

Office of Graduate Studies
University of South Florida

Tampa, Florida

 CERTIFICATE OF APPROVAL

This is to certify that the thesis of

JENNY YING HU

in the graduate degree program of
Computer Science

was approved on March 27, 2002
for the Master of Science in Computer Science degree.

Examining Committee:

Major Professor: Eugene Fink, Ph.D.

Member: Dmitry B. Goldgof, Ph.D.

Member: Sudeep Sarkar, Ph.D.

EXCHANGES FOR COMPLEX COMMODITIES:
REPRESENTATION AND INDEXING OF ORDERS

by

JENNY YING HU

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science and Engineering

College of Engineering
University of South Florida

May 2002

Major Professor: Eugene Fink, Ph.D.

Acknowledgements

I appreciated the help of my colleagues, family, and friends, who has greatly contributed

to my work. I am grateful to Eugene Fink, who has supervised my thesis work and

provided guidance in all aspects of my research. I thank Dmitry Goldgof and Sudeep

Sarkar for their comments and suggestions, Josh Johnson for helping me understand the

code, and Savvas Nikiforou for his assistance with software problems.

I am grateful to my husband, Guiwen Cheng, who has always been here to help

me, and to my daughter Annie, who has constantly contributed troubles and made me

laugh. I also thank my parents, Zhiqiong Yang and Chaoyuan Hu, who supported me

coming to the United States and have always given me their great love.

© Copyright by Jenny Ying Hu 2002
All rights reserved

Table of Contents

Chapter 1 Introduction .. 1
1.1 Example... 2
1.2 Previous Work... 8

1.2.1 Combinatorial Auctions.. 8
1.2.2 Advanced Semantics .. 10
1.2.3 Exchanges... 11
1.2.4 General-Purpose Systems... 12

1.3 Contributions... 13
Chapter 2 General Exchange Model ... 15

2.1 Orders .. 15
2.1.1 Buyers and Sellers... 15
2.1.2 Concept of an Order .. 16
2.1.3 Quality Functions .. 18
2.1.4 Order Sizes .. 20
2.1.5 Market Attributes .. 21

2.2 Order Execution .. 23
2.2.1 Fills ... 23
2.2.2 Multi-Fills... 25
2.2.3 Equivalence of Multi-Fills.. 28
2.2.4 Price Averaging .. 30

2.3 Combinatorial Orders.. 33
2.3.1 Disjunctive Orders .. 33
2.3.2 Conjunctive Orders.. 36
2.3.3 Chain Orders.. 41

Chapter 3 Order Representation.. 44
3.1 Item Sets.. 44
3.2 Price, Quality, and Size ... 46
3.3 Cancellations and Inactive Orders... 47
3.4 Modifications .. 48
3.5 Confirmations.. 50
3.6 User Actions.. 51

Chapter 4 Indexing Structure .. 55
4.1 Architecture... 55
4.2 Indexing Trees... 60
4.3 Basic Tree Operations ... 64
4.4 Search for Matches.. 68

Chapter 5 Concluding Remarks .. 72

 i

EXCHANGES FOR COMPLEX COMMODITIES:
REPRESENTATION AND INDEXING OF ORDERS

by

JENNY YING HU

An Abstract

of a thesis submitted in partial fulfillment

of the requirements for the degree of
Master of Science in Computer Science

Department of Computer Science and Engineering
College of Engineering

University of South Florida

May 2002

Major Professor: Eugene Fink, Ph.D.

 ii

The modern economy includes a variety of markets with millions of participants, and the

Internet has opened opportunities for the development of new marketplaces. Researchers

have extensively studied various auction algorithms, which allow on-line trading of

complex goods. They have also developed automated exchange-based markets for

standardized commodities, such as stocks and bonds. On the other hand, they have done

little work on exchange systems for nonstandard goods.

The purpose of the reported work is to develop an automated exchange for

complex nonstandard commodities, such as used cars and collectible stamps. First, we

formalize the concept of complex commodities and related trading rules. Second, we

propose a distributed exchange architecture, which consists of a central server for

matching buyers and sellers, and remote user interfaces. Third, we describe indexing

structures for fast identification of matches between buyers and sellers.

The developed system supports complex constraints in the description of

commodities and their prices. For example, a car buyer can specify a set of desirable

vehicles and their features, and a dependency of the acceptable price on the features. The

system also supports constraints on combinations of transactions; it allows a trader to

specify mutually exclusive transactions, as well as simultaneous purchase or sale of

several commodities.

Abstract Approved:

 Major Professor: Eugene Fink, Ph.D.
 Assistant Professor, Department of Computer Science and Engineering

 Date Approved:

 iii

Chapter 1 Introduction

The modern economy includes a variety of markets, from cars to software to office space,

and most markets involve middlemen [Rust and Hall, 2001]. For example, customers

usually buy cars through dealerships, which in turn acquire cars from manufacturers; the

sale of used vehicles may also involve dealers. These resales increase the cost of goods

since they include commissions for the middlemen. The Internet has opened opportunities

for reducing the number of middlemen [Klein, 1997; Turban 1997; Wrigley, 1997;

Bakos, 2001], and many companies have experimented with direct sales over the web.

The on-line marketplaces include bulletin boards, auctions, and exchanges.

Electronic bulletin boards are similar to traditional newspaper classifieds. They

vary from sale catalogs to newsgroup postings, which help buyers and sellers to find each

other; however, they often require a customer to invest significant time into searching

among multiple ads. For this reason, many buyers prefer on-line auctions, such as eBay

(www.ebay.com). Auctions have their own problems, including significant computational

costs and asymmetry between buyers and sellers. For example, a traditional auction

requires a buyer to bid on a specific item; it helps sellers to obtain the highest price, but it

limits buyers' flexibility. Furthermore, most auctions do not allow fast sales; for instance,

if a seller posts an item on eBay, she can sell it in three or more days, but not sooner.

An exchange-based market does not have these problems; it ensures symmetry

between buyers and sellers, and supports fast-paced trading. Examples of liquid markets

include the traditional stock and commodity exchanges, as well as currency and bond

markets. For instance, a trader can buy or sell any public stock in seconds, at the best

available price. The main limitation of these exchanges is rigid standardization of

tradable items. For instance, the New York Stock Exchange allows trading of about

3,100 securities, and the buyer or seller has to indicate a specific item, such as IBM stock.

For most goods and services, the description of a desirable trade is more complex.

For instance, a car buyer needs to specify a make, model, options, color, and other

 1

features. She usually has a certain flexibility and may accept any car that satisfies her

constraints, rather than looking for one specific vehicle. She may also need to include

preferences into her description; for example, she may indicate that a white Mustang is

acceptable but less desirable than a red Mustang. An effective on-line exchange for

nonstandard commodities should satisfy the following requirements:

 • Allow complex constraints in specifications of buy and sell orders

 • Support fast-paced trading for markets with millions of orders

 • Include optimization techniques that maximize traders' satisfaction

 • Allow a user to select preferred trades among matches for her order

The purpose of the reported work is to develop an automated exchange for

complex goods and services. We begin with a motivating example, review of the

previous work on automated auctions and exchanges, and summary of our main

contributions.

1.1 Example

We give an example of a car exchange that would allow trading new and used vehicles.

To simplify this example, we assume that a trader can describe a car by four attributes:

model, color, year, and mileage. For instance, a seller may offer a red Mustang, made in

1999, with 35,000 miles.

In Figure 1.1(a), we illustrate a traditional car market, which includes

manufacturers, car dealers, and customers. Dealers get cars from manufacturers and resell

them to individual clients. In Figure 1.1(b), we show an alternative trading model with a

centralized exchange, similar to a stock market. Car dealers may participate in this

exchange by acquiring large quantities of cars and reselling them to customers; however,

they are no longer an essential link, and manufacturers can sell directly to end users.

The exchange allows placing buy and sell orders, analogous to the orders in a

stock market. A prospective buyer can place a buy order, which includes a description of

the desired vehicle and a maximal acceptable price. For instance, she may indicate that

she wants a red Mustang, made after 1999, with less than 20,000 miles, and she is willing

 to pay $19,000. Similarly, a seller can place a sell order; for instance, a manufacturer

may offer a brand-new Mustang of any color for $18,000.

 2

CustomersDealersManufacturers

Car
Exchange

Dealers

CustomersManufacturers

(a) (b)

Figure 1.1: The traditional car market versus a centralized exchange. The usual market
includes manufacturers, dealers, and customers (a). An alternative scheme is to allow
trading through the central exchange (b).

Buy:
Red Mustang,

made after 1999,
at most 20,000 miles,

less than $19,000

Sell:
Any color Mustang,

made in 2001,
0 miles,

more than $18,000
Fill:

Red Mustang,
made in 2001,

0 miles,
$18,500

Figure 1.2: Matching orders and the resulting trade. When the system finds a match
between two orders, it generates a fill, which is a trade that satisfies both parties.

The exchange system searches for matches between buy and sell orders, and

generates corresponding fills, that is, transactions that satisfy both buyers and sellers. In

the previous example, it will determine that a brand-new red Mustang for $18,500

satisfies both the buyer and the seller (see Figure 1.2); thus, the customer will acquire a

red Mustang from the manufacturer for $18,500.

If the system does not find fills for some orders, it keeps them in memory and

tries to match them with incoming orders. We illustrate it in Figure 1.3, where the system

keeps the buy order for two hours, until it receives a matching sell order.

If the system finds several matches for an order, it chooses the match with the best

price. For example, the buy order in Figure 1.4(a) will trade with the cheaper of the two

sell orders. If two matching orders have the same price, the system gives preference to

the earlier one, as shown in Figure 1.4(b). These rules correspond to the standard

“fairness” requirements of the financial industry.

The system allows a user to trade several identical items by specifying a size for

an order. For example, a dealer can place an order to sell four Mustangs, which may trade

 3

with several buy orders; that is, the system can match it with a smaller buy order (see

Figure 1.5) and later find a match for the remaining cars. In addition, the user can specify

a minimal acceptable size of a transaction. For instance, the dealer may place an order to

sell four Mustangs, and indicate that she wants to trade at least two cars. In this case, her

order will match with buy orders whose size is at least two (see Figure 1.6a). If an order

includes a minimal size, a user can indicate that she will accept a simultaneous trade with

several orders, if their total size is above the specified minimum (see Figure 1.6b).

Buy:
Red Mustang...

Sell:
Any color Mustang...

Fill:
Red Mustang...

Placed at 9am Placed at 11am

Filled at 11am

Figure 1.3: Matching an old order with a new one. If the system cannot find an immediate
match for an order, it keeps looking for matches among new orders. In this example, it
gets a buy order at 9am and finds a match two hours later.

Furthermore, a user can indicate that a transaction size must be divisible by a

certain number, called a size step. For example, a wholesale agent may specify that she is

selling fifteen cars, and the transaction size must be divisible by five. In this case, she

may sell five, ten, or fifteen cars (see Figure 1.7).

A user can specify that she is willing to trade any of several items. For example, a

customer can place an order to buy either a Mustang or a Camaro. As another example, a

dealer can offer ten cars, which may be Mustangs, Camaroes, and Vipers; then, she may

end up selling ten Mustangs, or ten Camaroes, or three Mustangs and seven Vipers.

If a user describes a set of items, she can indicate that the price depends on an

item. For example, if a customer wants a Mustang or Camaro, she may offer $18,500 for

a Mustang and $17,500 for a Camaro. Furthermore, she may offer an extra $500 if a car

is red, and subtract $1 for every ten miles on its odometer.

A user can also specify her preferences for choosing among potential trades; for

instance, she may indicate that a red Mustang is better than a white Mustang, and that a

Mustang for $19,000 is better than a Camaro for $18,000 (see Figure 1.8). She specifies

her preferences by providing some measure of transaction quality, that is, assigning a

numeric quality to each acceptable transaction.

 4

Sell:
Mustang,
$18,000

Fill:
Mustang,
$18,000

Buy:
Mustang,
$19,000

Sell:
Mustang,
$17,000

Sell:
Mustang,
$18,000

Fill:
Mustang,
$18,500

Buy:
Mustang,
$19,000

Sell:
Mustang,
$18,000

Placed at 1pm Placed at 2pm

(a) (b)
Figure 1.4: Fairness rules. When the system finds several matches for an order, it chooses
the best-price match (a). If two matches have the same price, it prefers the earlier
order (b).

Fill:
2 Mustangs

Buy:
2 Mustangs

Sell:
4 Mustangs

removed reduced

Sell:
2 Mustangs

Figure 1.5: Example of order sizes. Buyers and sellers can trade several items at once by
specifying an order size. When the system finds a match, it completely fills the smaller
order and reduces the size of the larger one.

Fill:
2 Mustangs

Buy:
2 Mustangs

Sell:
4 Mustangs,

at least 2

Buy:
1 Mustang

Fill:
1 Mustang

Buy:
1 Mustang

Sell:
4 Mustangs,

at least 2

Buy:
1 Mustang

Fill:
1 Mustang

 no match

(a) (b)

Figure 1.6: Order with a minimal acceptable size. It matches with orders whose size is no
smaller than the minimal size (a). The trader may optionally allow matching with
multiple small orders that have appropriate total size (b).

Fill:
10 Mustangs

Buy:
12 Mustangs

Sell:
15 Mustangs,

step 5

Figure 1.7: Specifying a size step. The fill size must be divisible by this step.

 5

For example, suppose that a buyer is looking for a Toyota Echo made after 1998.

She has $10,000 for the purchase, and she tentatively plans to stay within this limit;

however, she may consider paying up to $12,000 if it allows buying a much better car.

She can specify her quality estimate as shown in Figure 1.9. In this example, she assigns

a hundred-point quality to a 1999 model for $10,000, adds extra points if a car is newer,

subtracts points for miles, and adds or subtracts points depending on the price. Based on

this quality measure, she prefers the first of the three sell orders in Figure 1.9.

If a trader is interested in several alternative transactions, she can specify that she

wants to execute one of several orders. For example, suppose that she wants to buy a

Camry for $20,000, or sell an Echo for $12,000, or sell a Mustang for $18,000. After

filling one of these orders, the system will cancel the other two (see Figure 1.10). A

trader can also indicate that she wants to complete several transactions at once. For

example, she may place an order to sell a Tercel for $10,000 and buy a Camry for

$20,000, and then the system must complete both transactions together (see Figure 1.11).

Furthermore, a trader can indicate that several orders should be executed in a

sequence. For example, she may first sell a Tercel for $10,000, then buy a Sequoia for

$30,000, and finally buy a trailer for $2,000 (see Figure 1.12). The system will match the

second order only after finding a fill for the first one, and it will match the last order after

filling the first two.

Fill:
Red Mustang,

$19,000

Buy:
Mustang or

Camaro,
$19,000

Sell:
Red Mustang,

 $19,000

Buyer's preferences:

Red Mustang is better
than white Mustang

$19,000 Mustang is better
than $18,000 Camaro

Sell:
White Mustang,

 $19,000

Sell:
Red Camaro,

 $18,000

Figure 1.8: Example of preferences. A customer wants to buy a Mustang or Camaro, and
she specifies her preferences; the system uses them to choose among matching orders.

 6

Fill:
Echo,
2001,

10,000 miles,
$12,000

Buy:
Echo,

after 1998,
$12,000

Sell3:
Echo,
 1999,

30,000 miles,
$7,000

Buyer's quality measure:

Echo, 1999, 0 miles, $10,000
Quality: 100 points

If made after 1999:
 +5 if in 2000
 +10 if in 2001
If mileage is not zero:

−1 for each 1,000 miles
If price is above $10,000:

−1 for each $250 above $10,000
If price is below $10,000:
 +1 for each $500 under $10,000

Sell2:
Echo,
 2000,

20,000 miles,
$11,000

Sell1:
Echo,
 2001,

10,000 miles,
$12,000

Sell1 quality: 100+10−10−8 = 92
Sell2 quality: 100+5−20−4 = 81
Sell3 quality: 100+0−30+6 = 76

Figure 1.9: Example of a quality measure. A customer encodes her preferences by a
numeric quality, and the system uses it to compare matching orders.

Sell:
Echo,

$12,000

Buy:
Mustang,
$19,000

Sell:
Mustang,
$18,000

or

Fill:
Mustang,
$18,500

Buy:
Camry,
$20,000

remove remove

Figure 1.10: Executing one of several alternative transactions. The system fills one of the
alternative orders and then removes the others.

Buy:
Tercel,
$11,000

and

Fill:
Tercel,
$10,500

Sell:
Camry,
$19,000

Fill:
Camry,
$19,500

Sell:
Tercel,
$10,000

Buy:
Camry,
$20,000

Figure 1.11: Executing two orders at once.

 7

Sell:
Tercel,
$10,000

Buy:
Sequoia,
$30,000

Buy:
Trailer,
$2,000

Figure 1.12: Executing several orders in a sequence.

A customer can request additional information about potential trades before

committing to one of them. For instance, she can view the pictures of matching cars,

along with their technical descriptions, and manually select the best match. After placing

an order, the customer can modify its description without removing it from the market; in

particular, she can change its price and size, and modify the item description.

1.2 Previous Work

Economists and computer scientists have long realized the importance of auctions and

exchanges, and studied a variety of trading models. The related computer science

research has been focused on optimal matches in various auction scenarios, and on

general-purpose systems for auctions and exchanges. It has led to successful systems for

Internet auctions, such as eBay (www.ebay.com), Bid.Com (www.bid.com), and Yahoo

Auctions (auctions.yahoo.com). Some companies have also built on-line auctions for

business-to-business transactions; for example, FreeMarkets (www.freemarkets.com) has

deployed a reverse auction that allows suppliers to bid for a large contract with a business

customer.

Although these auctions are more effective than traditional bulletin boards, they

have the typical drawbacks of auction markets, including significant computational

requirements and asymmetric treatment of buyers and sellers.

Recently, researchers have developed several efficient systems for combinatorial

auctions, which allow buying and selling sets of commodities rather than individual

items. They have considered not only auctions with completely specified commodities,

but also markets that enable a user to negotiate desirable features of merchandise.

1.2.1 Combinatorial Auctions

A traditional combinatorial auction allows bidding on a set of fully specified items. For

example, Katie may bid on a red Mustang, black Corvette, and silver BMW, for a total

 8

 9

price of $80,000. In this case, she will get all three cars together or nothing; that is, the

system will not generate a partial fill. An advanced auction may allow disjunctions; for

instance, Katie may specify that she wants either a red Mustang and black Corvette or,

alternatively, two silver BMWs. On the other hand, standard combinatorial auctions do

not allow incompletely specified items, such as a Mustang of any color.

Rothkopf et al. [1998] gave a detailed analysis of combinatorial auctions and

described semantics of combinatorial bids that allowed fast matching, but did not develop

a matching algorithm. Nisan discussed alternative semantics for combinatorial bids, for-

malized the problem of searching for optimal and near-optimal matches, and proposed a

linear-programming solution, but did not test its effectiveness [Nisan, 2000; Lavi and

Nisan, 2000].

Sandholm [1999] developed several efficient algorithms for one-seller combina-

torial auctions, and showed that they scaled to a market with about one thousand bids.

Sandholm and his colleagues later improved the original algorithms and implemented a

system that processed several thousand bids [Sandholm, 2000a; Sandholm and Suri,

2000; Sandholm et al., 2001a]. They developed a mechanism for determining a trader’s

preferences and converting them into a compact representation of combinatorial bids

[Conen and Sandholm, 2001]. They also described several special cases of bid

processing that allowed polynomial solutions, proved the NP-completeness of more

general cases, and tested various heuristics for NP-complete cases [Sandholm and Suri,

2001; Sandholm et al., 2001b].

Fujishima proposed an approach for enhancing standard auction rules, analyzed

trade-offs between optimality and running time, and presented two related algorithms

[Fujishima et al., 1999a; Fujishima et al., 1999b]. The first algorithm ensured optimal

matching and scaled to about one thousand bids, whereas the second found near-optimal

matches for a market with ten thousand bids.

Lehmann et al. [1999] investigated heuristic algorithms for combinatorial

auctions and identified cases that allowed truthful bidding, which meant that users did not

benefit from providing incorrect information about their intended maximal bids. Gonen

and Lehmann [2000, 2001] studied branch-and-bound heuristics for processing

combinatorial bids and integrated them with linear programming.

 10

Yokoo et al. [2001a, 2001b] considered a problem of false-name bids, that is,

manipulation of prices by creating fictitious users and submitting bids without intention

to buy; they proposed auction rules that discouraged such bids.

Andersson et al. [2000] compared the main techniques for combinatorial auctions

and proposed an integer-programming representation that allowed richer bid semantics.

In particular, they removed some of the restrictions imposed by Rothkopf et al. [1998].

Wurman et al. [2001] have compared a variety of previously developed auctions

and identified the main components of an automated auction, including bid semantics,

clearing mechanism, rules for pricing and canceling bids, and policies for hiding

information from other users. They proposed a standardized format for describing the

components of each specific auction.

Although the developed systems can efficiently process several thousand bids,

their running time is superlinear in the number of bids, and they do not scale to larger

markets.

1.2.2 Advanced Semantics

Several researchers have studied techniques for specifying the dependency of an item

price on the number and quality of items. They have also investigated techniques for

processing “flexible” bids, specified by hard and soft constraints, similar to buy orders in

Figures 1.2, 1.3, and 1.8.

Che [1993] analyzed auctions that allowed negotiating not only the price, but also

the quality of a commodity. A bid in these auctions is a function that specifies a desired

trade-off between the price and quality. Cripps and Ireland [1994] considered a similar

setting and suggested several different strategies for bidding on the price and quality.

Sandholm and Suri [2001] studied combinatorial auctions that allowed bulk

discounts; that is, they enabled a bidder to specify a dependency between item price and

order size. For example, a car dealer could be willing to buy five Toyota Echoes for

$10,000 each, or ten Echoes for $9,500 each. Lehmann et al. [2001] also considered the

dependency of price on order size, showed that the corresponding problem of finding best

matches was NP-hard, and developed a greedy approximation algorithm.

 11

Bichler discussed a market that would allow negotiations on any attributes of a

commodity [Bichler et al., 1999; Bichler, 2000]; for instance, a car buyer could set a

fixed price and negotiate the options and service plan. He analyzed several alternative

versions of this model, and concluded that it would greatly increase the economic utility

of auctions; however, he pointed out the difficulty of implementing it and did not propose

any computational solution.

Jones [2000] extended the semantics of combinatorial auctions and allowed

buyers to use complex constraints; for instance, a car buyer could bid on a vehicle that

was less than three-year old, or on the fastest available vehicle. She suggested an

advanced semantics for these constraints, which allowed compact description of complex

bids; however, she did not allow complex constraints in sell orders. She implemented an

algorithm that found near-optimal matches, but it scaled only to one thousand bids.

This initial work leaves many open problems, which include the use of complex

constraints with general preference functions, symmetric treatment of buy and sell orders,

and design of efficient matching algorithms for advanced semantics.

1.2.3 Exchanges

Economists have extensively studied traditional stock exchanges; for example, see the

historical review by Bernstein [1993] and the textbook by Hull [1999]. They have

focused on exchange dynamics and related mathematics, rather than on efficient

algorithms [Cason and Friedman, 1999; Bapna et al., 2000]. Several computer scientists

have also studied trading dynamics and proposed algorithms for finding the market

equilibrium [Reiter and Simon, 1992; Cheng and Wellman, 1998; Andersson and Ygge,

1998].

Successful on-line exchanges include electronic communication networks, such as

REDI (www.redibook.com), Island (www.island.com), NexTrade (www.nextrade.org),

Archipelago (www.tradearca.com), and Instinet (www.instinet.com). The directors of

large stock and commodity exchanges are also considering electronic means of trading.

For example, the Chicago Mercantile Exchange has deployed the Globex system, which

supports trading around the clock.

 12

Some auction researchers have investigated the related theoretical issues; they

have viewed exchanges as a variety of auction markets, called continuous double

auctions. In particular, Wurman et al. [1998a] proposed a theory of exchange markets

and implemented a general-purpose system for auctions and exchanges, which processed

traditional fully specified orders. Sandholm and Suri [2000] developed an exchange for

combinatorial orders, but it could not support markets with more than one thousand

orders. Blum et al. [2002] explored methods for improving liquidity of standardized

exchanges. Kalagnanam et al. [2000] investigated techniques for placing orders with

complex constraints and identifying matches between them. They developed network-

flow algorithms for finding optimal matches in simple cases, and showed that more

complex cases were NP-complete. The complexity of their algorithms was superlinear in

the number of orders, and the resulting system did not scale beyond a few thousand

orders.

The related open problems include development of a scalable system for large

combinatorial markets, as well as support for flexible orders with complex constraints.

1.2.4 General-Purpose Systems

Computer scientists have developed several systems for different types of auctions and

exchanges, which vary from specialized markets to general-purpose tools for building

new markets. The reader may find a survey of most systems in the review articles by

Guttman et al. [1998a, 1998b] and Maes et al. [1999].

For example, Chavez and his colleagues designed an on-line agent-based auction;

they built intelligent agents that negotiated on behalf of buyers and sellers [Chavez and

Maes, 1996; Chavez et al., 1997]. Vetter and Pitsch [1999] constructed a more flexible

agent-based system that supported several types of auctions. Preist [1999a; 1999b]

developed a similar distributed system for exchange markets. Bichler designed an

electronic brokerage service that helped buyers and sellers to find each other and to

negotiate through auction mechanisms [Bichler et al., 1998; Bichler and Segev, 1999].

Wurman and Wellman built a general-purpose system, called the Michigan Internet

AuctionBot, that could run a variety of different auctions [Wellman, 1993; Wellman and

Wurman, 1998; Wurman et al., 1998b; Wurman and Wellman, 1999a]; however, they

restricted users to simple fully specified bids. Their system included scheduler and

auctioneer procedures, related databases, and advanced interfaces. Hu et al. [1999]

created agents for bidding in the Michigan AuctionBot; they used regression and learning

techniques to predict the behavior of other bidders. Later, Hu et al. [2000] designed three

types of agents and showed that their relative performance depended on the strategies of

other auction participants. Hu and Wellman [2001] developed an agent that learned the

behavior of its competitors and adjusted its strategy accordingly. Wurman [2001]

considered a problem of building general-purpose agents that simultaneously bid in

multiple auctions.

Parkes built a fast system for combinatorial auctions, but it worked only for

markets with up to one hundred users [Parkes, 1999; Parkes and Ungar, 2000a].

Sandholm created a more powerful auction server, configurable for a variety of markets,

and showed its ability to process several thousand bids [Sandholm, 2000a; Sandholm,

2000b; Sandholm and Suri, 2000].

All these systems have the same key limitation as commercial on-line exchanges:

they require fully specified bids and do not support the use of constraints.

1.3 Contributions

The review of previous work has shown that techniques for trading of complex com-

modities are still limited. Researchers have investigated several auction models, as well

as exchanges for standardized securities, but they have not developed exchanges for

complex goods. The main open problems include design of an automated exchange for

complex securities, and development of a rigorous theory of complex exchanges.

A recent project at the University of South Florida has been aimed at addressing

these problems. Johnson [2001] has defined complex orders and related trading

semantics, which are applicable to a variety of markets. He has developed an exchange

system that supports a market with 300,000 orders and processes 200 to 500 new orders

per second. We have continued his work, extended the order semantics, and developed

indexing structures for fast identification of matches between buy and sell orders.

We view a market as a set of tradable items, and a specific order as its subset. We

allow price functions that show the dependency of the order price on a specific item, as

 13

 14

well as utility functions for encoding preferences among potential trades. We consider

several types of combinatorial orders, which include mutually exclusive transactions,

simultaneous purchase or sale of several commodities, and chains of consecutive trades.

First, we analyze a general trading problem, give a formal model of an exchange

for combinatorial orders, and define the related trading rules (Chapter 2). Then, we

explain the representation of orders in the implemented system and the main operations

supported by the system, such as placement of new orders, modification and cancellation

of orders, and manual selection among potential transactions (Chapter 3). Finally, we

propose a distributed exchange architecture, which consists of a central matcher and

remote user interfaces, and describe the data structures and algorithms that allow fast

search for matches between buy and sell orders (Chapter 4). We conclude with a

summary of results and discussion of future challenges (Chapter 5). Thisisisisiisiis

 15

Chapter 2 General Exchange Model

We describe a general model of trading complex commodities, using a car market as an

example. We formalize the concept of buy and sell orders, consider a trading

environment that allows hard and soft constraints in the order specification, and discuss

methods for representing combinations of purchases and sales. In Chapters 3 and 4, we

will present an automated exchange that supports a limited version of this general model.

2.1 Orders

We begin by defining buy and sell orders, which include descriptions of commodities,

price and size specifications, and traders’ preferences among acceptable transactions. We

then state conditions of a match between a buy order and sell order.

2.1.1 Buyers and Sellers

When a buyer looks for a certain item, she usually has some flexibility; that is, she may

buy any of several acceptable items. For example, if Katie needs a sports car, she may be

willing to buy any of several models, such as a Mustang, Camaro, and Viper. For each

model, Katie has to determine the maximal acceptable price. Furthermore, she may have

preferences among these models; for instance, she may prefer Mustangs to other models,

and she may prefer red cars to black ones.

Similarly, when a dealer sells a vehicle, she has to decide on the minimal

acceptable price. For instance, Laura may be selling a Mustang for no less than $19,000

and a Camaro for no less than $18,000. If the dealer offers multiple items, she may prefer

some sales to others; for example, Laura may prefer to sell the Mustang for $19,000

rather than the Camaro for $18,000.

If a buyer’s constraints match a seller’s constraints, they may trade; that is, the

buyer may purchase an item from the seller. If a buyer finds several acceptable items, she

 16

usually buys the best among them; similarly, a seller may be able to choose the most

attractive deal among several offers.

We use the term buy order to refer to a buyer’s set of constraints; for example,

Katie’s desire to purchase a sports car can be expressed as an order for a sports car, and

her price limits and preferences will be part of this order. When a buyer announces her

desire to trade, we say that she has placed an order. Similarly, a sell order is a seller’s

constraint set that defines the offered merchandise. For instance, Laura may place an

order to sell a Mustang or Camaro, and her order may also include price limits and

preferences.

2.1.2 Concept of an Order

A specific market includes a certain set of items that can potentially be bought and sold;

we denote it by M, which stands for market set. This set may be very large or even

infinite; in the car market, it includes all vehicles that have ever been made, as well as the

cars that can be made in the future.

When a trader makes a purchase or sale, she has to specify a set of acceptable

items, denoted I, which stands for item set; it must be a subset of M, that is, I ⊆ M. For

example, if Katie shops for a brand-new sports car, her set I includes all new sports

vehicles.

In addition, a trader should specify a limit on the acceptable price; for instance,

Katie may be willing to pay $19,000 for a red Mustang, but only $18,500 for a black

Mustang, and even less for a Camaro. Formally, a price limit is a real-valued function

defined on the set I; for each item i ∈ I, it gives a certain limit Price(i). For a buyer,

Price(i) is the maximal acceptable price; for a seller, it is the minimal acceptable price.

To summarize, a buy or sell order must include two elements (see Figure 2.1a):

• A set of items, I ⊆ M

• A price function, Price: I → R,

 where R is a set of real-valued prices

e

e

Figu
hori
buye
wou

how

exam

prop

price

over

only

bene

lowe

insta

inter

cons

Figu

Laur
 Pric

Priceb
Priceb Prices

Sell order
1

 $19,000

Red
Mustang

 Ib

 Market set
 (a)
re 2.1: Example of a buy order (a) and a
zontal plane represents the market set
r is interested in a certain set Ib of cars
ld buy a red Mustang for $19,000. Her o

The prices in consumer markets

ever, traders in some specialized mar

ple, mortgage brokers often view the i

erties of such price measures may differ

 may not be additive; for instance, if a

all interest is not 11%.

We allow such price measures and

 requirement is that a price decrease a

fits a seller. In other words, the buyer

st available price, whereas the seller

nce, bank customers look for low-inte

ests.

We say that a buy order matches

istent with the seller’s constraints, thu

re 2.1b). For instance, if Katie is will

a offers a red Mustang for $18,000, th
 Pric
7

 match between a

M, and the vertica
 with different pric
rder matches the se

are usually in do

kets may use diff

nterest rate as the “

 from those of doll

customer takes a 5

do not require the

lways benefits a b

is interested in find

tries to get the h

rest loans, wherea

 a sell order if th

s allowing a mutu

ing to pay $19,00

en their orders ma
Ib

Is

Buy order

 Market set
 (b)
buy and sell order (b). The
l axis is the price R. The
e limits; in particular, she
ll order on the right.

llars or other currencies;

erent price measures. For

price” of a mortgage. The

ar prices. In particular, the

% loan and a 6% loan, the

 use of dollar prices. The

uyer, and a price increase

ing a given item with the

ighest possible price. For

s bankers try to get high

e buyer’s constraints are

ally acceptable trade (see

0 for a red Mustang, and

tch. Formally, a buy order

 18

(Ib, Priceb) matches a sell order (Is, Prices) if some item i satisfies both buyer and seller,

at a mutually acceptable price:

 there exists i ∈ Ib I∩ s such that Prices(i) ≤ Priceb(i).

2.1.3 Quality Functions

Buyers and sellers may have preferences among acceptable trades, which depend on a

specific item i and its price p. For instance, Katie may prefer a red Mustang for $19,000

to a black Camaro for $18,000.

We represent preferences by a real-valued function Qual(i, p) that assigns a

numeric quality to each pair of an item and price. Larger values correspond to better

transactions; that is, if Qual(i1, p1) > Qual(i2, p2), then the user would rather trade i1 at

price p1 than i2 at p2. For example, Katie’s quality function satisfies the following

condition:

Qual(red-Mustang, $19,000) > Qual(black-Camaro, $18,000).

Furthermore, we assume that negative quality values correspond to unacceptable trades;

that is, if Qual(i, p) < 0, the user will not trade item i at price p.

Each trader may use her own quality functions and specify different functions for

different orders. Note that we define quality as a totally ordered function, which is a

simplification, because traders may reason in terms of partially ordered preferences. For

instance, Katie may believe that a $19,000 Mustang is better than an $18,000 Camaro,

but she may be undecided between a $19,000 Mustang and a $17,000 Camaro. Also note

that buyers look for low prices, whereas sellers prefer to get as much money as possible,

which means that quality functions must be monotonic on price:

• Buy monotonicity: If Qualb is a quality function for a buy order, and p1 ≤ p2,

 then, for every item i, we have Qualb(i, p1) ≥ Qualb(i, p2).

• Sell monotonicity: If Quals is a quality function for a sell order, and p1 ≤ p2,

 then, for every item i, we have Quals(i, p1) ≤ Quals(i, p2).

 We do not require a user to specify a quality function for each order; by default,

quality is defined through price. This default quality is a function of a transaction price

and its difference from the user’s price limit. For example, buying a Toyota Echo for

$11,000 is better than buying it for $12,000; as another example, if a user has specified a

 19

$12,000 price limit for an Echo and a $19,000 limit for a Mustang, then buying a

Mustang for $11,000 is better than buying an Echo for $11,000.

 To formalize this rule, we denote the user’s price function by Price, and the price

of an actual purchase or sale of an item i by p. The default quality function must satisfy

the following conditions for every item i and price p:

 • For buy orders: If Price1(i) ≤ Price2(i), then Qual1(i, p) ≤ Qual2(i, p).

 • For sell orders: If Price1(i) ≤ Price2(i), then Qual1(i, p) ≥ Qual2(i, p).

Intuitively, the larger the gap between the price limit and actual price, the better the deal;

that is, the more the user saves, the more she likes the transaction.

 We have considered two default functions, and a user can choose either of them.

The first function is the difference between the price limit and actual price:

 • For buy orders: Qualb(i, p) = Price(i) – p.

 • For sell orders: Quals(i, p) = p – Price(i).

This default is typical for financial and wholesale markets; intuitively, the quality of a

transaction depends on a user’s savings. For example, suppose that a car dealer wants to

purchase either ten Mustangs for $19,000 each or ten Echoes for $12,000 each. Suppose

further that she finds Mustangs for $17,500 and Echoes for $11,000. If she buys

Mustangs, she saves ($19,000 – $17,500) · 10 = $15,000. On the other hand, if she

acquires Echoes, her savings are only ($12,000 – $11,000) · 10 = $10,000. Thus, the first

transaction is more attractive.

 The other default function is the ratio of the price difference to the price limit:

 • For buy orders: Qualb(i, p) =
)(

)(
iPrice

piPrice − .

 • For sell orders: Quals(i, p) =
)(

)(
iPrice

iPricep − .

This default is traditional for consumer markets; it shows a user’s percentage savings. For

instance, if a customer is willing to pay $19,000 for a Mustang, and she gets an

opportunity to buy it for $17,500, then the transaction quality is
000,19$

500,17$$19,000 − = 0.08.

If she is also willing to pay $12,000 for an Echo and finds that it is available for $11,000,

the quality of buying it is
000,12$

000,11$000,12$ − = 0.09, which is preferable to the Mustang.

 20

2.1.4 Order Sizes

If a user wants to trade several identical items, she can include their quantity in the order

specification; for example, Katie can place an order to buy two sports cars, and Laura can

announce a sale of fifty Camaroes. We assume that an order size is a natural number;

thus, we enforce discretization of continuous commodities, such as orange juice.

The user can specify not only an overall order size but also a minimal acceptable

size. For instance, suppose that a Toyota wholesale agent is selling one thousand cars,

and that she works only with dealerships that are buying at least twenty vehicles. Then,

she may specify that the overall size of her order is one thousand, and the minimal size is

twenty. If the minimal size equals the overall size, we say that the order is all-or-none.

For example, the agent may offer twenty cars and specify that her minimal size is also

twenty; then, she will sell either nothing or twenty cars at once.

In addition, the user can indicate that a transaction size must be divisible by a

certain number, called a size step. For example, stock traders often buy and sell stocks in

blocks of hundred. As another example, a wholesale agent may specify that she is selling

cars in blocks of ten; in this case, she would be willing to sell twenty or thirty cars, but

not twenty-five.

To summarize, an order may include six elements:

 • Item set, I

• Price function, Price: I → R

• Quality function, Qual: I × R → R

• Overall order size, Max

• Minimal acceptable size, Min

• Size step, Step

The item set, price limit, and size specification are hard constraints that determine

whether a buy order matches a sell order, whereas the quality function serves as both hard

and soft constraints. Rejection of a negative quality is a hard constraint, whereas choice

of large values among positive-quality transactions is a soft constraint.

To define the matching conditions, we denote the item set of a buy order by Ib, its

price function by Priceb, its quality function by Qualb, and its size parameters by Maxb,

 21

Minb, and Stepb. Similarly, we denote the parameters of a sell order by Is, Prices, Quals,

Maxs, Mins, and Steps. The two orders match if they satisfy the following constraints.

Conditions 2.1

• There is an item i ∈ Ib ∩ Is, such that Prices(i) ≤ Priceb(i).

• There is a price p, such that

▪ Prices(i) ≤ p ≤ Priceb(i), and

▪ Qualb(i, p) ≥ 0 and Quals(i, p) ≥ 0

• There is a mutually acceptable size value size, such that

 ▪ Minb ≤ size ≤ Maxb,
 ▪ Mins ≤ size ≤ Maxs, and

 ▪ size is divisible by Stepb and Steps

The price and quality functions in this model do not depend on a transaction size,

which is a simplification, because sellers sometimes offer discounts for bulk orders. For

example, a car dealer may give a discount to a customer who purchases two cars at once,

and an even larger discount to a buyer of five cars. In such cases, a seller can place

several orders with different price limits and minimal sizes, as illustrated in Figure 2.2. If

a seller wants to complete only one of these orders, she can use the disjunctive-order

mechanism described in Section 2.3.1.

 Sell:
10 Echoes,
 $12,000

Sell:
10 Echoes,
at least 2,
$11,500

Sell:
10 Echoes,
at least 5,
$11,000

Figure 2.2: Example of a bulk discount. If a dealer is offering a lower price for bulk
purchases, she has to place several orders with different prices and minimal sizes.

2.1.5 Market Attributes

The set M of all possible items may be very large, which means that we cannot explicitly

represent all items. For instance, we cannot make a catalog of all feasible cars because it

would include a separate entry for each combination of model, color, features, year, and

mileage. To avoid this problem, we define the set M by a list of attributes and possible

 22

values for each attribute. As a simplified example, we describe a car by four attributes:

Model, Color, Year, and Mileage.

Formally, every attribute is a set of values; for instance, the Model set may

include all car models, Color may include standard colors, Year may include the integers

from 1896 to 2001, and Mileage may include the real values from 0 to 500,000. The

market set M is a Cartesian product of the attribute sets; in this example, M = Model ×

Color × Year × Mileage. If the market includes n attributes, each item is an n-tuple; in the

car example, it is a quadruple that specifies the model, color, year, and mileage.

The Cartesian-product representation is a simplification based on the assumption

that all items have the same attributes. Some markets do not satisfy this assumption; for

instance, if we trade cars and bicycles on the same market, we may need two different

sets of attributes. We further limit the model by assuming that every attribute is one of

the three types:

• Set of explicitly listed values, such as the car model

• Interval of integer numbers, such as the year

• Interval of real values, such as the mileage

The value of a commodity may monotonically depend on some of its attributes.

For example, the quality of a car decreases with an increase in mileage. If a customer is

willing to buy a certain car with 20,000 miles, she will agree to accept an identical

vehicle with 10,000 miles for the same price. That is, a buyer will always accept smaller

mileage if it does not affect other aspects of the transaction.

When a market attribute has this property, we say that it is monotonically

decreasing. To formalize this concept, suppose that a market has n attributes, and we

consider the kth attribute. We denote attribute values of a given item by i1,…, ik,…, in,

and a transaction price by p. The kth attribute is monotonically decreasing if all price and

quality functions satisfy the following constraints:

• Price monotonicity: If Price is a price function for a buy or sell order, and ik ≤ i′k,

then, for every two items (i1,…, ik–1, ik, ik+1,…, in) and (i1,…, ik–1, i′k, ik+1,…, in),

we have Price(i1,…, ik,…, in) ≥ Price(i1,…, i′k,…, in).

 23

• Buy monotonicity: If Qualb is a quality function for a buy order, and ik ≤ i′k,

 then, for every two items (i1,…, ik–1, ik, ik+1,…, in) and (i1,…, ik–1, i′k, ik+1,…, in),

and every price p, we have Qualb(i1,…, ik,…, in, p) ≥ Qualb(i1,…, i′k,…, in, p).

• Sell monotonicity: If Quals is a quality function for a sell order, and ik ≤ i′k,

 then, for every two items (i1,…, ik–1, ik, ik+1,…, in) and (i1,…, ik–1, i′k, ik+1,…, in),

and every price p, we have Quals(i1,…, ik,…, in, p) ≤ Quals(i1,…, i′k,…, in, p).

Similarly, if the quality of commodities grows with an increase in an attribute

value, we say that the attribute is monotonically increasing. For example, the quality of a

car increases with the year of making.

Note that monotonic attributes are numeric, and we cannot apply this notion to an

unordered set of values, such as car models. Also note that we do not consider partially

ordered attribute sets, which is a simplification, because some attributes may be “partially

monotonic.” For example, Camry LX (a deluxe model) is definitely better than Camry CE

(a basic model), whereas the choice between Camry CE and Sienna CE depends on a

specific customer.

Theoretically, we can view the price as one of the monotonic attributes; however,

its use in the implemented system is different from the other attributes.

2.2 Order Execution

We introduce the notion of a fill, which is a specific transaction between buyers and

sellers. We first consider a trade between one buyer and one seller, and then define fills

for transactions that involve multiple buyers and sellers. We use this notion to define

conditions of an acceptable multi-order transaction.

2.2.1 Fills

When a buy order matches a sell order, the corresponding parties can complete a trade,

which involves the delivery of appropriate items to the buyer for an appropriate price. We

use the term fill to refer to the traded items and their price. For example, suppose that

Katie has placed an order for two sports cars, and Laura is selling three red Mustangs. If

the prices of these orders match, Katie may purchase two red Mustangs from Laura; in

 24

this case, we say that two red Mustangs is a fill for her order. Formally, a fill consists of

three parts: a specific item i, its price p, and the number of purchased items, denoted size.

If (Ib, Priceb, Qualb, Maxb, Minb, Stepb) is a buy order, and (Is, Prices, Quals,

Maxs, Mins, Steps) is a matching sell order, then a fill (i, p, size) must satisfy the following

conditions:

 • i ∈ Ib ∩ Is

 • Prices(i) ≤ p ≤ Priceb(i)

 • Qualb(i, p) ≥ 0 and Quals(i, p) ≥ 0

 • max(Minb, Mins) ≤ size ≤ min(Maxb, Maxs)

 • size is divisible by Stepb and Steps

Note that a fill consists of a specific item, price, and size; unlike an order, it

cannot include a set of items or a range of sizes. Furthermore, all items in a fill have the

same price; for instance, a fill (red-Mustang, $18,000, 2) means that Katie has purchased

two red Mustangs for $18,000 each. If she had bought these cars for different prices, we

would represent them as two different fills for the same order.

If both buyer and seller specify a set of items, the resulting fill can contain any

item i ∈ Ib ∩ Is. Similarly, we may have some freedom in selecting the price and size of

the fill; the heuristics for making these choices depend on a specific implementation.

• Item choice: If Ib ∩ Is includes several items, we may choose an item to

maximize either the buyer’s quality or the seller’s quality. A more complex

heuristic may search for an item that maximizes the overall satisfaction of the

buyer and seller.

• Price choice: The default strategy is to split the price difference between a

buyer and seller, which means that p =
2

)i(Price)i(Price sb + . Another standard

option is to favor either the buyer or the seller; that is, we may always use p =

Priceb(i) or, alternatively, we may always use p = Prices(i).

• Size choice: We assume that buyers and sellers are interested in trading at the

maximal size, or as close to the maximum as possible; thus, the fill has the

largest possible size. This default is the same as in financial markets.

In Figure 2.3, we give an algorithm that finds the maximal fill size for two

 25

matching orders. The GCD function determines the greatest common divisor of Stepb and

Steps using Euclid’s algorithm. The main procedure finds the least common multiple of

Stepb and Steps, denoted step, which equals
),GCD(sb

sb

StepStep
 StepStep ⋅ . Then, it computes the greatest

size, divisible by step, that is between max(Minb, Mins) and min(Maxb, Maxs). If no fill

size satisfies these constraints, the algorithm returns zero, which means that the size

specification of the buy order does not match that of the sell order.

After getting a fill, the trader may keep the initial order, reduce its size, or remove

the order; the default option is the size reduction. For example, if Laura has ordered a sale

of three cars and gotten a two-car fill, the size of her order becomes one. If the reduced

size is zero, we remove the order from the market. If the size remains positive but drops

below the minimal acceptable size Min, the order is also removed. The process of

generating a fill and then reducing the buy and sell order is called the execution of these

orders. In Figure 2.4, we illustrate four different scenarios of order execution.

2.2.2 Multi-Fills

If a user specifies a minimal order size, she may indicate that she will accept a trade with

multiple matching orders if their total size is no smaller than her minimal size. For

example, the buy order in Figure 2.5(a) does not match either of the sell orders; however,

if the user allows trades with multiple matching orders, we can generate the transaction

shown in Figure 2.5(a). If the user specifies the size step, then the total size of a multi-

order transaction must be divisible by this step (see Figure 2.5b).

To formalize this concept, suppose that a buyer has placed an order (Ib, Priceb,

Qualb, Maxb, Minb, Stepb), and she is willing to trade with multiple sell orders. Suppose

further that sellers have placed k orders, denoted as follows:

(I1, Price1, Qual1, Max1, Min1, Step1)

(I2, Price2, Qual2, Max2, Min2, Step2)

…

(Ik, Pricek, Qualk, Maxk, Mink, Stepk)

Then, the buy order matches these k sell orders if they satisfy the following conditions.

FILL-SIZE(Maxb, Minb, Stepb; Maxs, Mins, Steps)
The algorithm inputs the size specification of a buy order, Maxb, Minb, and Stepb,
and the size specification of a matching sell order, Maxs, Mins, and Steps.

Find the least common multiple of Stepb and Steps:

 step :=
),(GCD sb

sb

StepStep
 StepStep ⋅

Find the maximal acceptable size, divisible by step:

 size :=
step

MaxMax sb),min(· step

Verify that it is not smaller than the minimal acceptable sizes:
 If size ≥ Minb and size ≥ Mins, then return size
 Else, return 0 (no acceptable size)

GCD(Stepb, Steps)
 small := min(Stepb, Steps)
 large := max(Stepb, Steps)
 Repeat while small ≠ 0:
 rem := large mod small
 large := small
 small := rem
 Return large

Figure 2.3: Computing the fill size for two matching orders; if there is no acceptable size,
the algorithm returns zero.

Buy:
3 cars

Sell:
3 cars

Fill:
3 cars

removed removed

Buy:
4 cars

Sell:
3 cars

Fill:
3 cars

reduced removed

Sell:
1 car

Buy:
3 cars

Sell:
4 cars

Fill:
3 cars

removed reduced

Buy:
1 car

Buy:
3 cars

Sell:
4 cars,

at least 2

Fill:
3 cars

removed removed
(the reduced size

is smaller than
the minimal size)

Figure 2.4: Examples of order execution.

 26

 27

Conditions 2.2

• For every j ∈ [1..k], there is an item ij ∈ Ib I∩ j, such that Pricej(ij) ≤ Priceb(ij)

• For every j ∈ [1..k], there is a price pj, such that

▪ Pricej(ij) ≤ pj ≤ Priceb(ij)

▪ Qualb(ij, pj) ≥ 0 and Qualj(ij, pj) ≥ 0

• There are acceptable sizes, size1, size2,…, sizek, such that

 ▪ For every j ∈ [1..k], Minj ≤ sizej ≤ Maxj

 ▪ For every j ∈ [1..k], sizej is divisible by Stepj

 ▪ Minb ≤ size1 + size2 + … + sizek ≤ Maxb

 ▪ size1 + size2 + … + sizek is divisible by Stepb

Similarly, we can define a match between a sell order and multiple buy orders.

Furthermore, we can allow transactions that involve multiple buy orders and multiple sell

orders, as shown in Figure 2.6. We will define the conditions for such transactions in

Section 2.2.3.

Fill:
2 Echoes,
$11,000

Fill:
2 Echoes,
$11,000

Buy:
6 Echoes,
at least 3,
$11,000

Sell:
 2 Echoes,

$11,000

Sell:
 2 Echoes,

$11,000

Fill:
1 Echo,
$11,000

Fill:
3 Echoes,
$11,000

Buy:
6 Echoes,

step 2,
$11,000

Sell:
1 Echo,
$11,000

Sell:
3 Echoes,
$11,000

(a) (b)
Figure 2.5: Examples of multi-order transactions.

Sell2:
2 Echoes,
at least 2,
$11,000

Fill:
1 Echo,
$11,000

Buy1:
1 Echo,
$11,000

Buy3:
3 Echoes,
at least 3,
$11,000

Fill:
1 Echo,
$11,000

Sell4:
2 Echoes,
at least 2,
$11,000

Fill:
2 Echoes,
$11,000

Figure 2.6: Example of a transaction that involves multiple buy and sell orders.

 28

We refer to the result of a multi-order transaction as a multi-fill, which is a set of

several fills for a given order. Since a multi-fill can include both purchases and sales, we

denote the purchase sizes by positive integers, and the sale sizes by negative integers. For

instance, the orders in Figure 2.6 get the following multi-fills:

Buy1: {(Echo, $11,000, 1)}

Sell2: {(Echo, $11,000, –1), (Echo, $11,000, –1)}

Buy3: {(Echo, $11,000, 1), (Echo, $11,000, 2)}

Sell4: {(Echo, $11,000, –2)}

As another example, the multi-fill {(Camry, $20,000, 1), (Echo, $11,000, –2)} means that

a trader has bought a Camry for $20,000 and sold two Echoes for $11,000 each.

We say that two multi-fills have the same item set if they include the same

commodities, not necessarily at the same price. For example, the multi-fill {(Echo,

$11,000, 1), (Echo, $12,000, 1)} has the same item set as {(Echo, $11,000, 2)}; in this

example, both multi-fills represent the purchase of two Echoes. As another example,

{(Camry, $20,000, 2), (Echo, $11,000, 1), (Echo, $12,000, –2)} includes the same item

set as {(Camry, $20,000, 3), (Camry, $21,000, –1), (Echo, $11,000, –1)}; both multi-fills

represent a purchase of two Camries and sale of an Echo. Finally, we define the empty

multi-fill, denoted Ø, as the empty set of fills.

2.2.3 Equivalence of Multi-Fills

We next observe that different multi-fills may be equivalent from a trader’s point of

view. For instance, buying two Echoes for $10,000 each and immediately selling one of

them for the same price is equivalent to buying one car; that is, the multi-fill {(Echo,

$10,000, 2), (Echo, $10,000, –1)} is equivalent to {(Echo, $10,000, 1)}. As another

example, if two fills include the same set of items and the same total price, most traders

would consider them identical; thus, {(Echo, $10,000, 1), (Tercel, $12,000, 1)} is

equivalent to {(Echo, $11,000, 1), (Tercel, $11,000, 1)}. If a multi-fill M-Fill1 is

equivalent to M-Fill2, we write “M-Fill1 ≡ M-Fill2.”

An exact definition of equivalence may vary across markets. For example, if the

price is in dollars, buying two identical items for prices p1 and p2 is equivalent to buying

each item for
2

21 pp + . On the other hand, if we consider the sale of mortgages and view

 29

the interest rate as a price, this averaging rule may not work because of nonlinear growth

of compound interests.

To formalize the concept of equivalence, we first define the union of multi-fills,

which is the set of all transactions contained in these multi-fills. For example, the union

of {(Echo, $10,000, 1)} and {(Echo, $10,000, 1), (Tercel, $12,000, 1)} is a three-element

multi-fill {(Echo, $10,000, 1), (Echo, $10,000, 1), (Tercel, $12,000, 1)}. This definition is

different from the standard union of sets since a multi-fill may include multiple identical

elements. We denote the multi-fill union by “+” to distinguish it from the set union:

{(i11, p11, size11),…, (i1m, p1m, size1m)} + {(i21, p21, size21),…, (i2k, p2k, size2k)}

= {(i11, p11, size11),…, (i1m, p1m, size1m), (i21, p21, size21),…, (i2k, p2k, size2k)}.

 A multi-fill equivalence is defined for a specific market, and it may be different

for different markets. Formally, it is a relation between multi-fills that satisfies the

following properties:

• Standard properties of equivalence:

 ▪ M-Fill ≡ M-Fill (reflexivity)

 ▪ If M-Fill1 ≡ M-Fill2, then M-Fill2 ≡ M-Fill1 (symmetry).

 ▪ If M-Fill1 ≡ M-Fill2 and M-Fill2 ≡ M-Fill3,

 then M-Fill1 ≡ M-Fill3 (transitivity).

• A transaction that involves zero items is equivalent to the empty multi-fill:

 {(i, p, 0)} ≡ Ø

• Buying or selling identical items separately, at the same price,

 is equivalent to buying or selling them together:

 {(i, p, size1), (i, p, size2)} ≡ {(i, p, size1+ size2)}.

• The union operation preserves the equivalence:

 If M-Fill1 ≡ M-Fill2, then M-Fill1 + M-Fill3 ≡ M-Fill2 + M-Fill3.

These conditions are the required properties of the multi-fill equivalence in all markets;

in a specific market, the equivalence may have additional properties. For example, {(i, p,

1), (i, p, 1)} is always equivalent to {(i, p, 2)}. On the other hand, {(i, p1, 1), (i, p2, 1)}

may be equivalent to {(i,
2

21 pp + , 2)} in some markets, such as car trading, but not in

other markets, such as mortgage sales.

We use the concept of equivalence to define conditions for a multi-order

 30

transaction, such as the trade in Figure 2.6. Specifically, we can execute a transaction that

involves k orders, denoted Order1, Order2,…, Orderk, if there exist multi-fills M-Fill1,

M-Fill2,…, M-Fillk, such that

• For every j ∈ [1..k], M-Fillj matches Orderj

• M-Fill1 + M-Fill2 + … + M-Fillk ≡ Ø

For example, we can select the following multi-fills for orders in Figure 2.6:

• {(Echo, $11,000, 1)} matches Buy1

• {(Echo, $11,000, −1), (Echo, $11,000, −1)} matches Sell2

• {(Echo, $11,000, 1), (Echo, $11,000, 2)} matches Buy3

• {(Echo, $11,000, −2)} matches Sell4

The union of these multi-fills is equivalent to the empty multi-fill:

{(Echo, $11,000, 1)} + {(Echo, $11,000, −1), (Echo, $11,000, −1)}

 + {(Echo, $11,000, 1), (Echo, $11,000, 2)} + {(Echo, $11,000, −2)} ≡ Ø.

2.2.4 Price Averaging

A trader may sometimes accept a multi-fill even if it does not satisfy Conditions 2.2. For

example, consider the transaction in Figure 2.7. The price of the second fill does not

match the buy order, but the overall price of the two fills is acceptable. The buyer pays

$22,000 for two cars; thus, their average price matches the buyer’s price limit. When

placing an order, the trader has to specify whether she will accept such price averaging.

Buy:
2 Echoes,
at least 2,
$11,000

Sell:
1 Echo,
$10,000

Sell:
1 Echo,
$12,000

Fill:
1 Echo,
$10,000

Fill:
1 Echo,
$12,000

Figure 2.7: Example of price averaging.

Since the price may not be in dollars, we cannot directly compute the total price

of a multi-fill. For example, if the price of a mortgage is the interest rate, the overall

interest of a multi-fill is not the sum of its elements’ rates. To allow price averaging, we

 31

define a payment for a multi-fill. Intuitively, it represents a dollar amount delivered by a

buyer or received by a seller, and the units of payment may differ from price units. For

example, when a homebuyer negotiates a mortgage, she may use interest as a price

measure; after receiving the mortgage, she will repay it in dollars. Formally, a payment is

a real-valued function Pay on multi-fills that has the following properties:

• If a trader does not buy or sell any items, the payment is zero:

 Pay(Ø) = 0.

• The payment is proportional to the number of items:

 Pay({(i, p, size)}) = size · Pay({(i, p, 1)}).

• The payment for multiple fills equals the sum of respective payments:

 Pay({(i1, p1, size1),…, (ik, pk, sizek)})

 = Pay({(i1, p1, size1)}) + … + Pay({(ik, pk, sizek)}).

• Equivalent multi-fills incur the same payment:

 If M-Fill1 ≡ M-Fill2, then Pay(M-Fill1) = Pay(M-Fill2).

• A buyer’s payment is monotonically increasing on price:

 If p1 ≤ p2, then Pay({(i, p1, 1)}) ≤ Pay({(i, p2, 1)}).

Since a payment is monotonic on price, both buyers and sellers want to reduce

their payments. For buyers, this reduction means paying less money; for sellers, it means

getting more money, which is represented by a smaller negative value. For example, a car

seller would rather get the −$12,000 payment than the −$11,000 payment, which means

that she prefers selling her vehicle for $12,000 rather than for $11,000. A buyer’s

payment may be negative, which means that a seller pays the buyer for accepting an

undesirable item. For example, if the seller wants to dispose of a broken car, she may pay

$100 for pulling it away; in this case, the buyer’s payment is –$100.

Note that a payment depends not only on price but also on specific items; that is,

Pay({(i1, p, 1)}) may be different from Pay({(i2, p, 1)}). For example, the payment for a

6% fifteen-year mortgage is different from the payment for a 6% thirty-year mortgage.

Also note that the total payment of all transaction participants is zero. For example,

consider the trade in Figure 2.7. The buyer’s payment is $22,000, the first seller’s

payment is −$10,000, and the second seller’s payment is −$12,000; thus, the overall

payment is $22,000 − $10,000 − $12,000 = 0.

 32

We can decompose the payment for a multi-fill into the payments for its elements:

Pay({(i1, p1, size1),…, (ik, pk, sizek)})

= size1 · Pay({(i1, p1,1)}) + … + sizek · Pay({(ik, pk,1)}).

To simplify this notation, we will usually write Pay(i, p) instead of Pay({(i, p, 1)}).

A user can also define a quality function for multi-fills. Formally, it is a real-

valued function Qualm on multi-fills that satisfies the following constraints:

• If the user does not trade any items, the quality is zero:

 Qualm(Ø) = 0.

• The quality function is consistent with the quality of simple fills:

 ▪ If size > 0, then Qualm({(i, p, size)}) = Qualb(i, p).

 ▪ If size < 0, then Qualm({(i, p, size)}) = Quals(i, p).

• Equivalent fills have the same quality:

 If M-Fill1 ≡ M-Fill2, then Qualm(M-Fill1) = Qualm(M-Fill2).

• The multi-fill union preserves relative quality of multi-fills:

 If Qualm(M-Fill1) ≤ Qualm(M-Fill2),

 then Qualm(M-Fill1 + M-Fill3) ≤ Qualm(M-Fill2 + M-Fill3).

Recall that the quality of simple fills is monotonic on price (see Section 2.1.3), which

implies that the multi-fill quality is also monotonic on price:

• If size > 0 and p1 ≤ p2, then Qualm({(i, p1, size)}) ≥ Qualm({(i, p2, size)}).

• If size < 0 and p1 ≤ p2, then Qualm({(i, p1, size)}) ≤ Qualm({(i, p2, size)}).

If the user does not provide a multi-fill quality function, we define it as the

weighted mean quality of a multi-fill’s elements. If the multi-fill includes purchases {(i1,

p1, size1),…, (ij, pj, sizej)} and sales {(ij+1, pj+1, –sizej+1),…, (ik, pk, –sizek)}, the default

quality is

Qualm({(i1, p1, size1),…, (ij, pj, sizej), (ij+1, pj+1, –sizej+1),…, (ik, pk, –sizek)})

=
kjj

kkskjjsjjjbjb

sizesizesizesize
piQualsizepiQualsizepiQualsizepiQualsize

+++++
⋅++⋅+⋅++⋅

+

+++

......
),(...),(),(...),(

11

111111 .

Now suppose that a trader has placed an order (I, Price, Qualm, Max, Min, Step),

and that she accepts price averaging. Then, a multi-fill {(i1, p1, size1),…, (ik, pk, sizek)} is

acceptable if it satisfies the following conditions.

 33

Conditions 2.3

• i1,…, ik ∈ I

• size1 · Pay(i1, p1) + … + sizek · Pay(ik, pk)

 ≤ size1 · Pay(i1, Price(i1)) + … + sizek · Pay(ik, Price(ik))

• Qualm({(i1, p1, size1),…, (ik, pk, sizek)}) ≥ 0

• Min ≤ size1 + … + sizek ≤ Max

• size1 + … + sizek is divisible by Step

2.3 Combinatorial Orders

A combinatorial order is a collection of several orders with constraints on their execution.

A simple example is a spread, often used in futures trading, which consists of a buy order

and sell order that must be executed at the same time; for instance, a trader may place an

order to buy gold futures and simultaneously sell silver futures.

Combinatorial auctions allow larger combinations of bids; for example, a trader

can order a simultaneous purchase of a sport utility vehicle, trailer, boat, and two

bicycles. Some auctions also support mutually exclusive bids; for instance, a user can

indicate that she needs either a boat or two bicycles.

We describe combinatorial orders in the proposed exchange model, which include

mutually exclusive orders, simultaneous transactions, and chains of consecutive trades.

2.3.1 Disjunctive Orders

A disjunctive-order mechanism is for traders who want to execute one of several

alternative transactions. For example, if Katie wants to sell one of her three cars, she can

place the order in Figure 2.8(a). As another example, if Katie has a trailer, she can either

buy an old sport utility vehicle (SUV) for pulling it or sell the trailer (see Figure 2.8b). We

have to guarantee that a trader does not get fills for two different elements of a

disjunctive order. For example, if Katie places the order in Figure 2.8(a), she will sell at

most one of her cars.

If a trader specifies a size for some elements of a disjunctive order, these elements

must be all-or-none orders; that is, their minimal sizes must be the same as the overall

 34

sizes. For example, Katie may place an order to sell a Camry or two Tercels, as shown in

Figure 2.8(c).

A disjunctive order as a whole can also have a size, which is equivalent to placing

several identical orders. For example, suppose that Katie has specified size five for the

order in Figure 2.8(a). Then, she will sell five cars, and each car will be a Mustang,

Tercel, or Camry. As another example, if she specifies size five for the order in

Figure 2.8(b), she will complete five transactions, and each transaction will be either a

purchase of a sport utility vehicle or a sale of a trailer; for instance, she may end up

buying two sport utility vehicles and selling three trailers.

In addition, a disjunctive order can have a minimal size and size step. For

example, suppose that a dealer is buying Camries for $18,000 and reselling them for

$20,000, and she is interested in bulk transactions that involve at least ten cars. She may

place the order in Figure 2.8(d); its minimal size is ten, and its step is five. If the minimal

size of a disjunctive order is the same as the maximal size, it is an all-or-none order. In

this case, it may be an element of another disjunctive order; it may also be an element of

a conjunctive order, described in Section 2.3.2.

Sell:
1 Mustang,

$18,000

Sell:
1 Tercel,
$11,000

Sell:
1 Camry,
$15,000

or

Buy:
1 SUV,
$3,000

Sell:
1 Trailer,

$2,000

or

Sell:
1 Camry,
$15,000

Sell:
2 Tercels,
at least 2,
$11,000

or
(a) (b)

Buy:
1 Camry,
$18,000

Sell:
1 Carmry,
$20,000

 or

(c) (d)
 size 100, at least 10, step 5

Figure 2.8: Examples of disjunctive orders.

If a trader uses quality functions in a disjunctive order, she must specify a

function for every element of a disjunction. If the trader does not specify quality

functions, we use the same default as for simple orders. We utilize quality functions not

only for selecting the best fill for each element of a disjunction, but also for selecting

 35

among fills for different elements. For example, suppose that a trader has placed the

disjunction in Figure 2.8(b), and that she has specified a quality function Qualb for the

buy element and Quals for the sell element. Suppose further that she has found an old

Explorer for $2,500, and that she can sell the trailer for $2,200. If Qualb(Explorer,

$2,500) > Quals(Trailer, $2,200), the trader prefers the purchase of the Explorer to the

sale of the trailer.

To summarize, a disjunctive order consists of five parts:

• Set of all-or-none orders, Order1, Order2,…, Orderk

• Optional permission for price averaging

• Overall order size, Max

• Minimal acceptable size, Min

• Size step, Step

A multi-fill M-Fill matches a disjunctive order if we can decompose it into m multi-fills,

denoted Sub-Fill1, Sub-Fill2,…, Sub-Fillm, that match elements of the disjunction and

satisfy the following constraints.

Conditions 2.4

• Min ≤ m ≤ Max, and m is divisible by Step

• Every multi-fill Sub-Fillj matches some element of the disjunction; that is,

 for every j ∈ [1..m], there is l ∈ [1..k] such that Sub-Fillj matches Orderl.

• If the order does not allow price averaging, then

 M-Fill ≡ Sub-Fill1 + Sub-Fill2 + … + Sub-Fillm.

 If the order allows price averaging, then

 M-Fill includes the same items as Sub-Fill1 + Sub-Fill2 + … + Sub-Fillm,

 and Pay(M-Fill) = Pay(Sub-Fill1 + Sub-Fill2 + … + Sub-Fillm).

For example, suppose that a trader has placed the disjunctive order in

Figure 2.8(c), and specified that its overall size is six and its minimal acceptable size is

three. Then, the multi-fill {(Camry, $16,000, –2), (Tercel, $11,500, –2)} matches the

order since we can decompose this multi-fill into three parts:

{(Camry, $16,000, –1)} + {(Camry, $16,000, –1)} + {(Tercel, $11,500, –2)}.

 36

The first and second parts match the left element of the disjunction, and the third part

matches the right element. After completing this transaction, we reduce the size of the

disjunctive order, as shown in Figure 2.9.

2.3.2 Conjunctive Orders

A trader places a conjunctive order if she needs to complete several transactions together.

For example, if a customer wants to sell her old Tercel and buy a new Echo, she may

place the order in Figure 2.10(a). As another example, if a trader plans to buy a sport

utility vehicle, trailer, and boat, she may place the order in Figure 2.10(b).

Buy:
2 Tercels,
$12,000

 or

Fill:
2 Tercels,
$11,500

Buy:
2 Camries,

$17,000

Fill:
2 Camries,

$16,000

Sell:
2 Tercels,
at least 2,
$11,000

Sell:
1 Camry,
$15,000

 size 6, at least 3

 removed removed
 or

Sell:
2 Tercels,
at least 2,
$11,000

Sell:
1 Camry,
$15,000

 size 3, at least 3

 reduced

Figure 2.9: Example of a transaction that involves a disjunctive order.

and

Buy:
1 Echo,
$12,000

Sell:
1 Tercel,
$9,000

 and

Buy:
1 Trailer,

$2,000

Buy:
1 Sequoia,

$30,000

Buy:
1 Boat,
$3,000

(a) (b)
Figure 2.10: Examples of conjunctive orders.

 37

We have to guarantee that the trader gets a fill for all elements of a conjunction at

the same time. For example, the conjunction in Figure 2.10(a) can simultaneously trade

with two simple orders (see Figure 2.11a). As a more complex example, it can be a part

of a transaction that involves several conjunctive orders (see Figures 2.11b and 2.11c).

A disjunctive order may be an element of a conjunction. For example, if a

customer wants to buy a trailer, boat, and one of several alternative vehicles, she can

place the order in Figure 2.12(a). Furthermore, a conjunctive order may be an element of

a disjunction, and a trader may nest several conjunctions and disjunctions (see

Figure 2.12b).

If a trader specifies sizes for some elements of a conjunctive order, these elements

must be all-or-none. For example, a customer may place an order to sell an old Tercel and

buy two new Echoes (see Figure 2.13a). As another example, she may sell a Tercel and

buy two new cars, where each new car is either an Echo or a Civic (see Figure 2.13b).

and

Buy:
1 Echo,
$12,000

Sell:
1 Tercel,
$9,000

Buy:
1 Tercel,
$10,000

Sell:
1 Echo,
$11,000

Fill:
1 Tercel,
$9,500

Fill:
1 Echo,
$11,500

 and

Buy:
1 Echo,
$12,000

Sell:
1 Tercel,
$9,000

and

Sell:
1 Echo,
$11,000

Buy:
1 Tercel,
$10,000

Fill:
1 Tercel,
$9,500

Fill:
1 Echo,
$11,500

 (a) (b)

 and

Buy:
1 Echo,
$12,000

Sell:
1 Tercel,
$9,000

Buy:
1 Tercel,
$10,000

Sell:
1 Echo,
$11,000

Fill:
1 Tercel,
$9,500

Fill:
1 Echo,
$11,500

 and

Buy:
1 Boat,
$3,000

Buy:
1 Sequoia,

$30,000

and

Sell:
1 Boat,
$2,000

Sell:
1 Sequoia,

$29,000

Fill:
1 Sequoia,

$29,500

Fill:
1 Boat,
$2,500

(c)

Figure 2.11: Example transactions that involve conjunctive orders.

 38

 and

Buy:
1 Trailer,

$2,000

Buy:
1 Boat,
$3,000

Buy:
1 Explorer,

$27,000

Buy:
1 Xterra,
$26,000

or

Buy:
1 Sequoia,

$30,000

(a)

and

Buy:
1 Trailer,

$2,000

Buy:
1 Explorer,

$27,000

Buy:
1 Sequoia,

$30,000

 or

Buy:
1 Tent,
$500

Buy:
1 Sienna,
$25,000

 and

 or

(b)
Figure 2.12: Examples of nested disjunctions and conjunctions.

 and

Buy:
2 Echoes,
at least 2,
$12,000

Sell:
1 Tercel,
$9,000

or

Buy:
1 Civic,
$12,000

Buy:
1 Echo,
$12,000

size 2, at least 2

Sell:
1 Tercel,
$9,000

 and

(b) (a)
Figure 2.13: Examples of size specifications in conjunctive orders.

A conjunctive order as a whole may have a size, which is equivalent to placing

several identical orders; in addition, it may have a minimal size and size step. For

instance, if a trader places the order in Figure 2.14(a), she may complete two, four, or six

conjunctive transactions; each transaction will involve selling a Tercel and buying an

Echo. If the minimal size of a conjunctive order is the same as the overall size, then it is

an all-or-none order, and it can be an element of a disjunction or another conjunction.

When a trader places a conjunctive order, she is usually interested in the price of

the overall transaction rather than the prices of its elements. For example, suppose that a

 39

customer is selling her old Tercel and buying an Echo, and she is willing to spend $3,000

for this transaction. She may sell the Tercel for $9,000 and buy an Echo for $12,000;

alternatively, she may sell her old car for $8,000 and buy a new one for $11,000.

We allow two mechanisms for specifying a price limit for the overall transaction.

First, a trader can set a payment limit for a conjunctive order, along with price limits for

its elements. For instance, she may place the order shown in Figure 2.14(b); in this case,

she wants to get at least $5,000 for her old Tercel and pay at most $15,000 for a new

Echo, and her total cash spending must be at most $3,000. Thus, she is willing to sell her

Tercel for $5,000 and buy an Echo for $8,000, and she is also willing to sell her car for

$12,000 and buy a new one for $15,000. Recall that the units of payment may differ from

price (see Section 2.2.3); for example, mortgage traders may express the price as an

interest rate, and the overall payment for a conjunctive order as a dollar amount.

 and

Buy:
1 Echo,
$12,000

Sell:
1 Tercel,
$9,000

 and

Buy:
1 Echo,
$15,000

Sell:
1 Tercel,
$5,000

size 6, at least 2, step 2 payment limit: $3,000
 (a) (b)

Figure 2.14: Conjunctive orders with a size specification (a) and payment limit (b).

Second, a trader can specify a price limit for each element of a conjunction, and

indicate that she will accept any multi-fill that leads to the same total payment, even if

the prices of individual elements do not satisfy the price limits. This option is similar to

price averaging for simple orders, described in Section 2.2.4. For example, suppose that a

trader uses this option for the order in Figure 2.12(a). If she gets a Sequoia with a trailer

and boat, the total payment must be at most $30,000 + $2,000 + $3,000 = $35,000. If she

gets an Explorer instead of a Sequoia, the total payment must be at most $27,000 +

$2,000 + $3,000 = $32,000.

In addition, a trader can specify a multi-fill quality function for a conjunctive

order. For instance, suppose that a trader has placed the order in Figure 2.12(a), and she

prefers Sequoia to Explorer. Then, her quality function must satisfy the following

constraint:

 40

Qualm({(Explorer, $27,000, 1), (Trailer, $2,000, 1), (Boat, $3,000, 1)})

< Qualm({(Sequoia, $30,000, 1), (Trailer, $2,000, 1), (Boat, $3,000, 1)}).

A trader can also specify quality functions for elements of a conjunction, but we do not

use them for selecting the best fill; their only use is to reject matches with negative

quality.

To summarize, a conjunctive order consists of seven parts:

• Set of all-or-none orders, Order1, Order2,…, Orderk

• Overall payment limit, Pay-Max

• Multi-fill quality function, Qualm

• Optional permission for price averaging

• Overall order size, Max

• Minimal acceptable size, Min

• Size step, Step

We next define a multi-fill that matches a conjunctive order. We first consider a

conjunction of size one and then generalize the definition to larger sizes. A multi-fill

M-Fill matches a conjunctive order of size one if it can be decomposed into multi-fills for

the elements of the conjunction, denoted Sub-Fill1, Sub-Fill2,…, Sub-Fillk, that satisfy the

following conditions.

Conditions 2.5

• For every j ∈ [1..k], Sub-Fillj matches Orderj

• If the order does not allow price averaging, then

 M-Fill ≡ Sub-Fill1 + Sub-Fill2 + … + Sub-Fillk.

 If the order allows price averaging, then

 M-Fill includes the same items as Sub-Fill1 + Sub-Fill2 + … + Sub-Fillk,

 and Pay(M-Fill) = Pay(Sub-Fill1 + Sub-Fill2 + … + Sub-Fillk).

• Pay(M-Fill) ≤ Pay-Max

• Qualm(M-Fill) ≥ 0

For example, the multi-fill {(Tercel, $9,000, −1), (Echo, $12,000, 1), (Civic,

$12,000, 1)} matches the conjunctive order in Figure 2.13(b). To show the match, we

decompose it into two parts:

 41

{(Tercel, $9,000, −1)} + {(Echo, $12,000, 1), (Civic, $12,000, 1)}.

The first part matches the sell element of the conjunction, and the second part matches

the disjunctive buy.

If a conjunctive order includes a size specification, then a multi-fill M-Fills

matches the order if it can be decomposed into multi-fills M-Fill1, M-Fill2,…, M-Fillsize

that satisfy the following conditions.

Conditions 2.6

• Min ≤ size ≤ Max

• size is divisible by Step

• For every l ∈ [1..size], M-Filll satisfies Conditions 2.5

• If the order does not allow price averaging, then

 M-Fills ≡ M-Fill1 + M-Fill2 + … + M-Fillsize.

 If the order allows price averaging, then

 M-Fills includes the same items as M-Fill1 + M-Fill2 + … + M-Fillsize,

 and Pay(M-Fills) = Pay(M-Fill1 + M-Fill2 + … + M-Fillsize).

For instance, the conjunctive order in Figure 2.14(a) matches the multi-fill

{(Tercel, $9,000, −2), (Echo, $12,000, 2)}, which can be decomposed into two parts:

{(Tercel, $9,000, −1), (Echo, $12,000, 1)}

+ {(Tercel, $9,000, −1), (Echo, $12,000, 1)}.

2.3.3 Chain Orders

The chain-order mechanism allows execution of several transactions in a sequence. To

illustrate it, suppose that Katie plans to sell two Tercels and a Rio, and to purchase a

Sequoia. Because of budgetary constraints, she wants to sell all three cars before buying a

new one. Suppose further that Katie wishes to acquire a trailer after buying a Sequoia. In

Figure 2.15, we show the sequence of Katie’s transactions, which form a chain order.

Formally, a chain order is a directed acyclic graph; its nodes are orders, and edges

are temporal constraints. If the graph includes an edge from order1 to order2, we can

execute order2 only after we have completely filled order1. For instance, we cannot

execute Katie's buy orders before she sells her Rio and both Tercels.

 42

Sell:
2 Tercels,

$9,000 Buy:
1 Sequoia,

$30,000

Buy:
1 Trailer,

$2,000Sell:
1 Rio,
$8,000

keep

keep

 cancel

Figure 2.15: Example of a chain order. The trader first sells two Tercels and a Rio, then
purchases a Sequoia, and finally acquires a trailer.

Sell:
1 Tercel,
$9,000

Buy:
1 Camry,
$20,000

Buy:
1 Sequoia,

$30,000 Buy:
1 Boat,
$3,000

Sell:
1 Tercel,
$9,000

Sell:
1 Rio,
$8,000

Buy:
1 Corolla,
$15,000

or
Buy:

1 Trailer,
$2,000

and
cancel cancel cancel

keep

or

Figure 2.16: Chain order with two simple orders, two disjunctions, and a conjunction.

The elements of a chain order may be combinatorial orders; that is, the chain may

include disjunctive orders, conjunctive orders, and even other chains. We do not impose

any restrictions on the elements of a chain; in particular, they may not be all-or-none. In

Figure 2.16, we show a chain that includes two simple orders, two disjunctions, and a

conjunction.

If a trader cancels an element of a chain without getting a fill, she may want to

execute the following orders; alternatively, she may want to cancel them. For each edge

in the chain, the trader has to specify whether the cancellation of the earlier order causes

the cancellation of the later one; in Figure 2.15, we show such specifications. In this

example, if Katie cancels either sale, she is still interested in buying a Sequoia. On the

other hand, if she cancels the purchase of a Sequoia, she will not buy a trailer. As another

example, the removal of the leftmost disjunction in Figure 2.16 will cause the

cancellation of all buy orders.

 43

When placing a chain order, a trader may specify its size, which is equivalent to

placing several identical orders. For example, if Katie specifies that the size of her order

in Figure 2.15 is two, she may end up selling four Tercels and two Rios, and buying two

Sequoias and two trailers. On the other hand, a chain cannot have a minimal size or size

step. To summarize, a chain order consists of the following parts:

• Set of orders

• Temporal constraints that form a directed acyclic graph

• “Keep” or “cancel” specification for each constraint

• Overall order size

Since the execution of a chain includes several steps, it cannot be an all-or-none order;

hence, it cannot be an element of a disjunctive or conjunctive order.

Intuitively, some elements of a chain are inactive; that is, they cannot lead to a

trade. An element becomes active after the execution of all preceding elements. We

illustrate this concept in Figure 2.17, where thick boxes mark active orders. The use of

chain orders is a special case of activating an order upon certain conditions. We have

considered three types of activation conditions in the implemented system: completion of

the preceding orders in a chain, reaching a pre-set time, and a request from the user. A

related problem is to develop a more general activation mechanism.

Sell:
2 Tercels Buy:

1 Sequoia
Buy:

1 Trailer
Sell:
1 Rio

Figure 2.17: Active and inactive elements of a chain order. Thick boxes mark active
orders, which can lead to immediate trades.

Chapter 3 Order Representation

We have built an exchange system for a special case of the automated trading problem.

We describe the representation of orders in this system, and explain the supported

operations for placing new orders, and modifying and canceling old orders.

3.1 Item Sets

We explain the use of Cartesian products for representing simple sets of items, and then

introduce the notion of filter functions, which allow encoding of more complex sets.

Cartesian products. When a trader places an order, she has to specify a set of acceptable

values for each market attribute, which is called an attribute set. Thus, if a market

includes n attributes, the order description contains n attribute sets. For example, Katie

may indicate that she is buying an Echo or Tercel, the acceptable colors are white, silver,

and gold, the car should be made after 1998, and it should have at most 30,000 miles.

To give a formal definition, suppose that the set of all possible values for the first

attribute is M1, the set of all values for the second attribute is M2, and so on, which means

that the market set is M = M1 × M2 × … × Mn. The trader has to specify a set I1 ⊆ M1 of

values for the first attribute, a set I2 ⊆ M2 of values for the second attribute, and so on.

The resulting set I of acceptable items is the Cartesian product of the attribute sets:

I = I1 × I2 × … × In.

For instance, Katie may specify the following item set:

I = {Echo, Tercel} × {white, silver, gold} × [1999..2001] × [0..30,000].

Attribute sets. A trader can use specific values or ranges for each attribute; for instance,

she can specify a desired year as 2001 or as a range from 1999 to 2001. Note that ranges

work only for numeric attributes, such as year and mileage.

A market specification may include certain standard sets of values, such as “all

sports cars” and “all American cars,” and a trader can use them in her orders. We have to

 44

 45

include all standard sets in the market description, and traders cannot define new sets. We

can specify a standard set by a list of values, numeric range, or union of several ranges.

For example, we can define a set of American cars as a list of specific models:

{Corvette, Mustang, Saturn, …}.

As another example, we can specify “antique-car years” as [1896..1950].

A trader can use unions and intersections in the specification of attribute sets. For

instance, suppose that Katie is interested in Mustangs, Corvettes, and European sports

cars. Suppose further that we have defined a standard set of all European cars, and

another standard set of all sports cars. Then, Katie can represent the desired set of models

as follows:

{Mustang, Corvette} ∪ (European-cars Sports-cars). ∩

We allow an arbitrary nesting of unions and intersections. To summarize, an attribute set

is one of the following constructs:

• Specific value, such as Mustang or 1998

• Range of values, such as [1999..2001]

• Standard set of values, such as all European cars

• Intersection of several attribute sets

• Union of several sets

Unions and filters. A trader can define an item set I as the union of several Cartesian

products. For example, if she wants to buy either a used Camry or a new Echo, she can

specify the following set:

I = {Camry} × {white, silver, gold} × [1995..2001] × [0..30,000]

 ∪ {Echo} × {white, silver, gold} × {2001} × [0..200].

Furthermore, the trader can indicate that she wants to avoid certain items; for instance, a

superstitious user may want to avoid black cars with 13 miles on the odometer. In this

case, the user has to provide a filter function that prunes undesirable items. Formally, it is

a Boolean function on the set I that gives FALSE for unwanted items. We implement it by

an arbitrary C++ procedure that inputs an item description and returns TRUE or FALSE. To

summarize, the representation of an item set consists of two parts:

 46

• A union of Cartesian products,

 I = I11 × I12 × … × I1n ∪ I21 × I22 × … × I2n … Ik∪ ∪ 1 × Ik2 × … × Ikn

• A filter function, Filter: I {TRUE, FALSE}, →

 implemented by a C++ procedure.

We do not impose restrictions on filter functions; however, if a filter prunes too many

items, the system may miss some matches. To avoid this problem, a user should choose

Cartesian products that tightly bound the set of acceptable items.

3.2 Price, Quality, and Size

We now explain the representation of price functions, quality functions, and order sizes.

Price threshold. If a price function is a constant, a trader specifies it by a numeric value,

called a price threshold. If an item set is the union of several Cartesian products, the

trader can specify a separate threshold for each product. For instance, if Katie’s item set

is the union of used Camries and new Echoes, she can indicate that she is paying

$15,000 for a Camry and $12,000 for an Echo. If several Cartesian products overlap, and

the trader has defined different thresholds for these products, then we use the tightest

threshold for their intersection; that is, we use the lowest threshold for buy orders, and the

highest threshold for sell orders.

Price function. We specify a price function by an arbitrary C++ procedure that inputs an

item and outputs the corresponding price limit. Note that a trader can specify different

functions for different orders. If an order includes both a threshold and price function, the

system uses the tighter of the two. For example, if Katie’s threshold for buying an Echo is

$12,000, and her price function returns $12,500 for a specific vehicle, then the resulting

price limit is $12,000. Price thresholds help to prune unacceptable items, whereas C++

price functions allow more accurate evaluation of the remaining items. If the market

includes monotonic attributes, the price functions must satisfy the monotonicity condition

in Section 2.1.5.

Quality function. The representation of a quality function is also an arbitrary C++

procedure; it inputs an item description and price, and outputs a numeric quality value.

 47

The system includes several standard functions, and a trader can select among them and

adjust the corresponding parameters. The system allows specifying different quality

functions for different orders. If a user does not provide any quality function, the system

uses a default quality measure defined through the price function (see Section 2.1.3). All

quality functions must be monotonic on price (see Section 2.1.3); furthermore, if some

attributes are monotonic, the quality functions must also satisfy the monotonicity

condition of Section 2.1.5.

Additional data. An order description may include additional data for the use by filter,

price, and quality functions. For example, we can include the warranty and previous-

owner information even if we do not use it as market attributes. In this example, a price

may depend on warranty, and a filter may reject the cars pre-owned by a smoker.

Size. The implemented size specification is the same as in the general model; it includes

the overall size, minimal acceptable size, and size step. A trader can specify whether the

system should preserve the minimal size in the case of a partial fill; if not, the system

removes the minimal size after a partial fill (see Figure 3.1). The trader can also indicate

whether she accepts multi-fills and allows price averaging.

3.3 Cancellations and Inactive Orders

We describe three mechanisms for removing an order from the market: immediate

cancellation, expiration time, and temporary inactivation.

Cancellation. If a trader places an order and does not get a fill, she can later cancel it. If a

trader has placed a combinatorial order, she can cancel the entire order or some of its

elements. If she deletes an element of a disjunctive or conjunctive order, the other

elements remain on market. On the other hand, a cancellation of a chain-order element

may cause the deletion of other elements if the chain includes “cancel” constraints. For

instance, the removal of the middle element in Figure 2.15 causes the cancellation of the

rightmost element.

 48

Buy:
6 cars,

at least 3

Sell:
3 cars

reduced removed
Buy:

3 cars,
at least 3

Buy:
6 cars,

at least 3

Sell:
3 cars

Fill:
3 cars

reduced removed

Buy:
3 cars

 (a) (b)

Fill:
3 cars

Figure 3.1: Examples of partial fills. If a trader specifies a minimal size, she indicates
whether the system should preserve it after a partial fill (a), or remove it after the first
fill (b).

Expiration time. When placing an order, a trader can specify its expiration time with

one-second precision. If the system does not find a match by the specified time, it cancels

the order. A trader can also place an “immediate-or-cancel” order, which is removed if

there is no immediate match. When placing a combinatorial order, a trader can specify an

expiration time for the whole order, as well as different times for its elements. The

expiration of the whole order leads to the removal of all its elements, whereas the

expiration of individual elements does not affect the other elements.

Inactive order. We can mark some orders as inactive, which means that they cannot

lead to a trade. We have introduced this mechanism for efficiency; it allows temporary

removal of an order from the trading process without deleting it from the indexing

structure. In particular, we use it to delay trading with inactive elements of a chain. We

also enable users to inactivate their orders by hand, and to specify inactivation and

reactivation times. The system allows inactivation of combinatorial orders, but it does not

support selective inactivation of their elements.

3.4 Modifications

A trader can modify her order without removing it from the market. For example, if Katie

has placed an order to buy a gold Toyota Echo for $11,500 and has not gotten a fill, she

can increase the price to $12,000. As another example, she can change the item

 49

description from “gold Echo” to “any Echo or Tercel.” A trader can also define

conditions that trigger a modification. For instance, suppose that Laura is selling twenty

Echoes for $11,500 each. She can indicate that, if she gets a partial fill of at least ten cars,

then her price increases to $12,000 (see Figure 3.2a).

We specify a modification request by a C++ procedure that inputs an order and

returns its modified version; if an order requires no modification, the procedure returns

the “no change” signal. For example, if Laura wants to increase her order price after its

size drops to ten, she can use the procedure in Figure 3.2(b). The system includes

standard modification functions, and a user can select among them and adjust the

appropriate parameters.

Buy:
10 Echoes,

$12,000

Sell:
20 Echoes,

$11,500

Fill

Sell:
10 Echoes,

$11,500

modified
Sell:

10 Echoes,
$12,000

CHANGE-ORDER(old-order)
 If size[old-order] > 10,
 then return "no change"

new-order := old-order
price[new-order] := $12,000

 Return new-order

 (a) (b)

Figure 3.2: Example of an order modification. If the size of the order drops to ten, the
system should increase its price (a). The modification request includes a procedure that
checks the size and adjusts the price (b).

A user can specify an activation and expiration time for a modification request.

When it becomes active, the system invokes the corresponding procedure. If it returns

“no change,” the system re-invokes it after any change to the order, which may be caused

by a partial fill or by another modification. If a trader changes her mind, she can

manually remove an old request. The system cancels a request in the following cases:

• The processing of the request has resulted in a modification

• The request has expired

• The corresponding order has been removed from the market

• The user has manually removed the request

 50

A trader can also place an “immediate-or-cancel” request; if it does not result in an

immediate modification, the system does not re-invoke it later.

3.5 Confirmations

When placing an order, a trader can provide not only a description used in automated

matching, but also additional information for human traders; for instance, a car dealer can

post a picture of a vehicle. The system enables traders to browse through potential

matches and choose the most desirable trade.

When a user places an order, she can indicate the need for confirmation. In this

case, when the system finds matches, it displays their descriptions; if the user confirms

some of the matches, the system executes the corresponding trades. For example, Katie

can place an order to buy a silver Corvette and require confirmation; then, she can browse

through matching Corvettes and handpick the best match.

When the system finds a match between a buy and sell order, it checks the need

for confirmation. If neither order requires confirmation, it immediately executes the trade.

If one of the orders needs confirmation, the system notifies the corresponding user and

executes the trade upon getting her approval (see Figure 3.3a). If both orders require

confirmation, it notifies both sides and completes the trade only after getting both

approvals (see Figure 3.3b). For example, if Katie requests confirmation for her Corvette

order, and Laura sells a Corvette that also needs confirmation, then the system will

complete the transaction only after getting approvals from both Katie and Laura. If the

system finds a multi-order trade, it may need more than two confirmations.

A trader can confirm several different matches for her order, which allows the

system to execute any of them. For instance, Katie may confirm several Corvettes, and

then she will get one of them.

When the system asks users for confirmation, it does not remove the matching

orders from the trading process, and it can find other matches for them. If a user delays

her confirmation, she may miss a trade, and then the system notifies her that the trade is

no longer available (see Figure 3.3c). For instance, when Katie confirms the purchase of

a specific Corvette, she may find out that someone else has bought it before her. The

system tries to fill orders without confirmation before sending requests for confirmation.

 51

This strategy improves the speed of the trading process and reduces the number of “late”

confirmations.

3.6 User Actions

To summarize, a trader can perform six main operations: place an order, cancel an old

order, activate or inactivate an order, place a modification request, cancel an old request,

and confirm a trade. The implemented system does not support changes to modification

requests; if a user needs to change her old request, she should cancel it and place a new

one. We list the main elements of a simple order in Figure 3.4, the elements of a

combinatorial order in Figure 3.5, and the elements of a modification request in

Figure 3.6. If a user does not specify some of the elements, the system uses the

corresponding default values.

 52

Buy:
with confirmation

Sell:
w/o confirmation

Match

Fill

Notification

Confirmation

Buy:
with confirmation

Sell:
with confirmation

Match

Fill

Notification

Confirmation

Notification

Confirmation

Buy:
with confirmation

Sell:
w/o confirmation

Match

 No longer
available

Notification

Confirmation

New buy:
w/o confirmation

Fill

Rejection

(a)

(b)

(c)
Figure 3.3: Trading with confirmations. If one of the matching orders needs confirmation,
the system notifies the corresponding trader and waits for her approval (a). If both orders
need confirmation, the system waits for approval from both traders (b). If it finds an
alternative match before getting an approval, it executes the corresponding trade and later
rejects the confirmation (c).

 53

 • Item set

 Union of Cartesian products (no default)

 Filter function (by default, no filter)

• Price

 Price threshold for each Cartesian product

 (by default, –∞ for sell orders and +∞ for buy orders)

 Price function (by default, equal to the threshold)

 Quality function (by default, based on the price function)

• Additional data

 Data for price, quality, and filter functions (by default, no data)

 Information for human traders (by default, no information)

• Size

 Overall order size (by default, one)

 Minimal acceptable size (by default, one)

 Size step (by default, one)

• Activation and expiration

 Active or inactive status (by default, active)

 Inactivation time (by default, never)

 Reactivation time (by default, never)

 Expiration time (by default, never)

• Options

 Acceptance of multi-fills (by default, accept)

 Acceptance of price averaging (by default, accept)

 Confirmation request (by default, no confirmation)

Figure 3.4: Elements of a simple order and their default values. When a trader places an
order, she has to specify an item set, and she may optionally specify the other elements.

 54

Disjunctive order:

• Set of all-or-none orders (no default)

• Size (the same as in a simple order)

• Activation and expiration (the same as in a simple order)

• Acceptance of price averaging (by default, accept)

Conjunctive order:

• Set of all-or-none orders (no default)

• Overall payment limit (by default, +∞)

• Multi-fill quality function (by default, no function)

• Size (the same as in a simple order)

• Activation and expiration (the same as in a simple order)

• Acceptance of price averaging (by default, accept)

 Chain order:

• Set of orders (no default)

• Ordering constraints (no default)

• “Keep” or “cancel” specification for each constraint (by default, “keep”)

• Overall order size (by default, one)

Figure 3.5: Elements of combinatorial orders.

• Reference to a specific order (no default)

• Modification function that inputs an order and returns either a modified order

or “no change” signal (no default)

• Activation time (by default, immediate)

• Expiration time (by default, never)

Figure 3.6: Elements of a modification request.

 55

Chapter 4 Indexing Structure

We describe data structures and algorithms for fast identification of matches between buy

and sell orders. We first explain the overall architecture and then present the mechanism

for fast retrieval of matching orders. We refer to the orders that are currently in the

system as pending orders.

4.1 Architecture

The system consists of a central matcher and multiple user interfaces, which run on

separate machines and communicate over the network using an asynchronous messaging

protocol. We outline the distributed architecture and explain the main functions of the

matcher.

User interfaces. The traders enter their orders through interface machines, which send

the orders to the matcher engine (see Figure 4.1). The central engine serves as a trading

pit; it finds matches among orders, generates fills, and sends them to the corresponding

interfaces. In Figure 4.2, we list the main types of messages from interfaces, which

correspond to the user actions supported by the system (see Sections 3.3–3.6).

Matcher engine. The matcher maintains a description of market attributes, a collection

of pending orders, and a queue of scheduled future events (see Figure 4.3). It includes a

central structure for indexing of pending orders, implemented by two trees (see

Section 4.2). This structure allows indexing of orders with fully specified items; for

example, it can include an order to sell a red Mustang made in 1999, but it cannot contain

an order to buy any red car made after 1999. If we can put an order into the indexing

structure, we call it an index order. If an order includes a set of items, rather than a fully

specified item, the matcher adds it to an unordered list of nonindex orders. In Figure 4.4,

we give an example of four index orders and four nonindex orders.

 56

User
interface

User
interface

User
interface

Matcher
engine

orders
fills

orders
fills

orders

fills

Figure 4.1: The architecture of the trading system.

• Placing an order

• Canceling an order

• Activating or inactivating an order

• Placing a modification request

• Canceling a modification request

• Confirming a trade

Figure 4.2: Main types of messages from a user interface.

Market description

Pending orders

Trees with
index orders

List of other
orders

Priority queue of scheduled events

Figure 4.3: Main data structures in the matcher engine.

Market description
 Attribute 1: Model Attribute 3: Year
 Attribute 2: Color Attribute 4: Mileage

Pending orders

Priority queue of scheduled events

Trees with index orders
sell: red Mustang, made in 1999, 30,000 miles
sell: white Camry, made in 1998, 42,000 miles
sell: red Echo, made in 1995, 65,000 miles
buy: green Saturn, made in 1997, 58,000 miles

List of other orders
buy: any red car, made after 2000
sell: any sports car, made in 2001
buy: any green Mustang, at most 5,000 miles
sell: any Echo, made in 1995

Figure 4.4: Example of index and nonindex orders.

 57

The indexing structure allows fast retrieval of index orders that match a given

order. On the other hand, the system does not identify matches between two nonindex

orders. For example, if the orders are as shown in Figure 4.4, and a trader places an order

to buy a car made after 1997, then the system will find two matches: “sell red Mustang

made in 1999” and “sell white Camry made in 1998.”

Matching cycle. In Figure 4.5, we show the main cycle of the matcher, which alternates

between parsing new messages and searching for matches. When it receives a message

with a new order, it immediately searches for matching index orders (see Figure 4.6a). If

there are no matches, and the new order is an index order, then the system adds it to the

indexing structure. Similarly, if the matcher fills only part of a new index order, it stores

the remaining part in the indexing structure. If the system gets a nonindex order and does

not find a complete fill, it adds the unfilled part to the list of nonindex orders.

For example, suppose that Laura places an order to sell a red Mustang, made in

1999, with 30,000 miles. The system immediately looks for matching index orders; if it

does not find a match, it adds the order to the indexing structure. If Katie later places a

buy order for a sports car, the system identifies the match with Laura’s order, and informs

Katie and Laura that they have exchanged a Mustang.

When the system gets a cancellation message, it removes the specified order from

the market. When it receives a modification message, it makes the corresponding changes

to the specified order (see Figure 4.6b). If the changes can potentially lead to new

matches, the system immediately searches for index orders that match the modified order;

in Figure 4.8, we list all modifications that can result in new matches. For example, if

Laura has placed an order to sell a Mustang for $18,000, and she later reduces its price to

$17,500, then the system immediately looks for new matches. On the other hand, if she

increases the price to $18,500, the system does not search for matches.

After processing all messages, the system tries to fill pending nonindex orders,

which include not only the new arrivals, but also the old unfilled orders. For each

nonindex order, it identifies matching index orders, as shown in Figure 4.7. For example,

consider the market in Figure 4.4, and suppose that Laura places an order to sell a green

Mustang, made in 2001, with zero miles. Since the market has no matching index orders,

 58

 Yes

 No

Start the matcher

Process every new message
in the queue of incoming

messages (see Figure 4.6)

For every pending nonindex
order, search for matching

index orders (see Figure 4.7)

Stop trading?

Stop the matcher

 Figure 4.5: Top-level loop of the matcher engine.

 Yes

 Yes

 Yes

 Yes No

 No

(b) Modifying an order.

Change position
in the indexing

structure? Update the
old order

 No
Search for new

matches
(see Figure 4.7)

 No
Delete

the order

Process the
modified order

(see Figure 4.6a)

Delete the
old order

(a) Processing a new order.

Search for index orders
that match the new order

(see Figure 4.7)

Add it to the
indexing structure

Add it to the list of
nonindex orders

 No Yes Is it an index
order?

Is the new order
completely filled?

Is the order
completely filled?

Can it lead to
new matches?

Figure 4.6: Addition and modification of an order.

 59

the system adds this new order to the indexing structure. After processing all messages, it

tries to fill the nonindex orders, and determines that Laura’s order is a match for the old

order to buy any green Mustang.

Does the price of the
selected order match
the given price limit?

 Yes

 Yes

 No

 No

 Yes

 No

Find index orders with matching items

Select the highest-quality order, that
has not yet been considered, among
the index orders with matching items

Construct a fill, send it to the buyer and seller,
and reduce the size of both orders

Delete the index order

Completely filled the
given order?

Delete the given order

No available
index orders

Completely filled the
index order?

Figure 4.7: Search for index orders that match a given order.

Matching frequency. The matcher keeps track of the “age” of each order, and uses it to

avoid repetitive search for matches among the same index orders. If it has already tried to

find matches for some order, the matching process will involve search only among new

index orders.

If a nonindex order has been on market for a long time, the system matches it less

frequently than recent orders. We have implemented a mechanism that determines the

intervals between searches for matching index orders; by default, the system increases the

 60

length of an interval between consecutive searches in proportion to an order age. If it

does not find a match for a new nonindex order, it repeats the search on the next

matching cycle, then after two cycles, then after four cycles, and so on; that is, the

intervals between searches increase as the powers of two.

• Changing the item set or additional data

• Increasing the price threshold of a buy order,

 or decreasing the threshold of a sell order

• Changing the price function or quality function

• Increasing the overall order size or reducing the minimal acceptable size

• Changing the size step in such a way that the new step is not a multiple of the

 old step

• Activating an inactive order

• Allowing multi-fills or price averaging

• Adding new elements to a disjunctive order,

 or deleting some elements from a conjunctive order

Figure 4.8: Order modifications that can lead to new matches.

4.2 Indexing Trees

We have implemented an indexing structure for orders with fully specified items, which

do not include ranges, standard sets, conjunctions, or disjunctions. The structure consists

of two identical trees: one is for buy orders, and the other is for sell orders.

In Figure 4.9, we show an indexing tree for sell orders; its height is equal to the

number of market attributes, and each level corresponds to one of the attributes. The root

node encodes the first attribute, and its children represent different values of this

attribute; in Figure 4.9, each child of the root corresponds to some car model. The nodes

at the second level divide the orders by the second attribute, and each node at the third

level corresponds to specific values of the first two attributes. In general, a node at level i

divides orders by the values of the ith attribute, and each node at the (i+1)st level

corresponds to all orders with a specific value of the first i attributes. If some items are

 61

 Model Color Year Mileage Price Size

A Camry Black 1999 35,000 14,000 2
B Camry Black 1999 35,000 14,500 1
C Camry Red 1998 40,000 13,000 1
D Camry Red 1998 40,000 13,500 2
E Camry Red 1998 40,000 14,000 2
F Camry Red 1998 45,000 14,000 2
G Camry Red 2001 0 20,000 2
H Camry Red 2001 0 20,500 1
I Camry Red 2001 0 21,000 1
J Corvette Gold 1998 48,000 30,000 1
K Corvette Red 2000 19,000 35,000 2
L Corvette Red 2000 19,000 36,000 1
M Corvette Red 2000 19,000 37,000 1
N Mustang Blue 2000 21,000 15,000 2
O Mustang Blue 2000 25,000 19,000 1
P Mustang Blue 2000 25,000 19,500 2
Q Mustang Blue 2000 25,000 20,000 5

(a) List of index orders.

Model

Color

Year

Mileage

Year Year Year

B
$14.5K

Color Color

Year

Mileage Mileage Mileage Mileage Mileage

Camry Corvette Mustang

RedBlack Gold Red Blue

1998 20011999 20001998 2000

21,00019,000035,000 25,00045,00040,000 48,000

Black Camry,
made in 1999,
35,000 miles

Blue Mustang,
made in 2000,
21,000 miles

Red Corvette,
made in 2000,
19,000 miles

Gold Corvette,
made in 1998,
48,000 miles

Red Camry,
made in 2001,

 0 miles

Red Camry,
made in 1998,
45,000 miles

Red Camry,
made in 1998,
40,000 miles

Blue Mustang,
made in 2000,
25,000 miles

A
$14K

D
$13.5K

C
$13K

E
$14K

F
$14K

H
$20.5K

G
$20K

I
$21K

J
$30K

L
$36K

K
$35K

M
$37K

N
$15K

P
$19.5K

O
$19K

Q
$20K

 1

 2 3 4

 6 7 8 9

 10 11 12 13 14 15

16 17 18 19 20 21 22 23

 5

(b) Indexing tree.

Figure 4.9: Indexing tree with seventeen orders.

 62

not currently on sale, the tree does not include the corresponding nodes; for instance, if

nobody is selling an Echo, the root has no child for Echo.

Every nonleaf node includes a red-black tree that allows fast retrieval of its

children with specific values. For example, the root in Figure 4.9 includes a red-black

tree that indexes its children by model values, as shown in Figure 4.10. A leaf of the

indexing tree includes orders with identical items, which may have different prices and

sizes. Each leaf includes a red-black tree that indexes the corresponding orders by price.

Model

Color Color Color

1

 2

Corvette

Camry Mustang

 43

Figure 4.10: Node of an indexing tree. We arrange the attribute values in a red-black tree,
and each value points to the corresponding child in the indexing tree.

Standard sets. If a market includes standard sets of values, such as “all sports cars” and

“all American cars,” traders can use them in specifying their orders (see Section 3.1). We

define standard sets separately for each attribute; for instance, the set of American cars

belongs to the “model” attribute.

For every attribute, the system maintains a central table of standard sets, which

consists of two parts (see Figure 4.11a). The first part includes a sorted list of values for

every standard set; it allows determining whether a given value belongs to a specific set,

by the binary search in the corresponding list. The second part includes all values that

belong to at least one set; for each value, we store a sorted list of sets that include it.

Every node of an indexing tree also includes a table of standard sets; for example,

the root node in Figure 4.9 includes a table of sets for the first attribute (see

Figure 4.11b), and every “color” node includes a separate table of the second-attribute

sets. Every set in the table includes a list of pointers to its elements in the red-black tree;

for instance, the “American-cars” set points to the “Corvette” and “Mustang” nodes. If

the current tree does not contain elements of some sets, we do not add these sets to the

 63

table; for example, if the market does not include any orders to sell European cars, then

the “European-cars” set is not in the table.

We have implemented the table of sets by a red-black tree, which allows fast

addition and deletion of sets, as well as fast retrieval of all values in a given set. For

instance, if a buyer looks for American cars, the system retrieves the appropriate children

of the “model” node by finding the “American-cars” set and following its pointers.

American:
Japanese:
Sports:
 ...

Model

Indexing by set
American: Corvette, Mustang, ...
Japanese: Camry, Echo, ...
Sports: Corvette, Mustang, ...
 ...

Indexing by attribute value
Camry: Japanese, ...
Corvette: American, Sports, ...
Mustang: American, Sports, ...
 ...

Standard sets

Color Color Color

Corvette

Camry Mustang

1

Attribute valuesStandard sets

(a) Central table of standard sets. (b) Standard sets in a node of the indexing tree.

Figure 4.11: Standard sets of values. The market includes a central table of sets (a), and
every node in the indexing tree includes a table of sets for the respective attribute (b).

Summary data. The nodes of an indexing tree include summary data that help to find

matching orders. Every node contains the following data about the orders in the

corresponding subtree:

• The total number of orders and the total of their sizes

 • The minimal and maximal price

 • The minimal and maximal value for each numeric attribute

 • The time of the latest addition or modification of an order

For example, consider node 2 in Figure 4.9; the subtree rooted in this node includes nine

orders. If the newest of these orders was placed at 2pm, the summary data in node 2 are

as follows:

• Number of orders: 9 • Years: 1998..2001

 • Total size: 14 • Mileages: 0..45,000

 • Prices: $13,000..21,000 • Latest addition: 2pm

 64

4.3 Basic Tree Operations

When a user places, removes, or modifies an index order, the system has to update the

indexing tree. We first describe addition and deletion algorithms, and then explain the

modification procedure.

Adding a new order. When a user places an index order, the system adds it to the

corresponding leaf; for example, if Laura places an order to sell a black Camry, made in

1999, with 35,000 miles, the system adds it to node 16 in Figure 4.12. If the leaf is not in

the tree, the matcher adds the appropriate new branch; for example, if Laura offers to sell

a white Mustang, it adds the dashed branch in Figure 4.12.

After adding a new order, the system modifies the summary data of the ancestor

nodes. Note that every summary value is the minimum, maximum, or sum of the order

values. In Figure 4.13, we give the algorithms for updating the number of orders, total

size, and minimal price; the update of the other values is similar. These algorithms

perform one pass from the leaf to the root, and their running time is proportional to the

height of the tree; thus, if the market includes n attributes, the time is O(n).

Deleting an order. When the matcher fills an index order, or a trader cancels her old

order, the system removes the order from the corresponding leaf. If the leaf does not

include other orders, the system deletes it from the indexing tree; for example, if the

matcher fills order F in Figure 4.9, it removes node 18. If the deleted node is the only leaf

in some subtree, the system removes this subtree; for instance, the deletion of order J

leads to the removal of nodes 7, 13, and 20. We show a procedure for removing an order

and the corresponding subtree in Figure 4.14.

After deleting an order, the system updates the summary data in the ancestor

nodes. In Figure 4.15, we give procedures for updating the number of orders, total size,

and minimal price; the modification of the other data is similar. The update time depends

on the number n of market attributes, and on the number of children of the ancestor

nodes, c1, c2,…, cn. If a summary value is the sum of the order values, the update time is

O(n); if it is the minimum or maximum of order values, the time is O(c1 + c2 + … + cn).

 65

 Model Color Year Mileage Price Size
R Camry Black 1999 35,000 15,000 2
S Camry White 1999 35,000 14,000 1

(a) Two new orders.

Model

Color

Year

Mileage

Year

B
$14.5K

Mileage Mileage

Camry

RedBlack

1998 20011999

035,000 45,00040,000

Black Camry,
made in 1999,
35,000 miles

Red Camry,
made in 2001,

 0 miles

Red Camry,
made in 1998,
45,000 miles

Red Camry,
made in 1998,
40,000 miles

A
$14K

D
$13.5K

C
$13K

E
$14K

F
$14K

H
$16.5K

G
$16K

I
$17K

 1

 2

 5 6

 10 11 12

 16 17 18 19

R
$15K

Year

Mileage

White Camry,
made in 1999,
35,000 miles

1999

35,000

S
$14K

White

Corvette Mustang

(b) Indexing tree with new orders.

Figure 4.12: Adding orders to an indexing tree. We show new orders by dashed ovals. If
the tree does not include the leaf for a new order, the system adds the proper branch.

Modifying an order. If a trader changes the order size, expiration time, or additional

data, the change does not affect the structure of the indexing tree; however, the system

needs to update the summary data of the ancestor nodes. If a trader modifies the price of

an order, the system changes the position of the order in the red-black tree of the leaf, and

propagates the price change to the summary data.

Finally, if a trader changes the item specification, the system treats it as the

deletion of an old order and addition of a new one. For example, suppose that Laura has

placed an order to sell a black Camry, and the indexing tree is as shown in Figure 4.12. If

Laura has entered a wrong color, and she later changes it to white, then the system

removes the order from the leftmost leaf in Figure 4.12 and adds it to the rightmost leaf.

 66

ADD-COUNT (leaf)
The algorithm inputs the leaf with a newly added order.

node := leaf
Repeat while node ≠ NIL:
 num-orders[node] := num-orders[node] + 1
 node := parent[node]

ADD-SIZE (new-size, leaf)
The algorithm inputs the size of a newly added order
and the corresponding leaf of the indexing tree.

node := leaf
Repeat while node ≠ NIL:
 total-size[node] := total-size[node] + new-size
 node := parent[node]

ADD-PRICE (new-price, leaf)
The algorithm inputs the price of a newly added order
and the corresponding leaf of the indexing tree.

node := leaf
Repeat while node ≠ NIL and min-price[node] > new-price:
 min-price[node] := new-price
 node := parent[node]

Figure 4.13: Updating the summary data after addition of an order. We show the update
of the order number (ADD-ORDER), total size (ADD-SIZE), and minimal price (ADD-PRICE).

DEL-ORDER (order, leaf)
The algorithm inputs an old order and the corresponding leaf.

Remove order from leaf
If leaf includes other orders, then terminate
node := leaf
Repeat while parent[node] ≠ NIL and node has no children:
 ancestor := parent[node]
 delete node
 node := ancestor

Figure 4.14: Deletion of an order. If it has been the only order in some subtree of the
indexing tree, the system removes this subtree.

 67

DEL-COUNT (leaf)
The algorithm inputs the leaf with a deleted order.

node := leaf
Repeat while node ≠ NIL:
 num-orders[node] := num-orders[node] – 1
 node := parent[node]

DEL-SIZE (old-size, leaf)
The algorithm inputs the size of a deleted order,
along with the leaf from which the order is deleted.

node := leaf
Repeat while node ≠ NIL:
 total-size[node] := total-size[node] – old-size
 node := parent[node]

DEL-PRICE (old-price, leaf)
The algorithm inputs the price of a deleted order,
along with the leaf from which the order is deleted.

If min-price[leaf] < old-price, then terminate
Update the minimal price of the leaf:
 min-price[leaf] := +∞
 For every order in the leaf:
 If min-price[leaf] > price[order],
 then min-price[leaf] := price[order]
Update the minimal prices of its ancestors:
 node := leaf
 Repeat while min-price[node] > old-price
 and parent[node] ≠ NIL and min-price[parent[node]] = old-price:
 node := parent[node]
 min-price[node] := +∞
 For every child of node:
 If min-price[node] > min-price[child],
 then min-price[node] := min-price[child]

Figure 4.15: Updating the summary data after deletion of an order. We show the update
of the order number (DEL-COUNT), total size (DEL-SIZE), and minimal price (DEL-PRICE).

 68

MATCHING-LEAVES(I, filter, num-leaves, root)
The algorithm inputs an item description I, represented by a union of Cartesian
products, a filter function, a limit on the number of retrieved leaves, and the root of
an indexing tree. It returns a set of leaves that match the item description.

leaves := Ø (set of matching leaves)
num-left := num-leaves (limit on the number of leaves)
For each Cartesian product I1 × I2 × … × In in the union I:
 Call FIND-LEAVES(I1 × I2 × … × In, filter, leaves, 1, num-left, root)
 If num-left = 0, then return leaves
Return leaves

FIND-LEAVES(I1 × I2 × … × In, filter, leaves, k, num-left, node)
The subroutine inputs a Cartesian product I1 × I2 × … × In, a filter function, a set of
matching leaves, an attribute number k, a limit on the number of retrieved leaves,
and a node of the indexing tree that corresponds to the kth attribute. It finds the
matching children of the given node, recursively processes the respective subtrees,
and adds matching leaves in these subtrees to the set of leaves.

If k = n and filter(node) = TRUE, then:
 Add node to leaves
 num-left := num-left – 1
If k < n, then:
 Identify all children of node that match Ik
 For each matching child:
 Call FIND-LEAVES(I1 × I2 × … × In, filter, leaves, k+1, num-left, child)
 If num-left = 0, then terminate

Figure 4.16: Retrieval of matching leaves. The algorithm inputs a set of items,
represented by a union of Cartesian products, along with a filter function, a limit on the
number of retrieved leaves, and a pointer to the root of an indexing tree. The FIND-
LEAVES subroutine retrieves matches for one Cartesian product.

4.4 Search for Matches

We outline a procedure for retrieving the index orders that match a given order, which

consists of two main steps. First, it finds the leaf nodes that match the item description of

a given order; second, it identifies the highest-quality matches in these leaves. The reader

may find a more detailed explanation of retrieval algorithms in the forthcoming thesis of

Gong [2002].

 69

Matching leaves. In Figure 4.16, we give an algorithm that retrieves matching leaves for

a given item set. The FIND-LEAVES subroutine finds all matching leaves for a Cartesian

product using depth-first search in the indexing tree. It identifies all children of the root

that match the first element of the Cartesian product, and then recursively processes the

corresponding subtrees. For example, suppose that a buyer is looking for a Camry or

Mustang made after 1998, with any color and mileage, and the tree of sell orders is as

shown in Figure 4.17. The subroutine determines that nodes 2 and 4 match the model,

and then recursively processes the two respective subtrees. It identifies three matching

nodes for the second attribute, three nodes for the third attribute, and finally four

matching leaves; we show these nodes by thick boxes.

If a given order includes a union of several Cartesian products, we call the FIND-

LEAVES subroutine for each product. If an order includes a filter function, the subroutine

uses it to prune inappropriate leaves. For instance, if the filter rejects the cars made in

1999 with more than 30,000 miles, it prunes node 16 in Figure 4.17.

If an order matches a large number of leaves, the retrieval may take considerable

time and slow down the matching process. To prevent this problem, we impose a limit on

the number of retrieved leaves. For instance, if we allow at most three matches, and a

user places an order to buy any Camry, then the system retrieves the three leftmost leaves

in Figure 4.17. We use this limit to control the trade-off between the speed and quality of

matches. A small limit ensures the efficiency, but reduces the chance of finding the best

match.

Best matches. After the system identifies all matching leaves, it selects the highest-

quality orders from these leaves. It uses the quality function of the given order to evaluate

matches, and it processes the matches from the best to the worst. In Figure 4.18, we give

an algorithm for identifying best matches, which arranges matching leaves in a priority

queue, indexed by the quality of the best order in each leaf. At every step, the algorithm

processes the best available match that has not yet been considered.

For example, suppose that a buyer places an order for six Camries or Mustangs

made after 1998, and her quality measure depends only on price. The system first

retrieves order A, with price $14,000 and size 2, then order B with price $14,500, then

 70

order N with price $15,000 and size 2, and finally order O with price $19,000; we show

these orders by thick ovals in Figure 4.17.

Combinatorial orders. If a trader places a disjunctive order, the system finds a match for

each element of the disjunction and chooses the best of these matches. If the size of a

disjunctive order is greater than one, the system reduces its size after filling one of its

elements. When processing a conjunctive order, the system finds a match for each of its

elements and completes all corresponding trades. If some elements do not have matches,

the system does not perform trades, and repeats the search during the next matching

cycle. For example, suppose that a buyer places the conjunctive order shown in

Figure 4.19, and the tree of sell orders is as shown in Figure 4.17. The best match for the

first element is order A, whereas the best match for the second element includes orders J

and K. After finding these matches, the system completes the trade in Figure 4.19.

Model

Color

Year

Mileage

Year Year Year

B
$14.5K

Color Color

Year

Mileage Mileage Mileage Mileage Mileage

Camry Corvette Mustang

RedBlack Gold Red Blue

1998 20011999 20001998 2000

21,00019,000035,000 25,00045,00040,000 48,000

Black Camry,
made in 1999,
35,000 miles

Blue Mustang,
made in 2000,
21,000 miles

Red Corvette,
made in 2000,
19,000 miles

Gold Corvette,
made in 1998,
48,000 miles

Red Camry,
made in 2001,

 0 miles

Red Camry,
made in 1998,
45,000 miles

Red Camry,
made in 1998,
40,000 miles

Blue Mustang,
made in 2000,
25,000 miles

A
$14K

D
$13.5K

C
$13K

E
$14K

F
$14K

H
$20.5K

G
$20K

I
$21K

J
$30K

L
$36K

K
$35K

M
$37K

N
$15K

P
$19.5K

O
$19K

Q
$20K

 1

 2 3 4

 6 7 8 9

 10 11 12 13 14 15

16 17 18 19 20 21 22 23

 5

Figure 4.17: Retrieval of matches for an order to buy six Camries or Mustangs made after
1998. We show the matching nodes by thick boxes, and the retrieved orders by thick
ovals.

 71

MATCHING-ORDERS(order, leaves)
The algorithm inputs a given order and the leaves that match the order.
It removes the order after it is completely filled.

For each leaf in leaves:
 current-order[leaf] := best-price-order[leaf]
 quality[leaf] := Qualorder(current-order[leaf])
Build a priority queue for leaves, sorted by quality[leaf]
Repeat while Maxorder > 0 and Qualorder(current-order[top-leaf[queue]]) ≥ 0:
 leaf := top-leaf[queue]
 best-order := current-order[leaf]
 current-order[leaf] := next[current-order[leaf]]
 quality[leaf] := Qualorder(current-order[leaf])
 Update the position of the leaf in the priority queue
 matching-size := FILL-SIZE(Maxorder, Minorder, Steporder,
 Maxbest-order, Minbest-order, Stepbest-order)
 If matching-size > 0, then:
 Complete the trade between order and best-order, with size of matching-size
 Maxorder := Maxorder – matching-size
 Maxbest-order := Maxbest-order – matching-size
 If Maxbest-order = 0, then remove best-order from the market
 If Maxorder = 0, then remove order from the market

Figure 4.18: Retrieval of matching orders.

 and

Fill:
1 Corvette,

$32,500

Sell:
2 Camries,

made in 1999,
$14,000

Fill:
1 Camry,
$14,500

Buy:
2 Corvettes,
after 1997,

$35,000

Buy:
1 Camry,

after 1998,
$15,000

A
Sell:

1 Corvette,
made in 1998,

$30,000

Sell:
2 Corvettes,

made in 2000,
$35,000

Fill:
1 Corvette,

$35,000

J K

Figure 4.19. Matches for a conjunctive order. We mark the conjunction by thick boxes,
and show the matching orders from the tree in Figure 4.17.

Chapter 5 Concluding Remarks

The modern economy includes a variety of electronic marketplaces, such as bulletin

boards, auctions, and standardized exchanges; however, it does not yet include exchange

markets for complex nonstandard commodities. The reported work is a step toward the

development of automated exchanges for nonstandard goods and services. We have

proposed a formal model for trading complex commodities, which allows the use of

constraints and preference functions in the description of orders. We have then developed

data structures for fast identification of matches between buy and sell orders.

On the negative side, the developed structures allow indexing only a certain

subclass of complex orders, and we cannot find a match between two orders that do not

belong to this subclass. Furthermore, the system does not guarantee finding the best-price

or highest-quality matches. We plan to address these problems as part of the future work,

which will involve the development of indexing structures for the retrieval of optimal

matches. We are also working on a distributed version of the exchange, which will

include multiple matchers and allow processing of different commodities on different

computers.

 72

References

[Andersson and Ygge, 1998] Arne Andersson and Fredrik Ygge. Managing large scale

computational markets. In Proceedings of the Thirty-First Hawaii International
Conference on System Sciences, 7, pages 4–13, 1998.

[Andersson et al., 2000] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. Integer

programming for combinatorial auction winner determination. In Proceedings of the
Fourth International Conference on Multi-Agent Systems, pages 39–46, 2000.

[Bakos, 2001] Yannis Bakos. The emerging landscape for retail e-commerce. Journal of

Economic Perspectives, 15(1), pages 69–80, 2001.

[Bapna et al., 2000] Ravi Bapna, Paulo Goes, and Alok Gupta. A theoretical and

empirical investigation of multi-item on-line auctions. Information Technology and
Management, 1(1), pages 1–23, 2000.

[Bernstein, 1993] Peter L. Bernstein. Capital Ideas: The Improbable Origins of Modern

Wall Street. The Free Press, New York, NY, 1993.

[Bichler, 2000] Martin Bichler. An experimental analysis of multi-attribute auctions.

Decision Support Systems, 29(3), pages 249–268, 2000.

[Bichler and Segev, 1999] Martin Bichler and Arie Segev. A brokerage framework for

Internet commerce. Distributed and Parallel Databases, 7(2), pages 133–148, 1999.

[Bichler and Segev, 2001] Martin Bichler and Arie Segev. Methodologies for the design

of negotiation protocols on e-markets. Computer Networks, 37, pages 137–152, 2001.

[Bichler et al., 1998] Martin Bichler, Arie Segev, and Carrie Beam. An electronic broker

for business-to-business electronic commerce on the Internet. International Journal of
Cooperative Information Systems, 7(4), pages 315–329, 1998.

[Bichler et al., 1999] Martin Bichler, Marion Kaukal, and Arie Segev. Multi-attribute

auctions for electronic procurement. In Proceedings of the First IAC Workshop on
Internet Based Negotiation Technologies, 1999.

[Blum et al., 2002] Avrim Blum, Tuomas W. Sandholm, and Martin Zinkevich. Online

algorithms for market clearing. In Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2002.

 73

 74

[Cason and Friedman, 1999] Timothy Cason and Dan Friedman. Price formation and
exchange in thin markets: A laboratory comparison of institutions. In Peter Howitt,
Elisabetta de Antoni, and Axel Leijonhufvud, editors, Money, Markets and Method:
Essays in Honour of Robert W. Clower, pages 155–179. Edward Elgar, Cheltenham,
United Kingdom, 1999.

[Chavez and Maes, 1996] Anthony Chavez and Pattie Maes. Kasbah: An agent mar-

ketplace for buying and selling goods. In Proceedings of the First International
Conference on the Practical Application of Intelligent Agents and Multi-Agent Tech-
nology, pages 75–90, 1996.

[Chavez et al., 1997] Anthony Chavez, Daniel Dreilinger, Robert Guttman, and Pattie

Maes. A real-life experiment in creating an agent marketplace. In Proceedings of the
Second International Conference on the Practical Application of Intelligent Agents
and Multi-Agent Technology, pages 159–178, 1997.

[Che, 1993] Yeon-Koo Che. Design competition through multidimensional auctions.

RAND Journal of Economics, 24(4), pages 668–680, 1993.

[Cheng and Wellman, 1998] John Cheng and Michael Wellman. The WALRAS algorithm:

A convergent distributed implementation of general equilibrium outcomes.
Computational Economics, 12(1), pages 1–24, 1998.

[Conen and Sandholm, 2001] Wolfram Conen and Tuomas W. Sandholm. Minimal

preference elicitation in combinatorial auctions. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, Workshop on Economic
Agents, Models, and Mechanisms, pages 71–80, 2001.

[Cripps and Ireland, 1994] Martin Cripps and Norman Ireland. The design of auctions

and tenders with quality thresholds: The symmetric case. Economic Journal, 104(423),
pages 316–326, 1994.

[Dou and Chou, 2002] Wenyu Dou and David C. Chou. A structural analysis of business-

to-business digital markets. Industrial Marketing Management, 31, pages 165–176,
2002.

[Fujishima et al., 1999a] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham.

Taming the computational complexity of combinatorial auctions: Optimal and
approximate approaches. In Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence, 1, pages 548–553, 1999.

[Fujishima et al., 1999b] Yuzo Fujishima, David McAdams, and Yoav Shoham.

Speeding up ascending-bid auctions. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, 1, pages 554–563, 1999.

 75

[Gonen and Lehmann, 2000] Rica Gonen and Daniel Lehmann. Optimal solutions for
multi-unit combinatorial auctions: Branch and bound heuristics. In Proceedings of the
Second ACM Conference on Electronic Commerce, pages 13–20, 2000.

[Gonen and Lehmann, 2001] Rica Gonen and Daniel Lehmann. Linear programming

helps solving large multi-unit combinatorial auctions. In Proceedings of the Electronic
Market Design Workshop, 2001.

[Gong, 2002] Jianli Gong. Exchanges for Complex Commodities: Search for Optimal

Matches. Master thesis, Department of Computer Science and Engineering, University
of South Florida, 2002. Forthcoming.

[Guttman et al., 1998a] Robert H. Guttman, Alexandros G. Moukas, and Pattie Maes.

Agent-mediated electronic commerce: A survey. Knowledge Engineering Review,
13(2), pages 147–159, 1998.

[Guttman et al., 1998b] Robert H. Guttman, Alexandros G. Moukas, and Pattie Maes.

Agents as mediators in electronic commerce. International Journal of Electronic
Markets, 8(1), pages 22–27, 1998.

[Hu and Wellman, 2001] Junling Hu and Michael P. Wellman. Learning about other

agents in a dynamic multiagent system. Journal of Cognitive Systems Research, 1,
pages 67–79, 2001.

[Hu et al., 1999] Junling Hu, Daniel Reeves, and Hock-Shan Wong. Agents participating

in Internet auctions. In Proceedings of the AAAI Workshop on Artificial Intelligence for
Electronic Commerce, 1999.

[Hu et al., 2000] Junling Hu, Daniel Reeves, and Hock-Shan Wong. Personalized bidding

agents for online auctions. In Proceedings of the Fifth International Conference on the
Practical Application of Intelligent Agents and Multi-Agents, pages 167–184, 2000.

[Hull, 1999] John C. Hull. Options, Futures, and Other Derivatives. Prentice Hall, Upper

Saddle River, NJ, fourth edition, 1999.

[Johnson, 2001] Joshua M. Johnson. Exchanges for Complex Commodities: Theory and

Experiments. Master thesis, Department of Computer Science and Engineering,
University of South Florida, 2001.

[Jones, 2000] Joni L. Jones. Incompletely Specified Combinatorial Auction: An Alter-

native Allocation Mechanism for Business-to-Business Negotiations. PhD thesis,
Warrington College of Business, University of Florida, 2000.

[Kalagnanam et al., 2000] Jayant R. Kalagnanam, Andrew J. Davenport, and Ho S. Lee.

Computational aspects of clearing continuous call double auctions with assignment
constraints and indivisible demand. Research Report RC21660(97613), IBM, 2000.

 76

[Klein, 1997] Stefan Klein. Introduction to electronic auctions. International Journal of

Electronic Markets, 7(4), pages 3–6, 1997.

[Lavi and Nisan, 2000] Ran Lavi and Noam Nisan. Competitive analysis of incentive

compatible on-line auctions. In Proceedings of the Second ACM Conference on
Electronic Commerce, pages 233–241, 2000.

[Lehmann et al., 1999] Daniel Lehmann, Liadan Ita O’Callaghan, and Yoav Shoham.

Truth revelation in rapid, approximately efficient combinatorial auctions. In
Proceedings of the First ACM Conference on Electronic Commerce, pages 96–102,
1999.

[Lehmann et al., 2001] Benny Lehmann, Daniel Lehmann, and Noam Nisan.

Combinatorial auctions with decreasing marginal utilities. In Proceedings of the Third
ACM Conference on Electronic Commerce, pages 18–28, 2001.

[Maes et al., 1999] Pattie Maes, Robert H. Guttman, and Alexandros G. Moukas. Agents

that buy and sell. Communications of the ACM, 42(3), pages 81–91, 1999.

[Nisan, 2000] Noam Nisan. Bidding and allocation in combinatorial auctions. In

Proceedings of the Second ACM Conference on Electronic Commerce, pages 1–12,
2000.

[Noussair et al., 1998] Charles Noussair, Stephane Robin, and Bernard Ruffieux. The

effect of transaction costs on double auction markets. Journal of Economic Behavior
and Organization, 36, pages 221–233, 1998.

[Parkes, 1999] David C. Parkes. iBundle: An efficient ascending price bundle auction. In

Proceedings of the First ACM Conference on Electronic Commerce, pages 148–157,
1999.

[Parkes and Ungar, 2000a] David C. Parkes and Lyle H. Ungar. Iterative combinatorial

auctions: Theory and practice. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence, pages 74–81, 2000.

[Parkes and Ungar, 2000b] David C. Parkes and Lyle H. Ungar. Preventing strategic

manipulation in iterative auctions: Proxy agents and price-adjustment. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence, pages 82–89, 2000.

[Parkes et al., 1999] David C. Parkes, Lyle H. Ungar, and Dean P. Foster. Accounting for

cognitive costs in on-line auction design. In Pablo Noriega and Carles Sierra, editors,
Agent Mediated Electronic Commerce, pages 25–40. Springer-Verlag, New York, NY,
1999.

 77

[Preist, 1999a] Chris Preist. Commodity trading using an agent-based iterated double
auction. In Proceedings of the Third Annual Conference on Autonomous Agents, pages
131–138, 1999.

[Preist, 1999b] Chris Preist. Economic agents for automated trading. In Alex L. G.

Hayzelden and John Bigham, editors, Software Agents for Future Communication
Systems, pages 207–220. Springer-Verlag, Berlin, Germany, 1999.

[Reiter and Simon, 1992] Stanley Reiter and Carl Simon. Decentralized dynamic pro-

cesses for finding equilibrium. Journal of Economic Theory, 56(2), pages 400–425,
1992.

[Rothkopf et al., 1998] Michael H. Rothkopf, Aleksandar Pekec, and Ronald M. Harstad.

Computationally manageable combinatorial auctions. Management Science, 44(8),
pages 1131–1147, 1998.

[Rust and Hall, 2001] John Rust and George Hall. Middle men versus market makers: A

theory of competitive exchange. Unpublished manuscript, 2001.

[Sandholm, 1999] Tuomas W. Sandholm. An algorithm for optimal winner determination

in combinatorial auctions. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, 1, pages 542–547, 1999.

[Sandholm, 2000a] Tuomas W. Sandholm. Approaches to winner determination in

combinatorial auctions. Decision Support Systems, 28(1–2), pages 165–176, 2000.

[Sandholm, 2000b] Tuomas W. Sandholm. eMediator: A next generation electronic

commerce server. In Proceedings of the Fourth International Conference on Au-
tonomous Agents, pages 341–348, 2000.

[Sandholm and Suri, 2000] Tuomas W. Sandholm and Subhash Suri. Improved al-

gorithms for optimal winner determination in combinatorial auctions and gener-
alizations. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence, pages 90–97, 2000.

[Sandholm and Suri, 2001] Tuomas W. Sandholm and Subhash Suri. Market clearability.

In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, pages 1145–1151, 2001.

[Sandholm et al., 2001a] Tuomas W. Sandholm, Subhash Suri, Andrew Gilpin, and

David Levine. CABOB: A fast optimal algorithm for combinatorial auctions. In
Proceedings of the Seventeenth International Joint Conference on Artificial Intelli-
gence, pages 1102–1108, 2001.

 78

[Sandholm et al., 2001b] Tuomas W. Sandholm, Subhash Suri, Andrew Gilpin, and
David Levine. Winner determination in combinatorial auction generalizations. In
Proceedings of the International Conference on Autonomous Agents, Workshop on
Agent-Based Approaches to B2B, pages 35–41, 2001.

[Trenton, 1964] Rudolf W. Trenton. Basic Economics. Meredith Publishing Company,

New York, NY, 1964.

[Turban, 1997] Efraim Turban. Auctions and bidding on the Internet: An assessment.

International Journal of Electronic Markets, 7(4), pages 7–11, 1997.

[Vetter and Pitsch, 1999] Michael Vetter and Stefan Pitsch. An agent-based market

supporting multiple auction protocols. In Proceedings of the Workshop on Agents for
Electronic Commerce and Managing the Internet-Enabled Supply Chain, 1999.

[Wellman, 1993] Michael P. Wellman. A market-oriented programming environment and

its application to distributed multicommodity flow problems. Journal of Artificial
Intelligence Research, 1, pages 1–23, 1993.

[Wellman and Wurman, 1998] Michael P. Wellman and Peter R. Wurman. Real time

issues for Internet auctions. In Proceedings of the First IEEE Workshop on Dependable
and Real-Time E-Commerce Systems, 1998.

[Wrigley, 1997] Clive D. Wrigley. Design criteria for electronic market servers. Inter-

national Journal of Electronic Markets, 7(4), pages 12–16, 1997.

[Wurman, 2001] Peter R. Wurman. Toward flexible trading agents. In Proceedings of the

AAAI Spring Symposium on Game Theoretic and Decision Theoretic Agents, pages
134–140, 2001.

[Wurman and Wellman, 1999a] Peter R. Wurman and Michael P. Wellman. Equilibrium

prices in bundle auctions. In Proceedings of the AAAI Workshop on Artificial
Intelligence for Electronic Commerce, 1999.

[Wurman and Wellman, 1999b] Peter R. Wurman and Michael P. Wellman. Control

architecture for a flexible Internet auction server. In Proceedings of the First IAC
Workshop on Internet Based Negotiation Technologies, 1999.

[Wurman and Wellman, 2000] Peter R. Wurman and Michael P. Wellman. AkBA: A

progressive, anonymous-price combinatorial auction. In Proceedings of the Second
ACM Conference on Electronic Commerce, pages 21–29, 2000.

[Wurman et al., 1998a] Peter R. Wurman, William E. Walsh, and Michael P. Wellman.

Flexible double auctions for electronic commerce: Theory and implementation.
Decision Support Systems, 24(1), pages 17–27, 1998.

[Wurman et al., 1998b] Peter R. Wurman, Michael P. Wellman, and William E. Walsh.

The Michigan Internet AuctionBot: A configurable auction server for human and
software agents. In Proceedings of the Second International Conference on
Autonomous Agents, pages 301–308, 1998.

[Wurman et al., 2001] Peter R. Wurman, Michael P. Wellman, and William E. Walsh. A

parameterization of the auction design space. Games and Economic Behavior, 35(1–
2), pages 304–338, 2001.

[Yokoo et al., 2001a] Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara. Robust

combinatorial auction protocol against false-name bids. Artificial Intelligence, 130(2),
pages 167–181, 2001.

[Yokoo et al., 2001b] Makoto Yokoo, Yuko Sakurai, and Shigeo Matsubara. Bundle

design in robust combinatorial auction protocol against false-name bids. In
Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, pages 1095–1101, 2001.

 79

	Chapter 1 Introduction
	1.1 Example
	1.2 Previous Work
	1.2.1 Combinatorial Auctions
	1.2.2 Advanced Semantics
	1.2.3 Exchanges
	1.2.4 General-Purpose Systems

	1.3 Contributions

	Chapter 2 General Exchange Model
	2.1 Orders
	2.1.1 Buyers and Sellers
	2.1.2 Concept of an Order
	2.1.3 Quality Functions
	2.1.4 Order Sizes
	2.1.5 Market Attributes

	2.2 Order Execution
	2.2.1 Fills
	2.2.2 Multi-Fills
	2.2.3 Equivalence of Multi-Fills
	2.2.4 Price Averaging

	2.3 Combinatorial Orders
	2.3.1 Disjunctive Orders
	Conjunctive Orders
	2.3.3 Chain Orders

	Chapter 3 Order Representation
	3.1 Item Sets
	3.2 Price, Quality, and Size
	3.3 Cancellations and Inactive Orders
	3.4 Modifications
	3.5 Confirmations
	3.6 User Actions

	Chapter 4 Indexing Structure
	4.1 Architecture
	4.2 Indexing Trees
	4.3 Basic Tree Operations
	4.4 Search for Matches

	Chapter 5 Concluding Remarks
	References

