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The study of convex sets is a branch of geometry, analysis, and linear algebra [5; 7] that
has applications in many practical areas of computer science, including VLSI design, com-
puter graphics, architectural databases, and geographic databases [12]. Many notions of
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nontraditional convexity have been studied, such as orthogonal convexity [9; 10; 11], finitely
oriented convexity [6; 20; 14], strong convexity [13; 3], NESW convexity [8; 18; 20], and link
convexity [1; 19; 17].

Rawlins introduced the notion of restricted-orientation convexity, also called O-
convexity, in his doctoral dissertation [13] and demonstrated that this notion generalized
standard convexity and orthogonal convexity. Rawlins and Wood have studied O-convex
sets and demonstrated that the properties of these sets are similar to the properties of
standard convex sets [15; 16]. Schuierer has continued their exploration and presented an
extensive study of geometrical and computational properties of O-convex sets in his doctoral
thesis [17].

Our goal is to investigate nontraditional convexities in multidimensional space. We gener-
alized strong O-convexity [13] to higher dimensions and explored the properties of strongly
O-convex sets [3; 2]. We then demonstrated that O-convexity can also be extended to multi-
dimensional space [4]. We introduced O-convex sets and ()-connected sets, proved some
of the major properties of them, and showed that their properties are much richer than the
properties of planar O-convex sets. The notion of multidimensional O-convexity generalizes
not only planar O-convexity, but also standard multidimensional convexity.

We now further develop the theory of O-convexity by introducing and investigating O-
halfspaces and directed O-halfspaces, and describing their relationship to O-convex and
O-connected sets. We restrict our attention to the exploration of closed sets. We conjecture
that most of the results hold for nonclosed sets; however, some of our proofs work only for
closed sets.

Closed-Set Assumption: We consider only closed geometric objects. An ob-
ject is closed if, for every convergent sequence of its points, the limit of the
sequence belongs to the object.

The paper is organized as follows. In Section 2, we briefly describe the notion of O-
convexity in two dimensions and introduce O-halfplanes. In Section 3, we extend the def-
inition of O-convexity to higher dimensions and define O-halfspaces. In particular, we
prove that in d dimensions, an O-halfspace has at most 297! connected components and that
this bound is attainable for all d. In Section 4, we introduce directed O-halfspaces that
are O-halfspaces with several special properties. In Section 5, we study the boundaries of
O-halfspaces and present an analog of the boundary-convexity property for standard convex
sets, and, in Section 6, we generalize the complementation property for standard halfspaces
to O-halfspaces. We conclude, in Section 7, with some open problems and suggestions for
further work.

2 (O-convexity and O-halfplanes in two dimensions

We begin by reviewing the notions of orthogonal convexity [11] and O-convexity [13] in two
dimensions and defining analogs of halfplanes for these two types of convexity. We then
explore basic properties of these O-convexity halfplanes.
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Figure 1: Ortho-convex sets (a—c) and ortho-halfplanes (d-h).

We can describe convex sets through their intersections with lines: a set of points is
convex if its intersection with every line is connected. Note that we consider the empty set
to be connected; this convention simplifies our definitions and results.

We define orthogonal convexity by considering the intersections of sets of points with
vertical and horizontal lines. A closed set is ortho-convex if its intersection with every
vertical and horizontal line is connected. We give three examples of ortho-convex sets in
Figures 1(a)—(c). Note that, unlike standard convex sets, ortho-convex sets may be discon-
nected (see Figure lc).

Standard halfplanes can also be characterized in terms of their intersections with lines.

Proposition 2.1 A set is a halfplane if and only if its intersection with every line is empty,
a ray, or a line.

We define ortho-halfplanes in terms of their intersection with vertical and horizontal lines.
A closed set is an ortho-halfplane if its intersection with every vertical and horizontal line
is empty, a ray, or a line. We give five examples of ortho-halfplanes in Figures 1(d)—(h). The
last of these examples demonstrates that ortho-halfplanes may be disconnected. Note that
the empty set and the whole plane are considered to be ortho-halfplanes. This convention
also simplifies some of the results.

We now present some basic properties of ortho-halfplanes.

Lemma 2.2
1. Fvery translation of an ortho-halfplane is an ortho-halfplane.
Fvery standard halfplane is an ortho-halfplane.

FEvery ortho-halfplane is ortho-convez.

>

An ortho-halfplane is either connected or consists of two connected components.

A disconnected set is an ortho-halfplane if and only if each of its components is an
ortho-halfplane and no vertical or horizontal line intersects two components.

r
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Figure 2: Proof of Lemma 2.2.

Proof.

(1) If the intersection of a set with every vertical and horizontal line is empty, a ray, or
a line, then the same holds for every translation of the set.

(2) The intersection of a standard halfplane with every vertical and horizontal line is
empty, a ray, or a line. Therefore, every halfplane is an ortho-halfplane.

(3) The intersection of an ortho-halfplane with every vertical and horizontal line is con-
nected. Therefore, every ortho-halfplane is ortho-convex.

(4) We prove that every ortho-halfplane P has at most two connected components by
demonstrating that, for every three points p,q,x € P, two of them are in the same com-
ponent. Since P is an ortho-halfplane, one of the two horizontal rays with endpoint p is
contained in P (we show this ray in Figure 2). Similarly, we may choose a horizontal ray
with endpoint ¢ and a horizontal ray with endpoint x contained in P.

We select two of these three rays that point in the same direction. Without loss of
generality, we assume that the two selected rays are the rays with endpoints p and q. We
choose a vertical line that intersects the two selected rays and denote the intersection points
by y and z, respectively (see Figure 2). The polygonal line (p, y, z, ¢) is wholly in P; therefore,
p and ¢ are in the same connected component.

(5) If P is the union of disjoint ortho-halfplanes and no vertical or horizontal line in-
tersects two of these ortho-halfplanes, then the intersection of P with every vertical and
horizontal line is empty, a ray, or a line and, hence, P is an ortho-halfplane.

If one of P’s components is not an ortho-halfplane, the intersection of this component
with some vertical or horizontal line is not empty, not a ray, and not a line. Then, the
intersection of P with this line is not empty, not a ray, and not a line; therefore, P is not an
ortho-halfplane. Finally, if some vertical or horizontal line intersect two components, then
the intersection of P with this line is disconnected; therefore, P is not an ortho-halfplane. O

We next describe O-convexity [13], which is a generalization of ortho-convexity and stan-
dard convexity [15], and a corresponding analog of halfplanes.

To obtain this generalization, we first introduce the notion of an orientation set. We
define an orientation set O as a (finite or infinite) set of lines through some fixed point o.
An example of a finite orientation set is shown in Figure 3(a). A line parallel to one of the
lines of O is called an O-line. For example, the dashed lines in Figure 3 are O-lines. We
define O-convex sets in terms of their intersections with O-lines.

Definition 2.1 (O-Convexity) A closed set is O-convex if its intersection with every
O-line is connected.

For the orientation set given in Figure 3(a), the sets in Figures 3(b)—(d) are O-convex
(some O-lines intersecting these sets are shown by dashed lines).

4
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Figure 4: Proof of Lemma 2.3.

We define an O-halfplanes, in the same way as ortho-halfplanes: A closed set is an O-
halfplane if its intersection with every O-line is empty, a ray, or a line. We show examples
of O-halfplanes in Figures 3(e)—(g).

Let us recall the properties of ortho-halfplanes given in Lemma 2.2. We can readily
generalize Properties 1-3 and 5: These properties hold for O-halfplanes and their proofs
are the same as the proofs for ortho-halfplanes. If the orientation set O contains at least
two distinct lines, then Property 4 also holds (again, the proof is the same as the one for
ortho-halfplanes).

We next present the intersection property of O-convex sets [16], which generalizes the
observation that every standard convex set is the intersection of halfplanes.

Lemma 2.3 A connected set is O-convez if and only if it is the intersection of O-halfplanes.

Proof. Suppose that a set P is the intersection of O-halfplanes. For every O-line [, the
intersection of each O-halfplane with [ is connected and, hence, the intersection of P with [
is also connected. Therefore, P is O-convex.

Suppose, conversely, that P is O-convex. We show that P is the intersection of O-
halfplanes by demonstrating that, for every point p not in P, some O-halfplane contains P
and does not contain p.

We draw the two lines through p that support P (see Figure 4a). If the marked angle
between these lines is less than m, then there is a standard halfplane that contains P and
does not contain p (Figure 4b). This halfplane is the desired O-halfplane.

If the marked angle is greater than or equal to 7, we consider the set () shown by shading
in Figure 4(c). The boundary of @ consists of the segment of P’s boundary between the
supporting lines and the parts of the supporting lines that extend this segment. We show
that @) is an O-halfplane.
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Figure 5: Proof of Lemma 2.4.

If the intersection of () with some O-line [ is disconnected, then there is an O-line parallel
to [ whose intersection with P is disconnected (see Figure 4d), contradicting the assumption
that P is O-convex. On the other hand, there is no line whose intersection with ) is a point
or segment. Therefore, the intersection of () with every O-line is empty, a ray, or a line. O

If O contains at least three lines, O-halfplanes have some additional basic properties.

Lemma 2.4 Suppose that the orientation set O contains at least three distinct lines. Then,
if the intersection of an O-halfplane with two parallel O-lines forms two rays, these rays
point in the same direction (rather than in opposite directions).

Proof. Suppose that the intersection of an O-halfplane P with parallel O-lines [; and [,
forms rays that point in opposite directions (in Figure 5(b), we show these two rays by solid
lines). We assume, for convenience, that /; is below /5 and the lower ray points to the left.

Let [ be the element of O parallel to {; and [y, and let m and n be two other elements
of O (see Figure 5a). We assume that the marked angle between [ and m is smaller than
the marked angle between [ and n.

We choose a point p € [; and draw a line ny through p parallel to n. We select this
point p in such a way that p is not in P and n; intersects the upper ray (see Figure 5b).
Since ny is an O-line, its intersection with P must be empty, a ray, or a line. Therefore, the
part of ny above Iy (shown by a solid line) is in P.

We now choose a point ¢ € I, and draw a line m; through ¢ parallel to m. We select ¢
is such a way that ¢ is not in P and m; intersects the lower ray. Note that m; intersects
ny above ly; that is, m; intersects the part of n; contained in P. Since m; is an O-line, its
intersection with P is connected; therefore, the segment of m; between l; and ny is in P,
contradicting the assumption that ¢ is not in P. a

We illustrate the directed-ray property of O-halfplanes in Figure 6(a), where the in-
tersection of an (O-halfplane with several parallel O-lines is shown by dashed rays. The
O-halfplanes that satisfy this directed-ray property are called directed O-halfplanes.

If O contains two lines, an O-halfplane may not be directed. For example, the O-halfplane
in Figure 6(b) is not directed, since the dashed O-rays point in opposite directions.

In the following result, we provide two basic properties of directed O-halfplanes.

Lemma 2.5 Suppose that O contains at least two distinct lines. Then:

1. FEvery directed O-halfplane is connected.
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Figure 7: Proof of Lemma 2.5.

2. The boundary of every directed O-halfplane is connected and O-convez.

Proof.

(1) We show that every two points p and ¢ of a directed O-halfplane P can be connected
by a polygonal line in P. We choose two parallel O-rays, with endpoints p and ¢, that are
contained in P and point in the same direction (see Figure 7a). We next choose an O-line
that intersects these two rays and denote the intersection points by x and y, respectively.
The polygonal line (p, x,y, ¢) is wholly in P.

(2) Suppose that the boundary of a directed O-halfplane P is not connected. Since P
is connected, the complement of P is disconnected and we may choose points p and ¢ in
different connected components of P’s complement. We next choose two parallel O-rays,
with endpoints p and ¢, that do not intersect P and point in the same direction (we reuse
Figure 7(a) to illustrate this construction). Finally, we choose an O-line [ that intersects
these two rays and denote the intersection points by x and y, respectively.

The segment of [ between z and y does not intersect P: if some point z of this segment
were in P, then one of the two contained-in-/ rays with endpoint z would be in P, contra-
dicting the assumption that « and y are not in P. Therefore, the polygonal line (p, z,y, q)
is wholly in P’s complement, contradicting the assumption that p and ¢ are in different
components of P’s complement.

Now suppose that the boundary of P is not O-convex. Then, the intersection of some
O-line [ with P’s boundary is disconnected and we may select points p, ¢ € [ that are in the
boundary and a point # € [ between them that is not in the boundary (see Figure 7b). We
assume, for convenience, that p is to the left of x.

Since the intersection of P with [ is connected, z is in the interior of P and we can choose
a circle B, C P centered at z. Fither all left-pointed or all right-pointed rays with endpoints
in B, are contained in P. We assume that the left-pointed rays (shown by dotted lines) are
in P. Then, some circle B, centered at p is wholly contained in P; therefore, p is in P’s
interior, which yields a contradiction. a
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Figure 8: Examples of finite orientation sets.

3 (O-convexity and O-halfspaces in higher dimensions

We extend the notion of O-convexity and O-halfspaces to d-dimensional space RY. We
assume that the space R? is fixed; however, the results are independent of the particular
value of d. We introduce a set O of hyperplanes through a fixed point o, show how this set
gives rise to O-lines, and define O-halfspaces in terms of their intersections with O-lines.
We then explore basic properties of O-halfspaces.

A hyperplane in d dimensions is a subset of R? that is a (d — 1)-dimensional space. For
example, hyperplanes in three dimensions are the usual planes. Analytically, we can define a
hyperplane as a set of points satisfying a linear equation, ag + a1x1 +aszs+---+agery =0, in
Cartesian coordinates. Two hyperplanes are parallel if they are translations of each other.
Analytically, two hyperplanes are parallel if their equations differ only by the value of aqg.

Definition 3.1 (Orientation set and O-hyperplanes) An orientation set O is a set
of hyperplanes through a fized point o. A hyperplane parallel to one of the elements of O is
an O-hyperplane.

Note that every translation of an O-hyperplane is an O-hyperplane and a particular choice
of the point o is not important. In Figure 8, we show examples of finite orientation sets in
three dimensions. The set in Figure 8(a) contains three mutually orthogonal planes; we call
it an orthogonal-orientation set.

O-lines in R? are formed by the intersections of O-hyperplanes. In other words, a line
is an O-line if it is the intersection of several O-hyperplanes. Note that every translation of
an O-line is an O-line.

Since every O-hyperplane is parallel to one of the hyperplanes of the orientation set O,
every O-line is parallel to some line formed by the intersection of several elements of O. For
example, the intersections of the four planes of the orientation set given in Figure 8(b) form
six different lines through o and every O-line is parallel to one of these six lines.

Lemma 3.1 If the orientation set O is nonempty and the intersection of the elements of O
is the point o (rather than a superset of o), then:

1. There is at least one O-line.

2. For every line, there is an O-hyperplane that intersects it and does not contain it.



Figure 9: O-convex sets (b—e) and O-halfspaces (f—i) in three dimensions.

Proof.

(1) We consider a minimal set of O-hyperplanes whose intersection forms o. We denote
these hyperplanes by Hy, Ha, ..., H,. Then, Hon---NH, is a flat (affine variety) different
from the point o and the intersection of this flat with H; is o, which may happen only if
HyN -+ NH, 1s a line. This line is an O-line.

(2) We consider a line [ and assume, without loss of generality, that this line is through o.
The intersection of all elements of O is o; therefore, for some O-hyperplane H € O, the line [
is not contained in H. O

When O is nonempty and the intersection of the elements of O is the point o, we say that
O has the point-intersection property. For example, the orientation sets in Figures 8(a)
and 8(b) have this property, whereas the set in Figure 8(c) does not. Some of our results
hold only for orientation sets with the point-intersection property and we use Lemma 3.1 to
prove these results.

If the orientation set O does not have the point-intersection property, then the intersection
of the elements of O is either a line or a higher-dimensional flat (affine variety). If this
intersection is a line (see Figure 8c), then there is exactly one O-line through o and all other
O-lines are parallel to this O-line. If the intersection is neither a point nor a line, then there
are no O-lines at all.

We define O-convex sets in higher dimensions in the same way as in two dimensions: a
closed set in R? is O-convex if its intersection with every O-line is connected. For exam-
ple, the sets in Figures 9(b)—(e) are O-convex for the orthogonal-orientation set shown in
Figure 9(a). The notion of O-halfspaces is the higher-dimensional analog of O-halfplanes.

Definition 3.2 (O-halfspaces) A closed set in R? is an O-halfspace if its intersection
with every O-line s empty, a ray, or a line.

Figures 9(f)—(i) provide examples of O-halfspaces for the orthogonal-orientation set. We use
dashed lines to show infinite planar regions in the boundaries of these O-halfspaces. Note



that disconnected O-halfspaces in higher dimensions may have more than two components.
For example, the O-halfspace in Figure 9(i) consists of three components, located around
the dotted cube.

We next present some simple properties of O-halfspaces and compare them with prop-
erties of O-halfplanes. We begin by recalling the properties of ortho-halfplanes given in
Lemma 2.2. Properties 1-3 hold for O-halfspaces and their proofs are the same as the proofs
for ortho-halfplanes. The most important of them is Property 3: every O-halfspace is O-
convex, which is a generalization of the convexity property of standard halfspaces. In the
next result, we give necessary and sufficient conditions under which an O-convex set is an

O-halfspace.

Lemma 3.2 A set P is an O-halfspace if and only if the following two conditions hold:
1. P is an O-conver set.

2. For every point p in P and every O-line [, one of the two parallel-to-l rays with endpoint
p is wholly contained in P.

Proof. Clearly, Conditions 1 and 2 hold for every O-halfspace. Suppose, conversely, that
P satisfies the two conditions and let us show that the intersection of P with every O-line
is empty, a ray, or a line. Since P is O-convex (Condition 1), the intersection of P with
an O-line is empty, a point, a segment, a ray, or a line. By Condition 2, the intersection is
neither a point nor a segment; therefore, it is empty, a ray, or a line. a

We next generalize Properties 4 and 5 of O-halfplanes to O-halfspaces. We show that
every component of a disconnected O-halfspace is an O-halfspace and that, if the orientation
set has the point-intersection property, then the number of components of an O-halfspace is

bounded.

Theorem 3.3

1. A disconnected set ts an O-halfspace if and only if every connected component of the
set 1s an O-halfspace and no O-line intersects two components.

2. In d dimensions, if the orientation set O has the point-intersection property, then the
number of connected components of an O-halfspace is at most 2971,

Proof.

(1) If P is the union of O-halfspaces and no O-line intersects two of them, then, clearly,
P is an O-halfspace. If some connected component of P is not an O-halfspace, then the
intersection of this component with some O-line is not empty, not a ray, and not a line;
therefore, the intersection of P with this O-line is not empty, not a ray, and not a line.
Finally, if some O-line intersects two components, the intersection of P with this line is
disconnected.

(2) We show that, for every (2?71 +1) points of an O-halfspace P, two of these points are
in the same connected component. We use induction on the dimension d. We have already
proved this result for O-halfplanes, which provides us with an induction base.

10
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Figure 10: Proof of Lemma 3.3.

The induction step is based on Lemma 4.5, which we will present in Section 4: the
intersection of an O-halfspace P with an O-hyperplane H is an O-halfspace in the (d — 1)-
dimensional space H. That is, the intersection of P N'H with every O-line contained in H is
empty, a ray, or a line.

We denote the (2471 4 1) points in P by po, p1, - ., psa—t (in Figure 10, we illustrate the
proof for d = 3). By Lemma 3.1, since O has the point-intersection property, we may choose
some O-line [ and an O-hyperplane H that intersects [ and does not contain it. For every
point pg, one of the two parallel-to-[ rays with endpoint pj; is contained in P. Thus, we get
(241 4+ 1) parallel rays in P, and at least (29724 1) of these rays point in the same direction.

We assume that these (297! + 1) same-direction rays correspond to the points po, pi, . . ., pyas.
We select an O-plane H', parallel to H, that intersects these (272 + 1) rays and denote the
intersection points by qo, g1, . . ., gya—z2, respectively.

P N H' (shaded in Figure 10) is an O-halfspace in the (d — 1)-dimensional space H.
Therefore, by the induction hypothesis, some points ¢ and ¢,, belong to the same connected
component of P NH', which implies that p; and p,, belong to the same component of P. O

If the orientation set O does not have the point-intersection property, then an O-halfspace
may have infinitely many components. For example, if there is only one O-line through o,
then any collection of lines parallel to this O-line forms an O-halfspace. Such an O-halfspace,
formed by the union of parallel lines, may have infinitely many components.

We next demonstrate that the bound on the number of components given in Theorem 3.3
is tight.

Example: An O-halfspace that has 2¢~! connected components.

We consider the orthogonal-orientation set in d dimensions and construct an O-halfspace P
whose components are rectangular polyhedral angles (quadrants). Note the orthogonal-
orientation set has the point-intersection property. In Figure 11, we illustrate the construc-
tion for two and three dimensions.

We choose a cube (shown by dotted lines) whose facets are parallel to elements of O.
The cube has 2¢ vertices; we select 297! vertices no two of which are adjacent. We define P
as the union of the 27! polyhedral angles vertical to the selected angles of the cube.

We may describe P analytically, using O-lines through the cube’s center (shown by dashed
lines in Figure 11a) as coordinate axes and taking one of the cube’s vertices for (1,1,...,1).
The equation for P is as follows:

|z1], |z2|, ooy |za] > 1T and @y X 29 X -+ X 24 > 0.

11
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Figure 12: Every O-halfspace containing the O-convex set P also contains the point p € P.

To show that P is indeed an O-halfspace, we observe that each O-line either intersects
one component, in which case the intersection is a ray, or does not intersect any component. O

We have shown, in Lemma 2.3, that, in two dimensions, every connected O-convex set is
formed by the intersection of O-halfplanes. In higher dimensions, the analog of this result
does not hold.

Example: A connected O-convex set that is not the intersection of O-halfspaces.
We consider the orthogonal-orientation set O and the set P shown in Figure 12(b). This set
is a horizontal disk on eight vertical, equally spaced “pillars.” The pillars are rays located
in such a way that no O-line intersects two of them. Clearly, P is O-convex. We readily see
that every O-halfspace containing P also contains the point p ¢ P, located under the center

of the disk. Thus, the intersection of all O-halfspaces containing P is not P. O

4 Directed O-halfspaces

We now consider the O-halfspaces that have the directed-ray property as described in Sec-
tion 2 and establish their special properties.

Definition 4.1 (Directed O-halfspaces) An O-halfspace is a directed O-halfspace if,
for every two parallel O-lines whose intersection with the O-halfspace forms rays, these rays
point in the same direction.

For example, the O-halfspaces in Figures 13(b) and 13(c) are directed for the orthogonal-
orientation set shown in Figure 13(a). On the other hand, the O-halfspace in Figure 13(d)
is not directed, because the two dotted rays, formed by the intersection of this O-halfspace
with vertical O-lines, point in opposite directions.

12
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Figure 13: O-halfspaces (b) and (c) are directed. O-halfspace (d) is not directed.

() (d)

The next result immediately follows from the definition of directed O-halfspaces.

Lemma 4.1
1. FEvery translation of a directed O-halfspace is a directed O-halfspace.

2. Fvery standard halfspace is a directed O-halfspace.

We next introduce the notion of O-flats, which are formed by the intersections of O-
hyperplanes, and demonstrate that, for the orientation set with the point-intersection prop-
erty, the intersection of a directed O-halfspace with every O-flat is connected. This property
of directed O-halfspaces is one of the main tools in our exploration.

A flat, also known as an affine variety, is a subset of R? that is itself a lower-dimensional
space. For example, points, lines, two-dimensional planes, and hyperplanes are flats. The
whole space R? is also a flat. Analytically, a k-dimensional flat is represented in Cartesian
coordinates as a system of (d — k) independent linear equations. We will use the following
properties of flats.

Proposition 4.2 (Properties of flats)
1. The intersection of a collection of flats is either empty or a flat.

2. The intersection of a k-dimensional flat n and a hyperplane is empty, n, or a (k —1)-
dimensional flat.

We now define O-flats.

Definition 4.2 (O-flats) A flat formed by the intersection of several O-hyperplanes in an
O-flat. O-hyperplanes themselves and the whole space R are also O-flats.

Since every O-hyperplane is a translation of some element of O, every O-flat is a trans-
lation of some flat formed by the intersection of several elements of O. For example, the
orthogonal-orientation set in three dimensions (Figure 8a) gives rise to the following O-flats
through o: the whole space R?, the three mutually orthogonal O-planes, the three O-lines
formed by the intersections of these planes, and the point o.

The next two properties of O-flats readily follow from the definition.

13
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Figure 14: Lower-dimensional orientation sets.

Lemma 4.3
1. Every translation of an O-flat is an O-flat.

2. The intersection of a collection of O-flats is either empty or an O-flat.

We now describe lower-dimensional orientation sets contained in O-flats. We consider an
O-flat n and denote the dimension of n by k. We treat n as an independent k-dimensional
space and define the orientation set O, and O,-flats in this lower-dimensional space.

An O,-flat is an O-flat contained in . The (k—1)-dimensional O,-flats (“O,-hyperplanes”)
through some fixed point o, form the lower-dimensional orientation set O,.

For example, consider the orthogonal-orientation set in Figure 14(a). The O-plane n
contains vertical and horizontal O-lines. Therefore, the lower-dimensional orientation set O,
contains the vertical and horizontal line through o,. In Figure 14(b), we show another
example of a lower-dimensional orientation set.

We demonstrate that O,-flats have all necessary properties of O-flats and that, if O has
the point-intersection property, then O, also has this property.

Lemma 4.4 Let n be an O-flat and k be the dimension of 7.
1. Every translation of an O,-flat within the space n is an O,-flat.

2. A set H Cnis an O,-flat if and only if it is either n itself or the intersection of several
(k — 1)-dimensional O,-flats.

3. If the orientation set O has the point-intersection property, then O, also has the point-
intersection property; that s, the orientation set O, is nonempty and O, = o,.

Proof.

(1) Every O,-flat is an O-flat; therefore, a translation of an O,-flat is also an O-flat
(Lemma 4.3). If the translation is in 7, then it is an O,-flat.

(2) Since O,-flats are O-flats, the intersection of (k—1)-dimensional O,-flats is an O-flat.
This O-flat is in 7 and, hence, it is an O,-flat.

We next show, conversely, that every O,-flat H distinct from 7 is the intersection of
(k — 1)-dimensional O,-flats. Since H is an O-flat, it is formed by the intersection of several
O-hyperplanes, say Hi, Ha, ..., Hn. Let Hi, Ha, ..., Hi be those hyperplanes among them
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Figure 15: For (a) any orientation set, the intersection of (b) an O-halfspace with (c¢) an

O-flat n is (d) an O,-halfspace.

that do not contain 5. Then, Hy Ny, Ha N, ..., Hr Ny are (k — 1)-dimensional flats (see
Proposition 4.2). These flats are O,-flats and their intersection forms H.

(3) We assume, without loss of generality, that o, = o. If the intersection of the elements
of O is the point o, then, for some O-hyperplane ‘H through o, we have n € H. Then, HNn
is a (k — 1)-dimensional O,-flat, which implies that O, is nonempty.

We next show that N O, = o. Let O’ be the set of O-hyperplanes through o that do not
contain n and {H Nn | H € O'} be the set of their intersections with 5. Then, all elements
of the latter set are (k — 1)-dimensional O,-planes through o and their intersection is 0. We

conclude that the intersection of all (k — 1)-dimensional O,-planes through o is exactly o;
that is, N O, = o. O

The orientation set O, gives rise to lower-dimensional O,-halfspaces in the space . These
lower-dimensional O,-halfspaces are defined in the same way as O-halfspaces, in terms of
their intersection with O, -lines.

The following result, illustrated in Figure 15, will enable us to use induction on the
dimension d in proofs about O-halfspaces.

Lemma 4.5 The intersection of a (directed) O-halfspace with an O-flat n is a (directed)
O, -halfspace.

Proof. Suppose that P is an O-halfspace. For every O-linel C n, we have IN(PNn) =INP,
which implies that the intersection of [ with P N7 is empty, a ray, or a line. Thus, P N7
is an O,-halfspace. If P is a directed O-halfspace, then the rays formed by the intersection
of P N'n with parallel O-lines in n always point in the same direction and, hence, P N7y is a
directed O,-halfspace. O

We use Lemma 4.5 to prove that, for orientation sets with the point-intersection property,
the intersection of a directed O-halfspace with an O-flat is always connected.

Theorem 4.6 If the orientation set O has the point-intersection property, then the inter-
section of a directed O-halfspace with every O-flat is connected.

Proof. We first prove, by induction on the dimension d, that all directed O-halfspaces are

connected. By Lemma 2.5, directed O-halfplanes are connected, which provides us with an
induction base.
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Figure 16: Proof of Theorem 4.6.

We consider a directed O-halfspace P in d dimensions and show that every two points
p,q € P are in the same connected component. By Lemma 3.1, since O has the point-
intersection property, we may select some O-line [ and an O-hyperplane H that intersects
[ and does not contain it (see Figure 16). Since P is a directed O-halfspace, there are two
parallel-to-[ rays, with endpoints p and ¢, that are contained in P and point in the same
direction.

We select an O-plane H', parallel to H, that intersects the two rays with endpoints p
and g and denote the intersection points by z and y, respectively. By Lemma 4.5, P NH' is
a directed Oy-halfspace; that is, P N H' is a (d — 1)-dimensional directed O-halfspace. By
Lemma 4.4, the lower-dimensional orientation set Oy has the point-intersection property.
Therefore, by the induction hypothesis, P N H' is connected. We conclude that z and y are
in the same component of P, which implies that p and ¢ are also in the same component.

Finally, we note that the intersection of a directed O-halfspace with every O-flat 7 is
a directed O,-halfspace (Lemma 4.5) and the lower-dimensional orientation set O, has the
point-intersection property (Lemma 4.4). Therefore, the intersection of P with 5 is con-
nected. O

Theorem 4.6 cannot be extended to orientation sets that do not have the point-intersection
property. For example, if there is only one O-line through o, then the union of several lines
parallel to this O-line is a disconnected directed O-halfspace.

The property of directed O-halfspaces stated in Theorem 4.6 is called O-connectedness.

Definition 4.3 (O-Connectedness) A closed set is O-connected if its intersection with
every O-flat is connected.

Note that O-connected sets are connected, since the whole space R? is an O-flat.

Directed O-halfspaces are not the only O-connected sets. For example, the set in Fig-
ure 17(b) is O-connected, even though it is not an O-halfspace. In fact, every standard
convex set is O-connected. As another example, the set in Figure 17(c) is O-connected for
the orthogonal-orientation set in Figure 17(a). On the other hand, the set in Figure 17(d)
is not O-connected because it is disconnected, the set in Figure 17(e) is not O-connected
because its intersection with the dashed O-line is disconnected, and the set in Figure 17(f)
is not O-connected because its intersection with the dashed O-plane is disconnected. We
have studied O-connected sets as a part of our exploration of O-convexity [4].

5 Boundary convexity

We explore the properties of the boundaries of (O-halfspaces and present analogs of the
boundary-convexity property for standard halfspaces (see Section 1).
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Figure 17: For the orthogonal-orientation set (a), the sets (b) and (c) are O-connected,
whereas the sets (d—f) are not O-connected.

Figure 18: Proof of Lemma 5.1.

We begin by showing that, if an orientation set has the point-intersection property, then
all points in the boundary of an O-halfspace are “infinitely close” to its interior; that is, an
O-halfspace is the closure of its interior.

Lemma 5.1 Let P be an O-halfspace and Py be the interior of P. If the orientation set O
has the point-intersection property, then Closure(Py) = P.

Proof. We show that Closure(Piy¢) = P by demonstrating that, for every point p in the
boundary of P and every distance e, there is an interior point within distance € of p. We use
induction on the dimension d.

By Lemma 3.1, we may select some O-line [ and an O-hyperplane H that intersects [
and does not contain it. Let H' be the O-hyperplane through p parallel to H, let Q be the
intersection of P and H', and let @iy be the interior of Q in the (d — 1)-dimensional space H'
(rather than in R?). If d > 2, the set @ is a lower-dimensional O-halfspace (Lemma 4.5)
and, by the induction hypothesis, Closure(Qint) = . On the other hand, if d = 2, then @
is empty, a ray, or a line; therefore, Closure(Qint) = @, which establishes an induction base.

We select an interior point of () within distance ¢/2 of p and a (d — 1)-dimensional ball
B C @ centered at this point such that the radius of B is at most €/2 (see Figure 18a).

We assume that the line [ is vertical and we divide the rays parallel to [ into “upward”
and “downward” rays. For every point ¢ € B, the upward or downward ray with endpoint ¢
is contained in P. Let U be the set of all points of B such that the upward rays from them
are in P and D be the set of all points of B such that the downward rays from them are
in P.

We consider two cases. First, suppose that the interior of U in the (d — 1)-dimensional
space ‘H' is nonempty, which means that there is a (d — 1)-dimensional ball B’ C U (see
Figure 18a). The union of the upward rays from all points of B’ forms a “cylinder,” wholly
contained in P. Some of the interior points of this cylinder are within distance € of p. Clearly,
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Figure 19: The eight cases considered in the proof of Lemma 5.3.

the interior of the cylinder is in the interior of P; therefore, some of P’s interior points are
within ¢ of p.

Now suppose that the interior of U is empty. Then, every (d —1)-dimensional ball B’ C B
contains a point of the set D, which implies that Closure(D) = B. Let H" be a plane parallel
to H' and located below H' (see Figure 18b). The intersection of the downward rays from all
points of D with H" forms a translation of D. This translation of D is in P and its closure
is a (d — 1)-dimensional ball, say B”, which is a translation of B.

By the closed-set assumption (see Section 1), P is closed; therefore, B” is in P. The
union of the vertical segments joining B and B” forms a cylinder, wholly contained in P.
The interior of this cylinder is in P’s interior and some of the cylinder’s interior points are
within distance € of p. a

We call sets satisfying the property stated in Lemma 5.1 interior-closed sets: A set P
is interior-closed if Closure(Py) = P.

Our purpose in the rest of the section is to present O-convexity analogs of the following
boundary-convexity characterization of standard halfspaces.

Proposition 5.2 An interior-closed set is a halfspace if and only if its boundary is a nonempty
conver set.

We first generalize the “if” part of this boundary-convexity characterization.
Lemma 5.3 An interior-closed set with an O-convex boundary is an O-halfspace.

Proof. Let P be an interior-closed set with an O-convex boundary. We show that the
intersection of P with every O-line [ is empty, a ray, or a line. The intersection of [ with P’s
boundary may be a line, a ray, a segment, a point, or empty. If this intersection is a line,
then P N[ is also a line (see Figure 19a). If the intersection of [ with P’s boundary is a ray,
then PNl is a ray or a line (Figures 19b and 19¢). If [ does not intersect P’s boundary, then
P N lis empty or a line (Figures 19d and 19e).

Finally, suppose that the intersection of [ with P’s boundary is a segment or point. We
show, by contradiction, that, in this case, P N[ is a line or ray (Figures 19f and 19g). If
not, then P NI is a segment or point (see Figure 19h). We select points p,q € [ that are
outside of P, on different sides of the intersection. We consider equal-sized balls, B, and B,,
that are centered at these points and do not intersect P. We next select a point = in the
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Figure 20: An O-halfplane whose boundary is not O-convex.

intersection of [ and P’s boundary and consider the ball B,, centered at x, of the same size
as B, and B,. Since P is interior-closed, we may select a point y € B, that is in the interior
of P. We consider the line [, through y parallel to [. This line intersects the balls B, and
B,, which are outside of P. Since x is in the interior of P, we conclude that the intersection
of the O-line [, with the boundary of P is not connected, contradicting the O-convexity of
P’s boundary. a

The converse of Lemma 5.3 does not hold: the boundary of an O-halfspace may not
be O-convex. In Figure 20, we show an O-halfplane whose boundary is not O-convex: the
intersection of the boundary with the dashed O-line is disconnected. We now present a
necessary and sufficient characterization of O-halfspaces in terms of their boundary.

Theorem 5.4 (Boundary of O-halfspaces) An interior-closed set P is an O-halfspace
if and only if, for every O-line [, one of the following two conditions holds:

1. The intersection of [ with the boundary of P is connected.

2. The intersection of | with the boundary of P consists of two disconnected rays and the
segment of | between these rays is in P.

Proof. Suppose that the two conditions hold. We demonstrated in the proof of Lemma 5.3
that, if the intersection of [ with the boundary of P is connected (Condition 1), then P N1 is
empty, a ray, or a line. On the other hand, if the intersection of [ with P’s boundary satisfies
Condition 2, then P N[ is a line. We conclude that the intersection of P with every O-line
is empty, a ray, or a line; thus, P is an O-halfspace.

To prove the converse, suppose that P is an O-halfspace and the intersection of an O-
line [ with the boundary of P is not connected. We show that this intersection satisfies
Condition 2.

Since the boundary is closed, we can select points p, ¢ € [ in P’s boundary such that all
points of [ between p and ¢ are not in the boundary. Since the intersection of [ with P is
connected, the segment of [ between p and ¢ is in P.

We next show, by contradiction, that all points of [ outside of this segment are in P’s
boundary. Suppose that some point z is not in P’s boundary. Without loss of generality,
we assume that x is to the left of p and that ¢ is to the right of p (see Figure 21a).

If z is an interior point of P, then there is a ball B, C P centered at x (Figure 21a).
Let y € [ be some point between p and ¢, B, C P be a ball centered at y, and B, be a ball,
centered at p, that is no larger than B, and B,. Since p is in the boundary of P, we may
choose a point z € B, that is not in P. We consider the O-line [, through z parallel to /.
This line intersects the balls B, and B,, which are in P. Since z is not in P, the intersection
of [, with P is disconnected, contradicting the assumption that P is an O-halfspace.
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Figure 21: Proof of Theorem 5.4.

If z is an exterior point of P, we may select a ball B, centered at x that does not in-
tersect P (see Figure 21b). Let y € [ be some point between p and ¢, B, C P be a ball
centered at y, and B, be a ball, centered at ¢, that is no larger than B, and B,. Since ¢ is
in the boundary of P, we may select a point z € B, that is not in P. We again consider
the O-line [, through z parallel to [. This line intersects the balls B, and B,, which implies
that the intersection of [, with P is not empty, not a ray, and not a line, contradicting the
assumption that P is an O-halfspace. O

Observe that, if the intersection of P’s boundary with a line [ consists of two rays and
the segment of the line between these rays is in P, then [ is wholly contained in P. We use
this observation to simplify Condition 2 in Theorem 5.4.

Corollary 5.5 An interior-closed set P is an O-halfspace if and only if, for every O-line [,
one of the following two conditions holds:

1. The intersection of [ with the boundary of P is connected.

2. 1 is wholly contained in P.

Proof. We immediately conclude from Theorem 5.4 that, if P is an O-halfspace, then the
two conditions hold. Suppose, conversely, that these conditions hold. If the intersection of [
with P’s boundary is connected (Condition 1), then P N[ is empty, a ray, or a line (see the
proof of Lemma 5.3). If [ is contained in P (Condition 2), then P N[ is a line. Therefore, P
is an O-halfspace. O

We have shown in Lemma 2.5 that the boundary of a directed O-halfplane is always
O-convex. We now observe that the proof of Lemma 2.5 carries over to higher dimensions,
which gives us the following property of directed O-halfspaces.

Lemma 5.6 The boundary of a directed O-halfspace is O-convez.

If the orientation set has the point-intersection property, then the boundary of a directed
O-halfspace is O-connected, which is a stronger property. We will prove this result in Sec-
tion 6, using properties of the complement of a directed O-halfspace. The converse of this
result does not hold, as we demonstrate in the following example.

Example: An O-halfspace, with an O-connected boundary, that is not directed.
We show such an O-halfspace in Figure 22(b). This O-halfspace consists of two rectangular
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Figure 22: An O-halfspace that is not directed, even though its boundary is O-connected.
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Figure 23: For (a) the orthogonal orientation set, the set (b) is an O-halfspace, whereas (c)
its closed complement is not an O-halfplane.

polyhedral angles (quadrants), which touch each other along one of their faces. The bound-
ary of the O-halfspace is O-connected for the orthogonal-orientation set in Figure 22(a).
The O-halfspace, however, is not directed, since the dotted rays (Figure 22¢), formed by the
intersection of this O-halfspace with vertical O-lines, point in opposite directions. O

6 Complementation

We have observed in Section 1 that the closure of the complement of a standard halfspace
is a halfspace. We now generalize this result to O-halfspaces.

We call the closure of the complement of a set the closed complement. In general, the
closed complement of an O-halfspace may not be an O-halfspace. For example, the closed
complement of the O-halfplane in Figure 23(b) is not an O-halfplane, since its intersection
with the dashed O-line (Figure 23c) is disconnected. We state a necessary and sufficient
condition under which the closed complement of an O-halfspace is an O-halfspace.

Theorem 6.1 (Complements of O-halfspaces) The closed complement of an O-halfspace
P is an O-halfspace if and only if the boundary of P is O-convex.

Proof. We denote the closed complement of P by (). Note that () is interior-closed and the
boundary of () is the same as the boundary of P. If the boundary of P is O-convex, then @)
is an interior-closed set with an O-convex boundary, which implies that ) is an O-halfspace
(Lemma 5.3).

Suppose, conversely, that () is an O-halfspace. We show, by contradiction, that the
boundary of P is O-convex. If the boundary is not O-convex, then there are points p, =z,
and ¢ on some O-line [, such that p and ¢ are in the boundary, whereas z, located between
p and g, is not in the boundary (see Figure 24a). Note that p and ¢ belong both to P and
to (), whereas x is either in P’s interior or in ()’s interior. If x is in P, then the intersection
of P with the O-line [ is disconnected and, hence, P is not an O-halfspace. Similarly, if = is
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Figure 24: Proofs of (a) Theorem 6.1 and (b) Theorem 6.2.
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in @), then @) is not an O-halfspace. O

We next generalize the complementation property of halfspaces to directed O-halfspaces.

Theorem 6.2 (Complements of directed O-halfspaces) The closed complement of a
directed O-halfspace is a directed O-halfspace.

Proof. The boundary of a directed O-halfspace P is O-convex (Lemma 5.6). Therefore,
by Theorem 6.1, the closed complement of P is an O-halfspace.

We show, by contradiction, that the closed complement of P is directed. Suppose that
the intersection of the closed complement with two parallel O-lines, [; and [y, forms rays that
point in opposite directions. We denote the endpoints of these rays by p and ¢, respectively.
In Figure 24(b), we show the rays by solid lines. Note that p and ¢ are in the boundary of P
and the dashed parts of the lines are in the interior of P.

We select a point in the dashed part of [; and a ball B C P centered at this point. Let
B, be the same-sized ball centered at p. Since p is in the boundary of P, we may select
a point € B, that is not in P. We consider the O-line [, through x parallel to [;. The
intersection of [, with P is empty, a ray, or a line. Since z is not in P and, on the other
hand, [, intersects the ball B C P, we conclude that the intersection of [, with P is a ray
pointing “to the right.”

Using a similar construction with [, we get an O-line whose intersection with P is a ray
pointing “to the left” (see Figure 24b), which means that the O-halfspace P is not directed,
giving a contradiction. O

We use the complementation property of directed O-halfspaces to demonstrate that, for
orientation sets with the point-intersection property, the boundary of a directed O-halfspace
is O-connected.

Theorem 6.3 (Boundaries of directed O-halfspaces) If the orientation set O has the
point-intersection property, then the boundary of every directed O-halfspace is O-connected.

Proof. To demonstrate that the boundary of a directed O-halfspace P is O-connected, we
first show that the boundary is connected and then use this result to demonstrate that the
intersection of the boundary with every O-flat 5 is also connected.

We establish the connectedness of P’s boundary by contradiction. Since the orientation
set O has the point-intersection property, P is connected (Theorem 4.6). Therefore, if
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Figure 25: Proof of Theorem 6.3.

the boundary of P is disconnected, then the closed complement of P is also disconnected.
On the other hand, the closed complement of P is a directed O-halfspace (Theorem 6.2),
contradicting the connectedness of directed O-halfspaces.

We next show that the intersection of P’s boundary, denoted by Bdry(P), with every
O-flat n is connected. Let () be the intersection of P with n and Bdry(Q) be the boundary of
Q in the lower-dimensional space 1 (rather than in the whole space R?). Clearly, Bdry(Q) C
Bdry(P) Nn. The set @ is a directed O,-halfspace (Lemma 4.5) and the orientation set O,
has the point-intersection property (Lemma 4.4). Therefore, by the first part of the proof,
Bdry(Q) is connected.

Suppose that Bdry(P) N n is not connected. Then, Bdry(P) N n contains a component
disconnected from the boundary of @) (see Figure 25, where this component is shown by the
shaded region). This component is contained in Q; therefore, it is surrounded in the flat n
by interior points of P (the interior points are shown by the dashed region in Figure 25).

We now consider the intersection of the closed complement of P with 5. This intersection
contains Bdry(@)) and the component of the Bdry(P) N n disconnected from Bdry(@). The
intersection does not contain any interior points of P. Therefore, the intersection of the
closed complement of P with 7 is disconnected. On the other hand, the closed complement
of P is a directed O-halfspace (Theorem 6.2), which implies that the intersection of the closed
complement of P with the O-flat 7 is connected (Theorem 4.6), yielding a contradiction. O

7 Concluding remarks

We investigated O-halfspaces and demonstrated that the properties of O-halfspaces are some-
what similar to those of standard halfspaces. In defining O-halfspaces, we lose connectedness;
therefore, we introduced directed O-halfspaces, which are always connected.

We established many basic properties of O-halfspaces and directed O-halfspaces; however,
we are unable to prove the following two appealing, and tantalizing, conjectures, which we
leave as open problems. An O-connected set is the intersection of the directed O-halfspaces
that contain it. A connected O-halfspace is the intersection of the directed O-halfspaces
that contain it.

The work presented here extends our previous studies of strong O-convex sets, O-convex
sets, and O-connected sets [2; 4]. We plan to further develop the theory of O-convexity and
also study the computational properties of O-convex sets and O-halfspaces.
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