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Diagnosis of Ovarian Cancer

Based on Mass Spectrum of Blood Samples

Hong Tang

ABSTRACT

The early detection of cancer is crucial for successful treatment, and medical re-
searchers have investigated a number of early-diagnosis techniques. Recently, they
have discovered that some cancers affect the concentration of certain molecules in
the blood, which allows early diagnosis by analyzing the blood mass spectrum. Re-
searchers have developed several techniques for the analysis of the mass-spectrum
curve, and used them for the detection of prostate, ovarian, breast, bladder, pancre-
atic, kidney, liver and colon cancers.

We have continued this work and applied data mining to the diagnosis of ovarian
cancer based on the mass-spectrum curve. We have identified the most informative
points of this curve, and then used decision trees, support vector machines, and
neural networks to determine the differences between the curves of cancer patients

and healthy people.
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Chapter 1 Introduction

The development of tools for the early cancer diagnosis is a major open problem, and
clinicians have investigated a variety of diagnosis techniques. Recently, they have
discovered that cancer may affect the blood mass spectrum, and studied diagnosis
methods based on the analysis of mass-spectrum data, which provide information
about proteins and their fragments [Bakhtiar and Tse, 2000; Yates, 2000; Bakhtiar
and Nelson, 2001].

Researchers use two main techniques for generating mass spectra, which are
called “matrix-assisted laser desorption and ionization” [Valerio et al., 2001; Wu et
al., 2003] and “surface-enhanced laser desorption and ionization” [Adam et al., 2001;
Waulfkuhle et al., 2001; Chapman, 2002; Issaq et al., 2002; Wellmann et al., 2002].
The resulting mass spectrum is a curve (Figure 1.1), where the z-axis shows the ratio
of the weight of a specific molecule to its electrical charge, and the y-axis is the signal
intensity for the same molecule. The mass-spectrum analysis is a fast inexpensive
procedure based on a sample of a patient’s blood, and it may potentially allow cancer

screening with little discomfort to a patient.
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Figure 1.1: Mass-Spectrum Curve.



Table 1.1: Data Sets Used in the Reported Work.

Data set Number of cases
Cancer ‘ Healthy

1 100 116
2 100 116
3 162 91

Medical researchers have developed several techniques for analyzing the mass-
spectrum data, which allow the diagnosis of various cancers, including ovarian, breast,
prostate, bladder, pancreatic, kidney, liver and colon cancers. The effectiveness of
these techniques varies across cancer types, methods for generating mass spectra, and
algorithms for analyzing the resulting data. Clinicians use three standard measures
of the effectiveness of diagnosis techniques: sensitivity, specificity and accuracy. The
sensitivity is the probability of the correct diagnosis for a patient with cancer, the
specificity is the chances of the correct diagnosis for a healthy person, and the accuracy
is the chances of the correct diagnosis for the overall population of healthy and sick
people. The sensitivity of the mass-spectrum diagnosis techniques has varied from
64% to 99%, the specificity has been between 66% and 98%, and the overall accuracy
has been between 73% and 98%.

We have continued this work and investigated techniques for the diagnosis of
early-stage ovarian cancer. Specifically, we have applied decision-tree learning, sup-
port vector machines, and neural networks to identify the differences between the
mass spectra of ovarian-cancer patients and those of healthy people. We have used
three data sets (Table 1), available at http://clinicalproteomics.steem.com. Sets 1 and 2
include the mass spectra of 100 cancer patients and 116 healthy people, whereas Set 3
includes the data of 162 cancer patients and 91 healthy people. Each mass-spectrum
curve consists of 15,155 points.

The experiments have confirmed that the mass spectra allow the diagnosis of
ovarian cancer. The sensitivity of the developed technique varies from 85% to 99%,
depending on the data set, its specificity is between 81% and 99%, and its accuracy
is between 82% and 99%.



Chapter 2 Previous Work

Medical researchers have developed techniques for the detection of early cancer based
on protein markers, which are certain molecules in body tissues and fluids [Poon
and Johnson, 2001], but these techniques are often inaccurate. For example, the
specificity of an antigen method for the prostate-cancer detection is only 25-30%,
although its sensitivity is high [Adam et al., 2001]; as another example, the sensitivity
of a similar method for breast cancer is 23%, and its specificity is 69% [Li et al., 2002].
Recently, researchers have developed a new cancer-detection method, based on the
application of data mining to the mass spectra of patients’ tissue cells, blood, serum
and other body fluids [Alaiya et al., 2000; Banks et al., 2000; Celis et al., 2000;
Chambers et al., 2000; Paweletz et al., 2000; Adam et al., 2001; Poon and Johnson,
2001; Srinivas et al., 2001; Vlahou et al., 2001; Wulfkuhle et al., 2001; Fung and
Enderwick, 2002; Issaq et al., 2002; Petricoin et al., 2002a; Petricoin et al., 2002c;
Petricoin and Liotta, 2002; Wulfkuhle et al., 2003).

2.1 Peaks in Mass Spectra

Some researchers have analyzed mass-spectrum curves using the Ciphergen System
software, which helps to identify major peaks. Hlavaty et al. [2001] found that a
50.8k Dalton protein peak was present in all prostate-cancer samples, and absent in
all samples of healthy people. Watkins et al. [2001] used the same method to detect
breast, colon and prostate cancers. They correctly identified 100% of breast cancer
cases and ruled out 96% of noncancer cases. For colon cancer, they correctly identified
100% of cancer cases and ruled out 86% of noncancer cases. For prostate cancer, their
results were 100% correct for both cancer and noncancer cases. Sauter et al. [2002]
analyzed mass-spectrum curves of the nipple aspirate fluid over the 5-40k Dalton
range, and identified five relevant peaks. The most relevant peaks were 6.5k Dalton

and 15.9k Dalton, and their use gave 84% sensitivity and 100% specificity.



2.2 Decision Trees

Adam et al. [2002] applied decision-tree learning to the blood mass spectra of prostate-
cancer patients. They used the Ciphergen System software for peak detection, and
decision trees for classification based on the intensity of nine highest peaks, which
gave 96% accuracy, 83% sensitivity and 97% specificity. They also experimented with
biostatistical algorithms, genetic clustering and support vector machines, which gave
accuracy between 83% and 90%. Qu et al. [2002] applied a boosted decision tree
method, using the same data and features as Adam et al. [2002]. They developed
two new classifiers, called AdaBoost and Boosted Decision Stump Feature Selection.
For AdaBoost, the sensitivity was 98.5% with the 95% confidence interval of 96.5—
99.7%, and the specificity was 97.9% with the 95% confidence interval of 95.5-99.4%.
For Boosted Decision Stump Feature Selection, the sensitivity was 91.1% with the
95% confidence interval of 86.9-94.6%, and the specificity was 94.3% with the 95%
confidence interval of 90.7-97.1%.

2.3 Neural Networks

Ball et al. [2002] applied back-propagation neural networks to determine astroglial
tumor grade (1 or 2), which gave 100% accuracy. Poon et al. [2003] used neural
networks to distinguish hepatocellular carcinoma from chronic liver disease, which

gave 92% sensitivity and 90% specificity.

2.4 Clustering

Petricoin et al. [2002a] combined a genetic algorithm with self-organizing cluster anal-
ysis for identifying ovarian cancer. The sensitivity of their technique was 100%, with
the 95% confidence interval of 93-100%, and the specificity was 95%, with the 95%
confidence interval of 87-99%. They also applied their technique to diagnose prostate
cancer [Petricoin et al., 2002b], which gave 95% sensitivity with the 95% confidence
interval of 82-99%, and 78% specificity with the 95% confidence interval of 72-83%.



Poon et al. [2003] applied two-way hierarchical clustering to distinguish hepatocellu-
lar carcinoma from chronic liver disease; however, they did not report its sensitivity,

specificity or accuracy.

2.5 Other Methods

Valerio et al. [2001] applied the statistical x? test to the mass spectra of thirteen pan-
creatic cancer patients, nine chronic pancreatitis patients and ten healthy people, and
found unique protein peaks for each of the three groups; however, they did not report
the sensitivity, specificity or accuracy of their method. Cazares et al. [2002] analyzed
mass spectra of prostate cancer; they used the Ciphergen System software for peak
detection, and logistic regression for classification, which gave 93% sensitivity and
94% specificity. Wu et al. [2003] compared several methods for classification of ovar-
ian cancer, including linear discriminant analysis, quadratic discriminant analysis,
nearest neighbors, bagging classification trees, boosting classification trees, support
vector machines and random forests; they concluded that the random-forest classifi-

cation was the most effective.



Chapter 3 New Results

We describe a technique for selecting relevant points of the mass-spectrum curve, and

then give results of detecting ovarian cancer based on the values of these points.

3.1 Feature Selection

We view each point of a mass-spectrum curve as a feature, and the corresponding
signal intensity as its value. To select relevant features, we calculate the mean inten-
sity values for each point in the mass spectra of the cancer and non-cancer groups,
w1 and po, and the corresponding standard deviations, o; and oy. The mean dif-
ference of these intensities is |y — pe|, and the standard deviation of this difference
is \/o? + 03. For each point, we determine the ratio of the mean difference to its
standard deviation, | — us|/\/0% + 03, and select a given number of points with the
greatest ratios.

We impose a lower bound on the distance between selected points, which pre-
vents the selection of points with correlated values. After selecting the point with the
greatest ratio, we discard all points within the distance bound from the selected point
and choose the second greatest-ratio feature among the remaining points. Then, we
discard the points within the distance bound from the second selected point, choose

the third greatest-ratio feature among the remaining points, and so on.

3.2 Learning Algorithms

We have experimented with decision trees, support vector machines and neural net-
works. We have used the C4.5 package (www.cse.unsw.edu.au/~quinlan) for learning de-
cision trees [Quinlan, 1993], the SVMFu package (five-percent-nation.mit.edu,/SvmFu) for
constructing support vector machines with linear kernel functions [Burges, 1998; Cris-

tianini and Shawe-Taylor, 2000] and the Cascor 1.2 package (www.cs.cmu. edu,/afs/cs/pr-



oject/connect/code/supported) for generating neural networks using the cascade-correla-
tion algorithm [Fahlman and Lebiere, 1990; Fausett, 1994; Bishop, 1995]. Cascor
starts with a network that has no hidden units, and adds new units one by one, in
a two-step process. First, it adds a new hidden unit and connections from the input
units and old hidden units to the new unit, and trains the weights of these connec-
tions. Second, it adds the connections from the new unit to the output unit and

trains their weights.

3.3 Experiments

We have implemented an experimental setup that allows control over the number
of features and minimal distance between selected features. We have varied the
number of features from 1 to 64, and the minimal distance from 1 to 1024. For
each combination of settings, we have used eighteen-fold cross-validation to evaluate
the three learning algorithms. In Figures 3.1-3.7, we show the dependency of the
accuracy on the control variables. In Table 3.1, we give the minimal and maximal
sensitivity, specificity and accuracy for decision trees, support vector machines and
neural networks.

We have determined the number of features and minimal distance between fea-
tures that lead to the highest accuracy (Table 3.2). The optimal number of features
varies from four to thirty-two, depending on the learning technique and data set. We
have also constructed the learning curves for the optimal choice of parameters (Fig-
ures 3.8-3.10); these curves show the dependency of the accuracy on the training-set
size. The results show that all three techniques reach the maximal accuracy after

processing about one hundred learning examples.



Table 3.1: Effectiveness of Ovarian-Cancer Diagnosis. We Show the Minimal (Min) and
Maximal (Max) Accuracy, Sensitivity and Specificity for Each of the Learning Techniques.

Decision trees SVM Neural nets
Min Max | Min Max | Min Max
Data set 1 Accuracy | 75% 82% | 6%  83% | 67%  82%
Sensitivity | 68% 86% | 75% 85% | 66% 85%
Specificity | 72%  81% | 4%  85% | 67%  84%
Data set 2 Accuracy | 81% 94% | 78%  94% | 5%  96%
Sensitivity | 81% 95% | 70% 98% | 74% 94%
Specificity | 77% 96% | 79%  94% | 6%  9T%
Data set 3 Accuracy | 96% 99% | 8%  99% | 94%  99%
Sensitivity | 96% 99% | 85% 100% | 94% 100%
Specificity | 91%  100% | 95%  99% | 92%  99%

Table 3.2: Control-Variable Values That Lead to the Maximal Accuracy, and the Corre-
sponding Accuracy, Sensitivity and Specificity.

Num. of Minimal | Accu- Sensi- Speci-

features distance | racy  tivity ficity

Data set 1 Decision trees 4 1 82% 86% 78%
SVM 32 16 83% 82% 84%

Neural nets 32 256 82% 80% 84%

Data set 2 Decision trees 8 4 94% 92% 96%
SVM 4 2 94% 96% 93%

Neural nets 32 1 96% 93% 98%

Data set 3 Decision trees 8 64 99% 98%  100%
SVM 16 8 99% 100% 99%

Neural nets 16 2 99%  100%  99%
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Figure 3.1: Experiments with One Feature. We Plot the Accuracy for Decision Trees
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Lines). The Vertical Bars Show the Standard Deviation for Decision Trees (Left),
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Figure 3.3: Experiments with Four Features. The Legend Is the Same as in Figure 3.1.
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Figure 3.4: Experiments with Eight Features. The Legend Is the Same as in Fig-
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Figure 3.6: Experiments with Thirty-Two Features. The Legend Is the Same as in
Figure 3.1.
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Figure 3.7: Experiments with Sixty-Four Features. The Legend Is the Same as in
Figure 3.1.
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Chapter 4 Concluding Remarks

We have considered the problem of diagnosing ovarian cancer based on the blood
mass-spectrum curve, and identified the relevant points of the curve. We have then
applied decision trees, support vector machines, and neural networks to determine
the values of these points that indicate ovarian cancer. The effectiveness of these
techniques varies across the available data sets; the accuracy of decision trees is
between 82% and 99%, the accuracy of support vector machines is between 83% and
99%, and the accuracy of neural networks is between 82% and 99%. The related future
work may include experiments with other feature-selection methods, and integration

of the developed techniques with genetic algorithms.
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