order. Although traders often view this requirement as different
from the first one, both impose the same constraints on the matching process.

Third, if several traders offer the same price, the system should execute their orders
on a first-come first-serve basis. Thus, if Seller; and Seller, offer Mustangs for the same
price, and Seller; has made her offer before Seller,, then Seller;’s sell order should get
priority. Professional traders consider this “chronological” fairness almost as important
as price fairness. When a seller makes a low-price offer in a volatile market, she assumes

a risk and expects to be rewarded with priority over other sellers who follow her lead.

3.6 Confirmations

When placing an order, a trader can provide not only a description used in automated
matching, but also additional information for human traders; for instance, a car dealer
can post a picture of a vehicle. The system enables traders to browse through potential
matches and choose the most desirable trade.

When a user places an order, she can indicate the need for confirmation. In this
case, when the system finds matches, it displays their descriptions; if the user confirms
some of the matches, the system executes the corresponding trades. For example, a buyer
can place an order to buy a silver Corvette and require confirmation; then, she can browse
through matching Corvettes and handpick the best match.

When the system finds a match between a buy and sell order, it checks the need
for confirmation. If neither order requires confirmation, it immediately executes the
trade. If one of the orders needs confirmation, the system notifies the corresponding
user and executes the trade upon getting her approval (Figure 3.4a). If both orders
require confirmation, it notifies both sides and completes the trade only after getting

both approvals (Figure 3.4b). For example, if a buyer requests confirmation for her
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Corvette order, and a seller sells a Corvette that also needs confirmation, then the system
will complete the transaction only after getting approvals from both the buyer and seller.
If the system finds a multi-order trade, it may need more than two confirmations.

A trader can confirm several different matches for her order, which allows the system
to execute any of them. For instance, a buyer may confirm several Corvettes, and then
she will get one of them.

When the system asks users for confirmation, it does not remove the matching orders
from the trading process, and it can find other matches for them. If a user delays her
confirmation, she may miss a trade, and then the system notifies her that the trade is
no longer available (Figure 3.4c). For instance, when the buyer confirms the purchase of
a specific Corvette, she may find out that someone else has bought it before her. The
system tries to fill orders without confirmation before sending requests for confirmation.
This strategy improves the speed of the trading process and reduces the number of “late”

confirmations.

3.7 User actions

To summarize, a trader can perform six main operations: place an order, cancel an old
order, activate or inactivate an order, place a modification request, cancel an old request,
and confirm a trade. The implemented system does not support changes to modification
requests; if a user needs to change her old request, she should cancel it and place a new one.
We list the main elements of a simple order in Figure 3.5, the elements of a combinatorial
order in Figure 3.6, and the elements of a modification request in Figure 3.7. If a user

does not specify some of the elements, the system uses the corresponding default values.
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Figure 3.4: Trading with confirmations. If one of the matching orders needs confirmation,
the system notifies the corresponding trader and waits for her approval (a). If both orders
need confirmation, the system waits for approval from both traders (b).
alternative match before getting an approval, it executes the corresponding trade and
later rejects the confirmation (c).

If it finds an



o Jtem Set
Union of Cartesian products (no default)
Filter function (by default, no filter)

e Price
Price threshold for each Cartesian product
(by default, —oo for sell orders and +oo for buy orders)
Price function (by default, equal to the threshold)
Quality function (by default, based on the price function)

o Additional data
Data for price, quality, and filter functions (by default, no data)
Information for human traders (by default, no information)

o Size
Overall order size (by default, one)
Minimal acceptable size (by default, one)
Size step (by default, one)

e Activation and expiration
Active or inactive status (by default, active)
Inactivation time (by default, never)
Reactivation time (by default, never)
Expiration time (by default, never)

e Options
Acceptance of multi-fills (by default, accept)
Acceptance of price averaging (by default, accept)
Confirmation request (by default, no confirmation)

Figure 3.5: Elements of a simple order and their default values. When a trader places an
order, she has to specify an item set, and she may optionally specify the other elements.
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e Disjunctive order:
Set of all-or-none orders (no default)
Size (the same as in a simple order)
Activation and expiration (the same as in a simple order)
Acceptance of price averaging (by default, accept)

o Conjunctive order:
Set of all-or-none orders (no default)
Overall payment limit (by default, 4+00)
Multi-fill quality function (by default, no function)
Size (the same as in a simple order)
Activation and expiration (the same as in a simple order)
Acceptance of price averaging (by default, accept)

o Chain order:
Set of orders (no default)
Ordering constraints (no default)
“Keep” or “cancel” specification for each constraint (by default, “keep”)
Overall order size (by default, one)

Figure 3.6: Elements of combinatorial orders.

Reference to a specific order (no default)

Modification function that inputs an order and returns either a modified order or
“no change” signal (no default)

Activation time (by default, immediate)

Expiration time (by default, never)

Figure 3.7: Elements of a modification request.
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Chapter 4

Indexing Structure

We describe data structures and algorithms for fast identification of matches between buy
and sell orders. We first explain the overall architecture and then present the mechanism
for fast retrieval of matching orders. We refer to the orders that are currently in the

system as pending orders.

4.1 Architecture

The system consists of a central matcher and multiple user interfaces, which run on
separate machines and communicate over the network using an asynchronous messaging
protocol. We outline the distributed architecture and explain the main functions of the

matcher.

4.1.1 Top-level control

We describe a high-level logic that controls an indexing tree. We discuss different strate-
gies for a matching round, and continuous versus periodic clearing. Both the total
throughput of the system, and its response time, depend on the matching strategy chosen.
We consider several trade-offs between maximizing the throughput and minimizing the

response time. We also consider the fairness of each strategy.
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User
interface

User Matcher
interface engine
User
interface

Figure 4.1: The architecture of the trading system.

Placing an order

Canceling an order

Activating or inactivating an order

Placing a modification request

Canceling a modification request

Confirming a trade

Figure 4.2: Main types of messages from a user interface.

4.1.2 User interfaces

The traders enter their orders through interface machines, which send the orders to the
matcher engine (Figure 4.1). The central engine serves as a trading pit; it finds matches
among orders, generates fills, and sends them to the corresponding interfaces. In Fig-
ure 4.2, we list the main types of messages from interfaces, which correspond to the user

actions supported by the system (Sections 3.3-3.7).
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Market description

Pending orders
Treeswith List of
index nonindex
orders orders

Figure 4.3: Main data structures in the matcher engine.

Market description
Attribute 1: Model Attribute 3: Year
Attribute 2; Color Attribute 4: Mileage

Pending orders

Treeswith index orders List of nonindex orders
sell: red Mustang, made in 1999, 30,000 miles | | buy: any red car, made after 2000
sell: white Camry, made in 1998, 42,000 miles | | sell: any sports car, made in 2001
sell: red Echo, made in 1995, 65,000 miles buy: any green Mustang, at most 5,000 miles
buy: green Saturn, made in 1997, 58,000 miles || sell: any Echo, made in 1995

Figure 4.4: Example of index and nonindex orders.

4.1.3 Matcher engine

The matcher maintains a description of market attributes, a collection of pending orders,
and a queue of scheduled future events (Figure 4.3). It includes a central structure for
indexing of pending orders, implemented by two trees (Section 4.2). This structure allows
indexing of orders with fully specified items; for example, it can include an order to sell a
red Mustang made in 1999, but it cannot contain an order to buy any red car made after
1999. If we can put an order into the indexing structure, we call it an index order. If an
order includes a set of items, rather than a fully specified item, the matcher adds it to an
unordered list of nonindex orders. In Figure 4.4, we give an example of four index orders
and four nonindex orders.

The indexing structure allows fast retrieval of index orders that match a given order.
On the other hand, the system does not identify matches between two nonindex orders.

For example, if the orders are as shown in Figure 4.4, and a trader places an order to buy
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Start the matcher

1

Process every new order
in the queue of incoming
orders (see Figure 4.6)

For every pending nonindex
order, search for matching
index orders (see Figure 4.7)

Stop trading?

Yes

Stop the matcher

Figure 4.5: Top-level loop of the matcher engine.

a car made after 1997, then the system will find two matches: “sell red Mustang made in

1999” and “sell white Camry made in 1998.”

4.1.4 Matching cycle

In Figure 4.5, we show the main cycle of the matcher, which alternates between parsing
new messages and searching for matches. When it receives a message with a new order,
it immediately searches for matching index orders (Figure 4.6a). If there are no matches,
and the new order is an index order, then the system adds it to the indexing structure.
Similarly, if the matcher fills only part of a new index order, it stores the remaining part in
the indexing structure. If the system gets a nonindex order and does not find a complete
fill, it adds the unfilled part to the list of nonindex orders.

For example, suppose that a seller places an order to sell a red Mustang, made in
1999, with 30,000 miles. The system immediately looks for matching index orders; if it

does not find a match, it adds the order to the indexing structure. If a buyer later places
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_—

Search for index orders
that match the new order

Change position

(see Figure 4.7) in theindexing
2
Delete the structure: Update the
old order old order
Isthe new order ‘
illed2
completely filled Process the .
modified order Canitleadto
(see Figure 4.63) new matches?
Search for new
Isit an index matches No
order? (see Figure 4.7)
- - - Isthe order
Add it tothe Add it to thelist of completely filled?
indexing structure nonindex orders Ddlete
the order
B
(a) Processing anew order (b) Modifying an order

Figure 4.6: Addition and modification of an order.

a buy order for a sports car, the system identifies the match with a seller’s order, and
informs a buyer and seller that they have exchanged a Mustang.

When the system gets a cancellation message, it removes the specified order from the
market. When it receives a modification message, it makes the corresponding changes to
the specified order (Figure 4.6b). If the changes can potentially lead to new matches, the
system immediately searches for index orders that match the modified order; in Figure 4.8,
we list all modifications that can result in new matches. For example, if a seller has placed
an order to sell a Mustang for $18,000, and she later reduces its price to $17,500, then
the system immediately looks for new matches. On the other hand, if she increases the
price to $18,500, the system does not search for matches.

After processing all messages, the system tries to fill pending nonindex orders, which

include not only the new arrivals, but also the old unfilled orders. For each nonindex
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order, it identifies matching index orders, as shown in Figure 4.7. For example, consider
the market in Figure 4.4, and suppose that a seller places an order to sell a green Mustang,
made in 2001, with zero miles. Since the market has no matching index orders, the system
adds this new order to the indexing structure. After processing all messages, it tries to
fill the nonindex orders, and determines that a sellers order is a match for the old order
to buy any green Mustang.

In addition to the matching cycle described above, the system may periodically
search for new matches for an unmatched order. For a small-scale market, we can use the
matching condition directly: for each new order, search all old orders for a match, and
select the best match. The complexity of processing an order is linear in the number of

pending orders, which is too slow for large markets.

4.1.5 Matching frequency

The matcher keeps track of the “age” of each order, and uses it to avoid repetitive search
for matches among the same index orders. If it has already tried to find matches for some
order, the matching process will involve search only among new index orders.

If a nonindex order has been on market for a long time, the system matches it less
frequently than recent orders. We have implemented a mechanism that determines the
intervals between searches for matching index orders; by default, the system increases the
length of an interval between consecutive searches in proportion to an order age. If it does
not find a match for a new nonindex order, it repeats the search on the next matching
cycle, then after two cycles, then after four cycles, and so on; that is, the intervals between

searches increase as the powers of two.
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4.2 Indexing trees

We have implemented an indexing structure for orders with fully specified items, which
do not include ranges, standard sets, conjunctions, or disjunctions. The structure consists
of two identical trees: one is for buy orders, and the other is for sell orders.

Conceputally, these tree are tries, in which the description of specific orders serves as
strings of equal length. These tries differ from traditional tries in that different attributes
have different sets of values. In Figure 4.9, we show an indexing tree for sell orders; its
height is equal to the number of market attributes, and each level corresponds to one
of the attributes. The root node encodes the first attribute, and its children represent
different values of this attribute; in Figure 4.9, each child of the root corresponds to some
car model. The nodes at the second level divide the orders by the second attribute, and
each node at the third level corresponds to specific values of the first two attributes. In
general, a node at level ¢ divides orders by the values of the ith attribute, and each node
at the (i+1)st level corresponds to all orders with a specific value of the first 7 attributes.
If some items are not currently on sale, the tree does not include the corresponding nodes;
for instance, if nobody is selling an Echo, the root has no child for Echo.

Every nonleaf node includes a red-black tree that allows fast retrieval of its children
with specific values. For example, the root in Figure 4.9 includes a red-black tree that
indexes its children by model values, as shown in Figure 4.10. A leaf of the indexing tree
includes orders with identical items, which may have different prices and sizes. Each leaf

includes a red-black tree that indexes the corresponding orders by price.

4.2.1 Multiple sell trees

The system uses multiple sell trees, where the recent orders are in the first tree, less recent
orders are in the second tree, and so on. This strategy is faster than the use of times

by a constant factor, since we do not need to look up old nodes and orders. We plan

7



on addressing variations of this strategy, as well as the potential problems these changes

could have on market fairness, as part of future research.

4.2.2 Standard sets

If a market includes standard sets of values, such as “all sports cars” and “all American
cars,” traders can use them in specifying their orders (Section 3.1). We define standard
sets separately for each attribute; for instance, the set of American cars belongs to the
“model” attribute. Note that a standard set may be a union of ranges, rather than an
explicit list of values. For example, the set of collectable cars could include all cars made
before the year 1976.

For every attribute, the system maintains a central table of standard sets, which
consists of two parts (Figure 4.11a). The first part includes a sorted list of values for
every standard set; it allows determining whether a given value belongs to a specific set,
by the binary search in the corresponding list. The second part includes all values that
belong to at least one set; for each value, we store a sorted list of sets that include it.

Every node of an indexing tree also includes a table of standard sets; for example,
the root node in Figure 4.9 includes a table of sets for the first attribute (Figure 4.11b),
and every “color” node includes a separate table of the second-attribute sets. Every set in
the table includes a list of pointers to its elements in the red-black tree; for instance, the
“American-cars” set points to the “Corvette” and “Mustang” nodes. If the current tree
does not contain elements of some sets, we do not add these sets to the table; for example,
if the market does not include any orders to sell European cars, then the “European-cars”
set is not in the table.

We have implemented the table of sets by a red-black tree, which allows fast addition

and deletion of sets, as well as fast retrieval of all values in a given set. For instance,
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if a buyer looks for American cars, the system retrieves the appropriate children of the

“model” node by finding the “American-cars” set and following its pointers.

4.2.3 Summary data

The nodes of an indexing tree include summary data that help to find matching orders.

Every node contains the following data about the orders in the corresponding subtree:

e The total number of orders and the total of their sizes

e The minimal and maximal price

e The minimal and maximal value for each numeric attribute

e The time of the latest addition or modification of an order

For example, consider node 2 in Figure 4.9; the subtree rooted in this node includes nine

orders. If the newest of these orders was placed at 2 pm, the summary data in node 2 is

as follows:
e Number of orders: 9 e Years: 1998 ...2001
e Total size: 14 e Mileages: 0 ...45,000

e Prices: $13,000 ...21,000 e Latest addition: 2 pm

We also store the time that the oldest order was added to the subtree; this is done

for the fairness heuristic, to ensure that earlier orders get preference over newer orders.

4.3 Basic tree operations

When a user places, removes, or modifies an index order, the system has to update the
indexing tree. We first describe addition and deletion algorithms, and then explain the

modification procedure.
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4.3.1 Adding a new order

When a user places an index order, the system adds it to the corresponding leaf; for
example, if a seller places an order to sell a black Camry, made in 1999, with 35,000
miles, the system adds it to node 16 in Figure 4.12. If the leaf is not in the tree, the
matcher adds the appropriate new branch; for example, if a seller offers to sell a white
Mustang, it adds the dashed branch in Figure 4.12.

After adding a new order the system modifies the summary data of the ancestor
nodes. Note that every summary value is the minimum, maximum, or sum of the order
values. In Figure 4.13, we give the algorithms for updating the number of orders, total
size, and minimal price; the update of the other values is similar. These algorithms
perform one pass from the leaf to the root, and their running time is proportional to the

height of the tree; thus, if the market includes n attributes, the time is O(n).

4.3.2 Deleting an order

When the matcher fills an index order, or a trader cancels her old order, the system
removes the order from the corresponding leaf. If the leaf does not include other orders,
the system deletes it from the indexing tree; for example, if the matcher fills order F in
Figure 4.9, it removes node 18. If the deleted node is the only leaf in some subtree, the
system removes this subtree; for instance, the deletion of order J leads to the removal of
nodes 7, 13, and 20. We show a procedure for removing an order and the corresponding
subtree in Figure 4.14.

After deleting an order, the system updates the summary data in the ancestor nodes.
In Figure 4.15, we give procedures for updating the number of orders, total size, and
minimal price; the modification of the other data is similar. The update time depends on

the number n of market attributes, and on the number of children of the ancestor nodes,
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C1,C, ..., Cq. If a summary value is the sum of the order values, the update time is O(n);

if it is the minimum or maximum of order values, the time is O(c; + co + ... + ¢,).

4.3.3 Modifying an order

If a trader changes the order size, expiration time, or additional data, the change does
not affect the structure of the indexing tree; however, the system needs to update the
summary data of the ancestor nodes. If a trader modifies the price of an order, the system
changes the position of the order in the red-black tree of the leaf, and propagates the price
change to the summary data.

Finally, if a trader changes the item specification, the system treats it as the deletion
of an old order and addition of a new one. For example, suppose that a seller has placed
an order to sell a black Camry, and the indexing tree is as shown in Figure 4.12. If a seller
has entered a wrong color, and she later changes it to white, then the system removes the

order from the leftmost leaf in Figure 4.12 and adds it to the rightmost leaf.
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Find index orders with matching items

Select the highest-quality order, that | N9 available
has not yet been considered, among
the index orders with matching items

Doesthe price of the
selected order match
the given price limit?

Generate afill and
reduce the size of both orders

Completely filled the
index order?

Delete the index order

Completely filled the
given order?

Yes

’ Delete the given order ‘

C o

Figure 4.7: Search for index orders that match a given order.
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Changing the item set or additional data

Increasing the price threshold of a buy order, or decreasing the threshold of a sell

order

Changing the price function or quality function

Increasing the overall order size or reducing the minimal acceptable size

Changing the size step in such a way that the new step is not a multiple of the old

step

Activating an inactive order

Allowing multi-fills or price averaging

Adding new elements to a disjunctive order, or deleting some elements from a con-
junctive order

Figure 4.8: Order modifications that lead to new matches.

2001 1998 2000 2000
1999 10 12 13 14 15
Mileage ’ Mileage‘ ’ Mileage‘ Mileage Mileage
35,000' 16 40,000 18 0 19 48,000 o0 19,000 21 21000 o 25,000 23
Black Camry,|| Red Camry, Red Camry, Red Camry, || Gold Corvette, || Red Corvette, | [Blue Mustang, | [Blue Mustang,
madein 1999,| | madein 1998,|| madein 1998,| | made in 2001,| | madein 1998, || made in 2000,| | made in 2000, | | made in 2000,
35,000 miles || 40,000 miles || 45,000 miles O miles 48,000 miles || 19,000 miles || 21,000 miles || 25,000 miles

B
$14.5K
A
$14K

Figure 4.9: Indexing tree with seventeen orders.
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1
Model

2y 3y 4y
’Color‘ ’ Color‘ ’ Color‘

RER AR U

Figure 4.10: Node of an indexing tree. We arrange the attribute values in a red-black
tree, and each value points to the corresponding child in the indexing tree.

1
Sandard stes Model

Indexing by set Sandard stes Attribute values
American: Corvette, Mustang, ... American: “t*:::::::::’ T ’:
Japanese:  Camry, Echo, ... Japanese: e - - -, Y |
Sports: Corvette, Mustang, ... !

Sports: Tr«———‘——@
indexing by attribute value i @ ! @

Camry: Japaness, ... —
Corvette:  American, Sports, ... L
Mustang:  American, Sports, ... ’ Cal or‘ ’ Col OF‘ ’ Color

(a) Central table of standard stes. (b) Standard stesin anode of the indexing tree.

Figure 4.11: Standard sets of values. The market includes a central table of sets (a), and
every node in the indexing tree includes a table of sets for the respective attribute (b).
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M odel Color Year Mileage Price Size

|
|
R  Camry Black 1999 35,000 15,000 2 |
S  Camry White 1999 35,000 14,000 1 }

5 Black White
Tt
Yoo Year
1999 '
y 10 e
Mileage ' Mileage 1
b i
35,000 16 o 7' %5109?
Black Camry, Red Camry, || Red Camry, || Red Camry, | 'white Camry,
made in 1999, madein 1998, | made in 1998,| | madein 2001, | made in 1999, |
35,000 miles 40,000 miles || 45,000 miles O miles ' 35,000 miles |

I///S\\\\
. ' $14K
(/ R \\\
'\ $15K

(b) Indexing tree with new orders.

Figure 4.12: Adding orders to an indexing tree. We show new orders by dashed ovals.
the tree does not include the leaf for a new order, the system adds the proper branch.
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ADD-COUNT(new-size, leaf)
The algorithm inputs the leaf with the newly added order.

node := leaf

Repeat while node # NIL:
num-orders[node] := num-orders[node] + 1
node := parent[node]

ADD-SIZE(new-size, leaf)
The algorithm inputs the size of a newly added order
and the corresponding leaf of the indexing tree.

node := leaf

Repeat while node # NIL:
total-size[node| := total-size[node] + new-size
node := parent[node]

ADD-PRICE(new-price, leaf)
The algorithm inputs the price of a newly added order
and the corresponding leaf of the indexing tree.

node := leaf

Repeat while node # NIL and min-price[node] > new-price:
min-price[node] := new-price
node := parent[node]

Figure 4.13: Updating the summary data after addition of an order. We show the update
of the order number (ADD-COUNT), total size (ADD-SIZE) and minimal price (ADD-PRICE).

DEL-ORDER(order, leaf)
The algorithm inputs an old order and the corresponding leaf.

Remove order from leaf

If leaf includes other orders, then terminate

node := leaf

Repeat while parent[node] # NIL and node has no children:
ancestor := parent[node]
delete node
node := ancestor

Figure 4.14: Deletion of an order. If it has been the only order in some subtree of the
indexing tree, the system removes this subtree.
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DEL-COUNT(leaf)
The algorithm inputs the leaf with a deleted order.

node := leaf
Repeat while node # NIL:
num-orders[node] := num-orders[node] — 1

node := parent[node]

DEL-SIZE(old-size, leaf)
The algorithm inputs the size of a deleted order,
along with the leaf from which the order is deleted.

node := leaf

Repeat while node # NIL:
total-size[node| := total-size[node] — old-size
node := parent[node]

DEL-PRICE(old-price, leaf)
The algorithm inputs the price of a deleted order,
along with the leaf from which the order is deleted.

If min-price[leaf] < old-price, then terminate
Update the minimal price of the leaf:
min-price[leaf] := +o0
For every order in the leaf:
If min-price[leaf] > price[order],
then min-price[leaf] := price[order]
Update the minimal price of its ancestors:
node := leaf
Repeat while min-price[node] > old-price
and parent[node] # NIL and min-price[parent[node]] = old-price:
node := parent[node]
min-price[node] := 400
For every child of node:
If min-price[node] > min-price|child),
then min-price[node] := min-price[child]

Figure 4.15: Updating the summary data after deletion of an order. We show the update
of the order number (DEL-COUNT), total size (DEL-SIZE), and minimal price (DEL-PRICE).
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Chapter 5

Search for Matches

We describe additional data used by the system in the search for matches, and describe
two different search strategies. We then discuss the related fairness heuristics, and give

the trade-offs involved between minimizing processing time, while ensuring fairness.

5.1 Additional search information

Each order maintains additional data used for simplifying the matching process. This

information includes:

e Time of placement: the time that the order was initially added to the tree
e Time of last modification: the time that the order was last modified

e Time of last search: the time that the order was last searched for a match

We describe two algorithms that identify matches for a given order; the first al-
gorithm is based on depth-first search in an indexing tree, and the second is best-first
search. In Figure 5.1, we present the notation for the order and node structures used by
the algorithms. We give the depth-first algorithm in Figures 5.2 and 5.3, and the best-first

algorithm in Figures 5.4-5.6.

5.2 Depth-first search

The depth-first algorithm consists of two steps; it first finds the leaves of an indexing tree
that match a given order (Figure 5.2), and then selects the best matching orders in these

leaves (Figure 5.3).
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5.2.1 Depth-first search strategies

The depth-first search used to retrieve matching orders may be implemented using alter-

native schemes listed below, each with its own inherent advantages and drawbacks.

Ezxhaustive search: We may use DFS to find all leaves that match a given order, and

then select matches among them.

Node limit: We impose a limit on the number of explored leaves; this strategy does
not improve the speed of finding a match, but it limits the time of an unsuccessful
search. Moreover, it limits the time of a successful search that would return too

many nodes.

Cluster search: We may begin by exploring the subtrees that include more orders,
since they are likely to have more matches. A variation of this strategy is to search

for a large total volume of matches within a space.

Monotonicity: We first explore the branches that are likely to have best matches.
This technique works if the user does not specify price and quality functions that
account for monotonicity. For example, if looking for an inexpensive car made after
1970, we begin with cars made in 1970. Note that this strategy is opposite to

fairness, since it looks for the worst model that would satisfy the user’s conditions.

5.2.2 Matching leaves

The algorithm in Figure 5.2 retrieves the matching leaves for a given item set, represented

by a union of Cartesian products and a filter function.

The PRODUCT-LEAVES subroutine finds the matching leaves for one Cartesian prod-

uct using depth-first search in the indexing tree. It identifies all children of the root that
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match the first element of the Cartesian product, and then recursively processes the re-
spective subtrees. For example, suppose that a buyer is looking for a Camry or Mustang
made after 2000, with any color and mileage, and the tree of sell orders is as shown in
Figure 4.9. The subroutine determines that nodes 2 and 4 match the model, and then
processes the two respective subtrees. It identifies three matching nodes for the second
attribute, three nodes for the third attribute, and finally four matching leaves; we show
these nodes by thick boxes.

If the system already tried to find matches for a given order during the previous
execution of the main loop, it skips the subtrees that have not been modified since the
previous search. If the order includes a union of several Cartesian products, the system
calls the PRODUCT-LEAVES subroutine for each product. If the order includes a filter
function, the system uses it to prune inappropriate leaves.

If an order matches a large number of leaves, the retrieval may take considerable
time. To prevent this problem, we can impose a limit on the number of retrieved leaves;
for instance, if we allow at most three leaves, and a buyer places an order for any Camry,
then the system retrieves the three leftmost leaves in Figure 4.9. We use this limit to
control the trade-off between speed and quality of matches; a small limit ensures the

efficiency but reduces the chances of finding the best match.

5.2.3 Best matches

After the system identifies matching leaves, it selects the best matching orders in these
leaves, according to the quality function of the given order. In Figure 5.3, we give an
algorithm that identifies the highest-quality matches and completes the respective trades.
It arranges the leaves in a priority queue by the quality of the best unprocessed match in
a leaf. At each step, the algorithm processes the best available match; it terminates after

it fills the given order or runs out of matches.
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For example, consider the tree in Figure 4.9, and suppose that a buyer places an
order for four Camries or Mustangs made after 2000. We suppose further that she uses the
default quality measure, which depends only on price. The system first retrieves order A
with price $16,000 and size 2, then order B with price $16,500, and finally order O with
price $19,000; we show these orders by thick circles.

If the price and quality functions do not use any extra data, then the sorted order on
price corresponds to the sorted order on quality, as long as quality is monotonic on price;
upon reaching the price and quality limits, we have exhuasted all matches. On the other
hand, if they do use additional information, then the ordering may differ. In this case,
the default strategy may result in selecting suboptimal matches, or missing matches. An
alternative method is to consider all orders in the selected cells, and explicitly sort them
on quality, but it is slower. We plan on developing this algorithm in future research.

We apply the matching test each time a sell order is processed. Note that an order
may not match because of a size requirement or filter function. If the filter does not use
extra any data, we can apply it once to a leaf. If it uses extra data, however, we must
apply it to every order in the leaf. If an order matches, we apply the algorithm given in

Figure 2.3 to determine the matching size of the fill.

5.3 Best-first search

If some attributes are monotonic, we can use best-first search to find optimal matches,
which is usually faster than depth-first search. The best-first algorithm uses a node’s
summary data to estimate the quality of matches in the node’s subtree; at each step, it

processes the node with the highest quality estimate.

91



5.3.1 Quality estimates

We can compute a quality estimate for a node only if all branching in the node’s subtree
is on monotonic attributes; a node with this property is called monotonic. For example,
node 6 in Figure 4.9 is monotonic; the branching in its subtree is on year and mileage,
which are monotonic attributes. On the other hand, node 2 is not monotonic because its
subtree includes branching on color.

In Figure 5.4, we give a procedure that inputs a monotonic node and constructs the
best possible item that may be present in the node’s subtree, based on the summary data.
To estimate the node’s quality, the system computes the quality of this item traded at the
best possible price from the summary data. For example, consider node 6 in Figure 4.9;
all orders in its subtree include red Camries, and the summary data show that the best
year is 2003, the best mileage is 5,000, and the best price is $13,000. Thus, the system

computes the quality estimate as Qual(Camry, red, 2003, 5,000, $13,000).

5.3.2 Search steps

The best-first algorithm consists of two steps, similar to the steps of the depth-first
algorithm. First, it finds all smallest-depth monotonic nodes that match a given order
(Figure 5.5); for example, if a buyer is looking for a Camry or Mustang made after
2000, and the tree of sell orders is as shown in Figure 4.9, then the algorithm retrieves
nodes 5, 6, and 9. Second, it finds the best matching orders in the subtrees of the selected
nodes (Figure 5.6). It arranges the nodes into a priority queue by their quality estimates;
at each step, it processes the highest-quality node. If this node is a leaf, the algorithm
identifies the best-price matching order in the leaf and completes the respective trade. If
the node is not a leaf, the algorithm identifies its children that match the given order,
and adds them to the priority queue. The algorithm terminates when it fills the given

order or runs out of matches.
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5.4 Fairness heuristics

We consider multiple fairness methods, with the difference search techniques using differ-

ent heuristics as follows:

o Depth-first search: We can use the depth first search with heuristics that guide

toward a better match. The heuristics are the same as in the best-first search.

e Beam search: Beam search is a variety of the best-first search, where we limit the
number of the best candidates. We control the trade-off between efficiency and

fairness by controlling the breadth limit.

e Best-price search: If the user specifies quality but no partial quality function, we
may use best-price search as a heuristic. That is, we can find the best-price search

and hope that it maximizes the quality function.

5.5 Trade-offs

When implementing the search, we need to consider trade-offs between processing speed
and near-fairness guarantees. The fairness definition is related to the quality function.
The system must always satisfy hard constraints, defined by the item description, filters,
price functions, and quality. On the other hand, the quality ordering is not a hard
constraint, and we may not guarantee finding the best match or ensuring a perfect fairness.

We consider three approaches.

e Disregard quality preferences and time priorities, and guarantee only hard con-
straints. If we use this strategy, we optimize for the speed of market clearing. The
market is not “completely unfair” since we select matches at random and do not

favor specific users.
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e Guarantee fairness, that is, ensure that the “boys-and-girls” condition is never vio-
lated (subsection 2.2.5); this approach involves two separate problems. First, when
searching for a match for a buy order, we need to find the best match, according to
the quality function. Second, when a buy order finds a sell order, we need to ensure

that there are no better buys that could match with the same sell.

e We consider heuristics that do not guarantee fairness but lead to near-fair choice,
and at the same time take less time that the full guarantee. We consider several
different heuristics, which lead to different trade-offs. We first consider the approach
with no fairness, then complete fairness, and then discuss several trade-offs. The no-
fairness approach is based on the depth-first search, the complete fairness approach
is based on the best-first search, and near-fairness is depth-first search with fairness

heuristics.
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Elements of the order structure:

Priceforder] price function
Qual[order] quality function
Filter|order] filter function
Maz[order] overall order size
Min|order] minimal acceptable size
Step|order] size step

Place-Time[order]  time of placing the order
Search-Time[order] time of the last search for matches

Elements of the indexing-tree node structure:

Min-Price[node] minimal price of orders in the node’s subtree

Maz-Price[node] maximal price of orders in the node’s subtree

Depth[node] depth of the node in the indexing tree

Product-Num[node] number of the matching Cartesian product in a given item set
Quality[node] for a nonleaf node, the quality estimate;

for a leaf, the quality of the best-price unprocessed order

Additional elements of the leaf-node structure:
TItem[node] item in the leaf’s orders
Current-Order[node] best-price unprocessed order in the leaf

Figure 5.1: Notation for the orders and nodes of an indexing tree. Note that the leaf-node
structure includes the five elements of the node structure and two additional elements.
We use this notation in the pseudocode in Figures 5.2-5.6.
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MATCHING-LEAVES(order, root)
The algorithm inputs an order and the root of an indexing tree.
We denote the order’s item set by Il x...xI1, U... U Ik; X... X Iky.

Initialize an empty set of matching leaves, denoted leaves

For [ from 1 to k,

call PRODUCT-LEAVES(Ily X ... X Il,, Filter[order], Search- Time|order], root, leaves)
Return leaves

PRODUCT-LEAVES([l1 X ... X I, Filter, Search- Time, node, leaves)

The subroutine inputs a Cartesian product Il1 X ... x II,,, a filter function, the previous-search time,
a node of the indexing tree, and a set of leaves. It finds the matching leaves in the node’s subtree,
and adds them to the set of leaves.

If Search-Time is larger than node’s time of the last order addition, then terminate
If node is a leaf and Filter(Item[node]) = TRUE, then add node to leaves
If node is not a leaf:
Identify all children of node that match Ip.pihnodel+1
For each matching child,
call PRODUCT-LEAVES([l1 X ... X I,, Filter, Search- Time, child, leaves)

Figure 5.2: Retrieval of matching leaves. The algorithm identifies the leaves of an indexing
tree that match the item set of a given order. The PRODUCT-LEAVES subroutine uses
depth-first search to retrieve the matching leaves for one Cartesian product.
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LEAF-MATCHES(order, leaves)
The algorithm inputs an order and matching leaves of an indexing tree.

Initialize an empty priority queue of matching leaves, denoted queue,
which prioritizes the leaves by the quality of the best-price unprocessed order
For each leaf in leaves:
Set Current-Order|leaf] to the first order among leaf’s orders, sorted by price
Call LEAF-PRIORITY (order, leaf, queue)
While Maz|order] > Min[order] and queue is nonempty:
Set leaf to the highest-priority leaf in queue, and remove it from gqueue
match := Current-Order|leaf]
Set Current-Order|leaf] to the next order among leaf’s orders, sorted by price
Call TRADE(order, match)
Call LEAF-PRIORITY (order, leaf, queue)
If Maz]order] < Min[order], then remove order from the market
Else, set Search-Time|order]| to the current time

LEAF-PRIORITY (order, leaf, queue)

The subroutine inputs the given order, a matching leaf, and the priority queue of leaves. If the
order’s price matches the price of the leaf’s best-price unprocessed order, then the leaf is added to
the queue.

match := Current-Order|leaf]

If match = NONE, then terminate (no unprocessed orders in leaf)

If order is a buy order, then price := FILL-PRICE( Price|order]|, Price[match|, Item|leaf])
Else, price := FILL-PRICE( Price[match|, Price[order], Item/[leaf])

If price = NONE, then terminate (no orders with acceptable price)

Quality[leaf] := Qual[order](Item[leaf], price)

Add leaf to queue, prioritized by Quality

TRADE(order, match)
The subroutine inputs the given order and the highest-quality order with matching item and price.
If the sizes of these two orders match, the subroutine completes the trade between them.

If Search-Time|order| > Place- Time[match], then terminate

size := FILL-SIZE(Maz[order], Min|order|, Step|order|, Maz[match], Min[match], Step|match])
If size = NONE, then terminate

Complete the trade between order and match

Maz[order] := Maz|order] — size

Maz[match] :== Maz[match] — size

If Maz[match] < Min[match], then remove match from the market

Figure 5.3: Retrieval of matching orders. The algorithm finds the highest-quality matches
for a given order and completes the corresponding trades. The LEAF-PRIORITY subroutine
adds a given leaf to the priority queue, arranged by the quality of a leaf’s best-price
unprocessed match. The TRADE subroutine completes the trade between the given order
and the best available match.
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BEST-ITEM(node)
The algorithm inputs a monotonic node of an indexing tree.

For m from 1 to Depth[node]:

Set iy, to the mth-attribute value on the path from the root to node
For m from Depth[node] + 1 to n:

Set iy, to the best value of the mth attribute in node’s summary data
Return (i, ...,7,)

Figure 5.4: Construction of the best possible item. The algorithm inputs a monotonic
node and generates the best item that may be present in the subtree rooted at the node.

MATCHING-NODES(order, root)
The algorithm inputs an order and the root of an indexing tree.
We denote the order’s item set by I1; X...x I1, U ... U Ik X... X Iky,.

Initialize an empty set of matching monotonic nodes, denoted nodes
For [ from 1 to k, call PRODUCT-NODES(1l; X ... X Il,,, Search- Time|order], root, nodes)
Return nodes

PRODUCT-NODES(1l; X ... X I,,, Search- Time, node, nodes)

The subroutine inputs a Cartesian product Il X ... X Il,, the previous-search time, a node of the
indexing tree, and a set of monotonic nodes. It finds the matching monotonic nodes in the subtree
rooted at the given node, and adds them to the set of monotonic nodes.

If Search-Time is larger than node’s time of the last order addition, then terminate
If node is monotonic:
Product-Num[node] := 1
Add node to nodes
If node is not monotonic:
Identify all children of node that match Il pepinjnode]+1
For each matching child, call PRODUCT-NODES(Il; X ... X Il,,, Search- Time, child, nodes)

Figure 5.5: Retrieval of matching monotonic nodes. The algorithm identifies the smallest-
depth monotonic nodes that match the item set of a given order. The PRODUCT-NODES
subroutine uses depth-first search to retrieve the matching monotonic nodes for one Carte-
sian product.
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NODE-MATCHES(order, nodes)
The algorithm inputs an order and matching monotonic nodes of an indexing tree.

Initialize an empty priority queue of matching nodes, denoted queue,
which prioritizes the nodes by their quality estimates
For each node in nodes, call NODE-PRIORITY (order, node, queue)
While Maz|order] > Min[order] and queue is nonempty:
Set node to the highest-priority node in gqueue, and remove it from queue
If node is a leaf:
match := Current-Order[node]
Set Current-Order[node] to the next order among node’s orders, sorted by price
Call TRADE(order, match)
Call LEAF-PRIORITY (order, node, queue)
If node is not a leaf:
[ := Product-Num[node]
Identify all children of node that match Il pepinnode]+1
For each matching child:
If child is a leaf and Filter(Item|[child]) = TRUE:
Set Current-Order|child] to the first order among child’s orders, sorted by price
Call LEAF-PRIORITY (order, child, queue)
If child is not a leaf:
Product-Num|child) := 1
Call NODE-PRIORITY (order, child, queue)
If Maz]order] < Min[order], then remove order from the market
Else, set Search-Time|order| to the current time

NODE-PRIORITY (order, node, queue)
The subroutine inputs the given order, a matching monotonic node, and the priority queue of nodes.
If the order may have matches in the node’s subtree, then the node is added to the priority queue.

i := BEST-ITEM(node)

If order is a buy order, then price := FILL-PRICE( Price[order], Min-Price[node], 1)
Else, price := FILL-PRICE(Maz- Price[node], Price|order], 1)

If price = NONE, then terminate

Quality[node] :== Qual[order](i, price)

Add node to queue, prioritized by Quality

Figure 5.6: Retrieval of matching orders. The algorithm finds the best matches for a
given order and completes the corresponding trades. The NODE-PRIORITY subroutine
adds a nonleaf node to the priority queue, arranged by quality estimates. The algorithm
also uses four other subroutines: FILL-PRICE (Figure 2.3), LEAF-PRIORITY (Figure 5.3),
TRADE (Figure 5.3), and BEST-ITEM (Figure 5.4).
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Chapter 6

Performance

We describe experiments with artificial market data, and then show the performance for
two real-world markets. We compare the efficiency of the best-first search algorithm with

that of depth-first search.

6.1 Artificial markets

We give results of artificial tests with five control variables. We measure the matcher’s
efficiency for different numbers of market attributes and values per attribute, as well as

the dependency of the performance on the number of orders.

6.1.1 Control variables

We have implemented an experimental setup that allows control over five features of
artificial markets: search strategy, number of attributes in an item description, number
of alternative values for an attribute, number of orders, and average number of matches

per order.

e Search strategy: We have compared the best-first search with two versions of the
depth-first strategy. The first version of the depth-first algorithm searches for all
matching orders. In the second version, we limit the number of retrieved matches;
specifically, the system finds at most ten matching leaves in the indexing tree and

retrieves at most ten orders from each leaf.
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o Attributes: The number of attributes determines the complexity of traded items.
For example, the description of a public stock includes only one attribute, the stock
symbol, whereas the example car market has four attributes: model, color, year, and
mileage. The description of a used vehicle in a real market includes more attributes,
such as transmission type, options package, and number of previous owners. We

have considered artificial markets with one, three, and ten attributes.

e Values: The implemented system supports integer and real attributes, as well as
explicitly listed values (Section 2.1.5). We have considered only integer attributes
in the artificial markets, and we have controlled the number of values per attribute.
We have varied this number from two to 1,024; that is, the smallest market has two

values for each attribute, and the largest market includes 1,024 values per attribute.

e Orders: We have varied the number of orders from four to 28, that is, 262,144.
Recall that the system’s top-level loop involves processing new orders and matching
old pending orders (Figure 4.5). We have controlled the total number of orders;
the number of new orders in the input queue has been the same as the number of
pending orders. For example, when experimenting with a four-order market, we
have placed two pending orders and two new orders. We have randomly generated

new and pending orders, which include an equal number of buys and sells.

e Matching density: We define the matching density as the mean percentage of sell
orders that match a given buy order; in other words, it is the probability that a
randomly selected buy order matches a randomly chosen sell. For example, if each
buy order matches 1% of sell orders, then the matching density is 0.01. We have

experimented with four density values: 0.001, 0.01, 0.1, and 1.
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6.1.2 Measured variables

We have considered three search strategies, three different settings for the number of at-
tributes, three settings for the number of values per attribute, seventeen settings for the
number of orders, and four settings for the matching density. For each combination of
settings, we have run two independent experiments; for each experiment, we have mea-
sured the time of processing new orders and matching old orders, average time between

placing an order and getting a response, and maximal throughput of the system.

e Processing time: The first measurement is the time of processing new orders, which
is the first part of the system’s main loop (Figure 4.6a). This time is proportional
to the number of new orders; it also depends on several other factors, including the

number of attributes and pending orders.

e Matching time: The second measurement is the time of matching old orders, which
is the second part of the main loop (Figure 4.6a). The total of processing and
matching time is the overall length of the main loop, which determines the system’s

speed.

e Response time: We have recorded the average time between placing an order and
getting the system’s response. If the system immediately finds a match for the new
order, then its response is the corresponding fill; else, it responds with a confirmation
message. The response time has varied from a few seconds to more than twenty
minutes. This delayed response is often unacceptable in financial markets, but it

would not cause problems in consumer markets, such as used cars.

e Mazximal throughput: Finally, we have determined the maximal acceptable frequency

of placing new orders. If the system gets more orders per second, then the number
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of unprocessed orders in the input queue keeps growing and the matcher eventually

has to reject some of them.

6.1.3 Summary graphs

In Figures 6.1-6.12, we show the dependency of the system’s performance on each of the
control variables. We use three performance measurements: (1) the time of one pass
through the system’s main loop, which includes processing of new orders and matching
of old orders; (2) the mean time between placing a new order and getting a response;
and (3) the system’s throughput.

For each control variable, we consider three settings of the other four variables. For
each of the three settings, we give two graphs with the dependency of the performance of
the three search strategies on the selected variable; the first graph is in logarithmic scale,
and the second is in linear scale.

In Figures 6.1-6.3, we show how the performance depends on the number of orders.
The main-loop and response times are linear in the number of orders. The throughput in
small markets grows with the number of orders, reaching an upper limit when the market
grows to about two hundred orders, and slightly decreasing with further increase in the
number of orders.

In Figures 6.4-6.6, we give the dependency of the performance on the number of
attributes. The main-loop and response times are super-linear in the number of attributes,
whereas throughput is in inverse proportion to the same super-linear function.

In Figures 6.7-6.9, we show that the main-loop and response times grow sub-linearly
with the number of values per attribute, and throughput slightly decreases with an in-
crease in the number of values.

Finally, in Figures 6.10-6.12, we show how the system’s behavior changes with the

matching density. We have not found any monotonic dependency between the density and

103



the performance; the increase of the matching density sometimes leads to faster matching
and sometimes slows down the system.

The best-first search strategy is much faster than the depth-first search that identifies
all matches; the saving factor for large markets is between 1.0 and 750.0, and its mean
value is 121.8. Thus, the new system is more effective for finding optimal matches than
the old depth-first version.

The speed of the best-first search is usually close to that of the depth-first search with
a limit on the number of matches; that is, the optimal-matching system is as fast as the
old system that could not find optimal matches. A notable exception is the performance
in ten-attribute markets with large number of values per attribute. For these markets,
the best-first search is slower than the limited depth-first search by a factor of ten to

hundred.
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Figure 6.1: Dependency of the total matching time on the number of orders. We show
the performance of the best-first search (solid lines), depth-first search that identifies all
matches (dashed lines), and depth-first search with a limit on the number of matches

(dotted lines). The graphs on the left are in logarithmic scale, whereas the graphs on the
right are in linear scale.
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Figure 6.2: Dependency of the response time on the number of orders. The legend is the

same as in Figure 6.1.
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Figure 6.3: Dependency of the throughput on the number of orders. The legend is the
same as in Figure 6.1.
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Figure 6.4: Dependency of the total matching time on the number of attributes. The
legend is the same as in Figure 6.1.
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Figure 6.5: Dependency of the response time on the number of attributes. The legend is
the same as in Figure 6.1.
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Figure 6.6: Dependency of the throughput on the number of attributes. The legend is
the same as in Figure 6.1.
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Figure 6.9: Dependency of the throughput on the number of values per attribute. The
legend is the same as in Figure 6.1.
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Figure 6.10: Dependency of the total matching time on the matching density. The legend
is the same as in Figure 6.1.
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(c) Tests with ten attrlbutes 1,024 values per attribute, and 131,072 orders.

Figure 6.11: Dependency of the response time on the matching density. The legend is the
same as in Figure 6.1.
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Figure 6.12: Dependency of the throughput on the matching density. The legend is the
same as in Figure 6.1.
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6.2 Real markets

The results of experiments with real-world markets have been similar to those of artificial
tests. First, we have applied the system to a used-car market with eight attributes, which
is an extended version of the example market. Second, we have experimented with a

financial market, which involves trading of commercial paper.

6.2.1 Used cars

We have tested the system on a car market with eight attributes: transmission, number
of doors, interior color, exterior color, year, model, options, and mileage (Figures 6.13
and 6.14). The market includes all models offered by AutoNation
(www.autonation.com); it comprises seven interior colors, fifty-two exterior colors, 257
models, and 1,024 option packages. We have also defined three standard sets of interior
colors, three sets of exterior colors, and forty-three sets of models.

We have run experiments with up to 262,144 orders; the control variables have
included the search strategy, number of orders, and the matching density. We have con-
sidered the three search strategies, seventeen different settings for the number of orders,
and four settings for matching density. For each combination of settings, we have run
three experiments, and we show the results in Figures 6.15-6.22.

Observe that the system readily scales to markets with 262,144 orders, and it usually
processes 40 to 4,000 new orders per second. The best-first search is more efficient than
the depth-first search that identifies all matches; the saving factor in large markets varies
from 1.0 to 10.1, with mean at 2.5. For markets with low matching density, the speed
of the best-first strategy is close to that of the depth-first search with limited number of
matches. On the other hand, for large high-density markets, the best-first search strategy

is about one hundred times slower than the limited depth-first search.
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Attribute 1: Transmission (2 values)
Manual, automatic.

Attribute 2: Number of doors (3 values)
Two, three, four.

Attribute 3: Interior color (7 values)
Black, gray, white, tan, brown, blue, red.

Standard sets
Dark (2 values)
Medium (3 values)
Light (2 values)

Attribute 4: Exterior color (52 values)

Amazon Green Dark Green Satin Light Gray

Arizona Beige Dark Toreador Red Light Parchment Gold
Atlantic Blue Deep Emerald Green Light Sapphire Blue
Autumn Orange Deep Jewel Green Malibu Blue

Autumn Red Deep Wedgewood Blue Mandarin Gold

Black Ebony Medium Brown

Bright Amber Electric Green Medium Charcoal Blue
Bright Atlantic Blue Estate Green Medium Charcoal Green
Bright Red Fort Knox Gold Medium Gray

Bright Silver Graphite Blue Medium Royal Blue
Cabernet Red Harvest Gold Medium Steel Blue
Charcoal Green Infra Red Medium Titanium
Chesapeake Blue Island Blue Medium Wedgewood Blue
Chestnut Ivory Parchment Midnight Gray

Chrome Yellow Jewel Green Performance Red

Cloud White Laser Red Tinted Silver

Crystal White Light Blue

Dark Blue Light Brass

Standard sets

Dark (18 values)
Medium (20 values)
Light (14 values)

Figure 6.13: Attributes 1-4 of the used-car market (also see Figure 6.14).
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Attribute 5: Year (106 values)
Integer values from 1896 to 2001.

Attribute 6: Model (257 values)

All models offered by AutoNation (www.autonation.com).

Standard sets
American (138 values)  Chevrolet (26 values)

European (48 values) Chrysler (9 values)
Japanese (71 values) Dodge (12 values)
Ford (19 values)

Sedans (139 values) GMC (10 values)
Sports Cars (28 values) Honda (8 values)
SUVs (57 values) Hyundai (6 values)
Trucks (23 values) Infiniti (4 values)
Vans (10 values) Isuzu (4 values)
Jaguar (4 values)
Acura (6 values) Jeep (4 values)
Audi (6 values) Kia (5 values)
BMW (7 values) Land Rover (2 values)
Buick (5 values) Lexus (8 values)
Cadillac (5 values) Lincoln (5 values)

Attribute 7: Option package (1,024 values)

Mazda (11 values)
Mercedes Benz (9 values)
Mercury (5 values)
Mitsubishi (6 values)
Nissan (8 values)
Oldsmobile (5 values)
Plymouth (5 values)
Pontiac (8 values)
Porsche (2 values)
Saturn (6 values)
Subaru (3 values)
Suzuki (4 values)
Toyota (16 values)
Volkswagen (7 values)
Volvo (7 values)

Standard combinations of options offered by AutoNation.

Attribute 8: Mileage (500,001 values)
Integer values from 0 to 500,000.

Figure 6.14: Attributes 5-8 of the used-car market (also see Figure 6.13).
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Figure 6.15: Performance in the car market for matching density of 0.001 (left) and
0.01 (right). We show the performance of the best-first search (solid lines), depth-first
search that identifies all matches (dashed lines), and depth-first search with a limit on
the number of matches (dotted lines).
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Figure 6.16: Performance in the car market for matching density of 0.1 (left) and 1 (right).
The legend is the same as in Figure 6.15.
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Figure 6.17: Dependency of the total matching time on the number of orders. We give the
results for the best-first search (solid lines), depth-first search that identifies all matches
(dashed lines), and depth-first search with a limit on the number of matches (dotted
lines). The graphs on the left are in logarithmic scale, whereas the graphs on the right
are in linear scale.
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Figure 6.18: Dependency of the response time on the number of orders. The legend is
the same as in Figure 6.17.
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Figure 6.19: Dependency of the throughput on the number of orders. The legend is the
same as in Figure 6.17.
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Figure 6.21: Dependency of the response time on the matching density. The legend is the
same as in Figure 6.17.
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Figure 6.22: Dependency of the throughput on the matching density. The legend is the
same as in Figure 6.17.

127



6.2.2 Commercial paper

When a large company needs a short-term loan, it may issue commercial paper, which
is a fixed-interest “promissory note,” similar to a bond. The company sells commercial
paper to investors, for a certain period of time, and later returns their money along with
interest; the payment day is called the maturity date. The main difference from bonds is
duration of the loan: commercial paper is issued for a short term, from one week to nine
months.

Investors usually describe the income from commercial paper in terms of the annual
interest rate. For example, suppose that a company has issued a seven-day commercial
paper, in the amount of $10,000,000, with annual interest 10%. Then, the daily interest is
10%/365 = 0.0274%, and the total amount of interest is about $10,000,000-0.0274% -7 =
$19,180. The exact amount is slightly higher, $19,197, because of compound interest.

The appropriate interest depends on the current rate of US Treasury bonds, and on
the chance of a company’s bankruptcy before the maturity date. The estimated chance
of bankruptcy depends on the company’s reputation and the paper’s time until maturity.
The investors expect less reliable companies to pay higher interest; furthermore, they
expect that, the more time to maturity, the higher the interest. For example, a risky
software provider should pay higher interest than a reliable utilities company, and a nine-
month paper should carry higher interest than a one-month paper of the same company.

After investors buy a commercial paper, they may resell it on a secondary market,
before the maturity date. For example, suppose that a buyer has bought a three-month
paper in May, and then decided that she needs money in June. Then, she may resell the
paper and keep part of the interest; if the rate has not changed, she will get one-month
interest. On the other hand, if the interest rate of the company’s paper has changed,

the sale price may be different. If a buyer is lucky, she may get more than one-month
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interest, but in an unfavorable case she may get smaller interest or even lose part of her
investment.

We have described commercial paper by two attributes:
e Company (5000 values): 5000 US companies.
e Maturity date (2550 values): Business days from year 2001 to 2010.

We have run experiments with up to 524,288 orders; we show the results in Fig-
ures 6.23 and 6.24, and plot the dependency of the system’s performance on the control
variables in Figures 6.25-6.30. The experiments have confirmed that the system scales to
large markets, and that its performance in real-life markets is close to the artificial-test
results.

The best-first search system usually processes 100 to 10,000 new orders per second;
it outperforms the depth-first search that identifies all matches by a factor of 2.3 to 8.8,
with mean at 4.5. On the other hand, it is slower than the limited depth-first search;
thus, the search for optimal matches takes more time than the suboptimal matching.
This speed difference is especially significant in markets with high matching density; in
particular, if the density is 1, the best-first search is hundred times slower than the limited

depth-first search.
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Figure 6.23: Performance in the commercial-paper market for matching density of 0.001
(left) and 0.01 (right). We show the performance of the best-first search (solid lines),
depth-first search that identifies all matches (dashed lines), and depth-first search with a
limit on the number of matches (dotted lines).
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Figure 6.24: Performance in the commercial-paper market for matching density of 0.1
(left) and 1 (right). The legend is the same as in Figure 6.23.
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Figure 6.25: Dependency of the total matching time on the number of orders. We give the

results for the best-first search (solid lines), depth-first search that identifies all matches
(dashed lines), and depth-first search with a limit on the number of matches (dotted

lines). The graphs on the left are in logarithmic scale, whereas the graphs on the right

are in linear scale.
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Figure 6.26: Dependency of the response time on the number of orders. The legend is
the same as in Figure 6.25.
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Figure 6.27: Dependency of the throughput on the number of orders. The legend is the
same as in Figure 6.25.
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Figure 6.28: Dependency of the total matching time on the matching density. The legend

is the same as in Figure 6.25.
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Figure 6.29: Dependency of the response time on the matching density. The legend is the
same as in Figure 6.25.
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same as in Figure 6.25.
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Chapter 7

Concluding Remarks

Although researchers have long realized the importance of exchange markets, they have
not applied the exchange model to trading complex commodities. The reported work is a
step toward the development of automated complex-commodity exchanges, based on the
formal model proposed by Johnson [2001], Hu [2002], and Gong [2002].

We have defined price and quality functions, which allow traders to specify price
constraints and preference among potential trades, and developed algorithms for fast
identification of highest-quality matches between buy and sell orders. These algorithms
help to maximize the satisfaction of traders and enforce “fair” choices among available
matches, which are consistent with financial-industry rules of fair trading.

The implemented system supports markets with up to 300,000 orders, and it pro-
cesses hundreds of new orders per second. Its speed is close to the speed of the earlier
versions of the system, which did not use price and quality functions, and did not guar-
antee finding best matches.

On the negative side, the system does not allow for bulk discounts, barter trading,
or matches between two nonindex orders. These concepts are commonly found in today’s
markets, and we plan to address them as part of future research. In addition, we are
currently working on a distributed version of the exchange, which will improve scalability;
it will include a central matcher and multiple preprocessing modules, whose roles are

similar to that of stock brokers on Wall Street.
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