
Scalable Data Exploration and Novelty Detection 1 CMU /DYNAMiX /ManTech-CSEC

Scalable Data Exploration and Novelty Detection
J. Carbonell, E. Fink, C. Jin, C. Gazen - Carnegie Mellon University

J. Mathew, A. Saxena, V. Satish, S. Ananthraman, D. Dietrich, G. Mani - DYNAMiX Technologies

J. Tittle, P. Durbin - ManTech CSEC

NIMD “Grand Finale” PI Meeting, April 2006

1 Introduction
Project ARGUS is focused on helping an analyst explore massive, structured data. This scalable
exploration includes exact and partial match queries, monitoring hypotheses and discovery of novel
patterns in both static and streaming data. We provide these facilities within the context of an
analyst workbench interface called Data Explorer.
The remainder of this paper comprises three sections; a) a brief review of the methodology
employed within ARGUS for the detection of novelty within massive data, b) monitoring of
streaming data and a synopsis of the research originating out of the CMU team on the incremental
aggregation on multiple continuous queries, and, c) the development of an analyst workbench
environment, called ARGUS Data Explorer that has been developed by the teams from DYNAMiX
and ManTech CSEC. The ARGUS Data Explorer is currently being evaluated through the RDEC
environment/process as a precursor to possible deployment into live operating environments.

2 Detecting Novelty in Massive Data
ARGUS follows a hybrid model of new hypothesis formation, where the system offers its discovery
of novel, potentially interesting patterns for analyst review, leading to new hypotheses being formed
and tracked, or to discarding the novelty as coincidental or uninteresting. For instance, if
shipments of multiple multi-use precursor chemicals consistent with the production of nerve agents
directed to a new location in a potentially hostile country start at a certain date and were not
observed before, a hypothesis that something new, possibly of a nefarious or perilous nature, is
being produced at that location needs to be considered. In ARGUS this would be detected as a new
emerging cluster distinct from background clusters in a data stream. In contrast, a single potential
precursor chemical with a dual medical used shipped to a medical facility in small quantities similar
to many such past shipments may not trigger an alert, as it is a habitual, rather than novel,
happening.

As a different example consider the outbreak of a disease like SARS, which the medical community
was slow to recognize because SARS symptoms clusters were masked by similar common cold or
influenza symptoms. In this case we need to detect a change in existing clusters – a much greater
percentage of patients do not recover within the expected time frame, for instance. This requires
detection of change in the density function of a cluster, rather than the onset of a clear new one – i.e.
we need to perform a de-convolution process to detect a new component in a mixture of
observations. We believe that the second case may be more common, either though accidental
masking (as in SARS) or intentional obfuscation, such as combining legitimate medical facilities
with potential bio-weapon research lab or development facility. Note that nefarious terrorist
preparatory activity may be intentionally masked as normal activities, but cause differences in the

Scalable Data Exploration and Novelty Detection 2 CMU /DYNAMiX /ManTech-CSEC

density functions of such activities over time – analogous to SARS masquerading as influenza or
severe colds – and detectable by our methods given a sufficient signal-to-noise ratio.

2.1 Clustering, Cluster Density Functions and Novelty Detection
ARGUS focuses on new novelty detection technology built atop clustering techniques, so we use
off-the-shelf clustering algorithms to build our background models. In particular, we use the
standard leader-follower algorithm and the k-means algorithm [1]. The first is useful in forming an
initial set of clusters and especially so because it can handle streaming data incrementally in linear
time. The k-means algorithm is then applied to improve the quality of the clusters.

To detect changes in the shape and density of clusters, we analyze the density of points within a
cluster as a function of the distance to the cluster’s centroid. More formally, we define the density
function as f(r) = dM(r)/dV(r) where M(r) is the number of points within a sphere of radius r and
V(r) is the volume of that sphere. The density function characterizes the shape and density of the
cluster. The peaks and valleys of the density function correspond to dense and sparse regions within
the cluster. By tracking changes in the density function over time, we can detect changes in both
the shape and density of clusters.

The figure below shows four different scenarios in the evolution of a cluster and the corresponding
changes in the density functions. The graphs in the figure show the density function f(r) plotted
against the distance r to the centroid. By far the most common of these is the constant event
scenario, where the points in the cluster show the same random distribution over time (for example,
flu cases over the flu season). Because the distribution of the points remains the same, we expect the
density function to remain fairly stable over time as shown in the figure. Another scenario is where
recent points cause a new cluster to form. In this case, we detect the formation of the new cluster
and track its density function separately from the original cluster. An example for this scenario from
the hospital admissions domain is the outbreak of an uncommon disease, e.g. anthrax.

A variation of this scenario occurs when an existing cluster masks the new one. In this case,
detecting the formation of new clusters is not enough to trigger an alert: The points from the novel
event are clustered into an existing cluster, so no new clusters are created. In this case, we use the
density function to detect the novel incident. If the new set of points is gathered in a small region
within the existing cluster, the density of points in this region is higher than elsewhere. As a result, a
peak forms in the density function. An example for this scenario is a SARS outbreak, where the
symptoms of the disease are the same as that of common colds, so the outbreak is likely to be
masked by an existing cluster of common cold patients. In the last case, the cluster grows in one or
more directions. As a result, the density function extends and tapers off slowly as opposed to a fast
drop at the original boundary of the cluster. The spreading of a contagious disease is an example of
such an evolution.

Scalable Data Exploration and Novelty Detection 3 CMU /DYNAMiX /ManTech-CSEC

 Cluster Evolution

To detect changes in a cluster, we take a snapshot of the cluster’s density function, process new
records, and compare the new density function with the snapshot we had taken. To compare density
functions, we use the Lm-distance metric:

m
m dxxdfxdf∫ −)()(21

When m=1, the distance between two density function becomes the area between the two curves.
However, this metric is not very sensitive to large point-divergences, i.e., the shape of the curves
can be significantly different before the metric exceeds the given threshold. In general, by fine-
tuning the value of m, we can trade-off between point-divergences and overall shape differences.

Novelty detection results using this approach have been reported at an earlier NIMD meeting [2].

3 Monitoring of Streaming Data
After a novel event is detected, the analyst needs a way of tracking it going forward. For instance,
in the above example of novelty detection, the system generated the hypothesis that there is a new
disease outbreak whose symptoms might be masked by those of influenza. If the analyst is not
interested – e.g. it is off-topic, or already known via other means – then no further action is taken.
However, if the new event generates a hypothesis of direct or potential interest, then a new
persistent hypothesis tracker is generated, and the input streams are filtered for information
pertinent to this hypothesis using the Rete algorithm [3] to correlate data efficiently. Hence, novel
event detection adds a new dimension by providing hypothesis genesis in a semi-automated manner
– where the analyst remains in the driver’s seat to guide which hypotheses are tracked, which are
promoted, and which are eliminated due to lack of supporting data or lack of topical pertinence.

Constant Event New Unobfuscated Event

New Obfuscated Event Growing Event

Scalable Data Exploration and Novelty Detection 4 CMU /DYNAMiX /ManTech-CSEC

The Rete-based approach has been described in earlier papers [4][5]. In brief, the approach avoids
re-computation of JOINs of unchanged data when new data is added. The figure below shows the
overall system architecture for ARGUS Profile Monitoring. New data elements are appended to

database tables. The continuous queries formulated by the analyst are converted from SQL to Rete
networks with our ReteGenerator, and installed in the database. The Rete networks run periodically
on the newly arrived data, store and update intermediate results, and generate alarms when any
query matches the new data.

Because Rete networks perform incremental query evaluation over the delta part (new stream data)
and materialized intermediate results, they can execute much faster than a traditional RDBMS in
many cases. However, if materialized intermediate tables become very large, performance can
deteriorate severely. Only when the intermediate tables are fairly small, can the incremental
evaluation scheme work to best advantage. Fortunately, when monitoring queries are not satisfied
frequently, there are usually highly selective conditions that make the intermediate tables fairly
small naturally.

To minimize the intermediate tables, we can apply following techniques, namely, a) Transitivity
inference, b) Single query optimization, c) Computation sharing among multiple queries, and, d)
Incremental aggregation.

Transitivity inference, described in an earlier paper [4], infers hidden conditions from a given query.
If inferred conditions are highly selective, performance can be improved significantly. We also
implemented single query optimization and computation sharing. Single query optimization is
similar to traditional database query optimization. Computation sharing is described in a recently
submitted paper [5]. The following sub-section describes incremental aggregation, our current focus
of activity.

records

 Rete Network
Generator Query

Rete Network

Intermediate Tables

Data Tables

Storing
Rete Networks

Analy
st

Data Streams

Identified Threats

Scalable Data Exploration and Novelty Detection 5 CMU /DYNAMiX /ManTech-CSEC

3.1 Incremental Aggregation on Multiple Continuous Queries

3.1.1 Incremental Aggregation
Many aggregate functions (distributive or algebraic functions), including MIN, MAX, COUNT,
SUM, AVERAGE, STDDEV, and TrackClusterCenters (tracking cluster centers), can be
incrementally updated upon data changes without revisiting the entire history of grouping elements;
while other aggregates (holistic functions), e.g. quantiles, MODE, and RANK, can not be done this
way. We implement incremental aggregation on algebraic aggregates, and apply re-aggregation
methods on holistic aggregates.

Consider a query A monitoring the number of visits and the average charging fees on each disease
category in a hospital everyday. When new tuples from the stream Med arrive, the aggregates
COUNT(*) and AVERAGE(fee) can be incrementally updated if COUNT(*) and SUM(fee) are
stored.

SELECT dis_cat, hospital, vdate, COUNT(*), AVERAGE(fee) FROM Med

GROUP BY CAT(disease) AS dis_cat, hospital, DAY(visit_date) AS vdate;

Query A

Fig3.1 Incremental Aggregation Fig3.2 Vertical Expansion Initialization
The incremental aggregation procedure is shown below, and is illustrated in Fig 3.1 to compute
AVERAGE(fee) for query A. The basic aggregates (for AVERAGE, they are COUNT and SUM)
and the incremental update rules for each aggregate function are stored in the system catalog. The
aggregates in the query are parsed and analyzed, and corresponding rules are applied to instantiate
the incremental aggregation code.

Incremental Aggregation
0. PredUpdate State. AH contains update-to-date aggregates on SH.
1. Aggregate SN, and put results into AN.
2. Merge groups in AH to AN.

Scalable Data Exploration and Novelty Detection 6 CMU /DYNAMiX /ManTech-CSEC

3. Compute algebraic aggregates in AN from basic statistics (omitted for distributive
functions).

4. Drop duplicates in AH that have been merged into AN.
5. Insert new results from AN to AH, preferably after AN has been sent to the users.

3.1.2 Sharing on Multiple Aggregates
Now consider that a new query B arrives. It monitors the daily average fees in a hospital. B groups
can be obtained by compressing A groups on the CAT(disease) dimension. Further, B’s aggregate
can be obtained from A as well. Thus the system shares A’s results to evaluate B. This sharing
process is called vertical expansion.
SELECT hospital, vdate, AVERAGE(fee) FROM Med GROUP BY hospital, DAY(visit_date) AS vdate;

Query B
Vertical expansion is not applicable to holistic queries. However, holistic queries can still be shared
if they share the same GROUP BY expressions. On initialization, vertical expansion computes
aggregates BH from AH instead of from SH. The incremental aggregation on a vertical-expanded
node B is similar to other nodes except the first step which performs further aggregation from AN
instead of from SN.

We implemented two sharing strategies. The first one is to choose the optimal sharing node when
there are multiple sharable ones. Assuming the data distribution does not change, the optimal choice
is the node whose historical part AH is the smallest. The second strategy is rerouting. After a new
node B is created, the system checks if any existing nodes can be improved by being evaluated from
B. These nodes are disconnected from their original parents and connected to B by vertical
expansion. The system applies a simple pruning heuristic. If a node C satisfies both conditions, and
a set of nodes {N} satisfying the first condition are descendants of C, then any node in {N} should
not be rerouted, and so are dropped from consideration. If the two queries A and B mentioned above
arrive in the reverse order, the sharing can still be achieved by applying rerouting.

3.1.3 Evaluation Study
We conducted experiments to study the effect of incremental aggregation, and the effect of shared
networks. Two databases are used. One is the synthesized FedWire money transfer transaction
database (Fed) with 500,000 records. And the other is the Massachusetts hospital patient admission
and discharge record database (Med) with 835,890 records. Both databases have a single stream
with timestamp attributes. To simulate the streams, we take earlier parts of the data as historical
data, and simulate the arrivals of new data incrementally.

We use 350 queries on Fed and 450 queries on Med. These queries are generated systematically.
Interesting queries arising from applications are formulated manually. Then more queries are
generated by varying the parameters of the seed queries. Some of these queries aggregate on
selection and self-join results.

The following figures show the execution times of incremental aggregation (IA) and non-
incremental aggregation (NIA) on each single query, and the ratio between them, NIA/IA. A
NIA/IA ratio above 1 indicates better IA performance. Since there are more fluctuations on
diversified Med queries, we show running averages over 20 consecutive queries to make the plot

Scalable Data Exploration and Novelty Detection 7 CMU /DYNAMiX /ManTech-CSEC

clear. The queries are sorted in the increasing order of AggreSize = |SH(A)|*|AH|, shown on the
second Y axis. |SH(A)| is the actual aggregation data size of the historical part after possible
selections and JOINs. We experimented with two other metrics, |SH(A)| and |SH(A)|+|AH|, which
show less consistent trends to the time growth and the NIA/IA ratio. This indicates that the DBMS
aggregation operator on SH has time complexity of |SH(A)|*|AH|. AggreSize indicates the query
characteristics. There are about 250 queries in both Fed and Med whose |SH(A)| is 0, shown to the
left of the vertical cut lines and are sorted by the NIA/IA ratio. Unsurprisingly, their execution times
are very small. The small time fluctuations are caused by the DBMS file caching.

For the remaining queries, incremental aggregation is better than non-incremental aggregation. In
particular, it gains more significant improvements when the aggregation size is large. These large-
size queries dominate the execution time in multiple-query systems. Thus significant improvements
on such queries are significant to the whole system performance, counting for up to 10 times
improvement in the total execution time.

The following figures show the total execution times of shared (SIA) and non-shared (NS-IA)
networks by scaling over the number of queries. Clearly, incremental sharing provides
improvements, particularly on Fed where queries share more overlap computations.

Scalable Data Exploration and Novelty Detection 8 CMU /DYNAMiX /ManTech-CSEC

4 ARGUS Data Explorer
To make the facilities described above accessible to an analyst for work on structured data sets, we
have developed an integrated environment called the ARGUS Data Explorer, a screenshot of which
is shown below. This environment permits analysts to identify various subsets of structured data
sources using querying, clustering, and novelty detection. These methods can be combined by
applying one method to the results of another; along with standard set operations (union,
intersection, difference). These facilities provide analysts with great flexibility in working with
structured data, and are intended to convey a sense of “rolling around in” the data. Access to data
sources and the results of data manipulation operations can be shared between analysts subject to a
fine-grained security system.

The screenshot below illustrates some of the operation of the interface. The Windows Explorer
type tree on the left hand side of the screen keeps track of all the data sets and subsets that the user
has chosen or created. The tree structure visually conveys the derivation history of each subset in
the tree, and the tree can be expanded or collapsed as the analyst finds useful, in particular allowing
the analyst to focus on one part of the analysis without being swamped with full detail on all data
subsets created during the course of a session. The right-hand side of the screen is available for
various views of the data including tabular record data and 2D/3D plots.

View showing the 4 constituent windows of ARGUS v0.8 – Tree, Records, 2D and 3D

Scalable Data Exploration and Novelty Detection 9 CMU /DYNAMiX /ManTech-CSEC

4.1 Menu Functions within the ARGUS Data Explorer
Below is a brief description of the functionality available within the Data Explorer. The software is
scheduled to be demonstrated on April 19th, 2006 at the Poster Session of the NIMD PI Meeting.
File > Exit, under this menu item is used to exit the program.
View > Records is used to view a selected dataset in the Records Table Window.
Data > Subset is used to partition the data into subsets. The subsetting action can be exact or
approximate. The result of executing a subsetting query results in the return of a matched and an
unmatched subset.
 For exact subsetting, the user is provided with two slider range bars for each field that is
available in a given dataset. The upper bar sets the low range of the subset and the lower bar sets
the upper range for the subset. So for a given dataset if a field has a range of 1 to 10, setting the
upper bar at 3 and the lower bar at 7 will return all records in the 3 to 7 interval for that field. This
will be returned as the matched data subset. The remaining records in the dataset are returned as the
unmatched data subset. A “Check” button is available to automatically check data ranges and logic.
 Approximate subsetting uses the same parameter setting dialog box as the exact subsetting
except for a key difference in that the Distance Threshold comes into play. If the Distance
Threshold is set to 0.0 then approximate subsetting is reduced to exact subsetting. For values of the
Distance Threshold greater that 0.0, exact matching is transformed into approximate matching and
increases the “catchment region” of the match using a distance function (fixed to Euclidean
Distance in v0.8). So the example stated in the exact subset section above with a Distance
Threshold greater than 0.0 would, in all probability, return a greater number of matched records as
compared to the exact match.
Data > Union is used to combine two datasets.
Data > Intersect is used to glean the records that represent the intersection of two datasets.
Data > Subtract is used to subtract one dataset from another.
Data > Statistics fires up a statistics routine that automatically generates the summary statistics on
a chosen dataset. These summary statistics are used by the analyst to get an overview of the data so
as to better plan their hypothesis exploration.
Graph > Density Plot is a 2D plot that is used to visualize one or many cluster densities. The X
axis represents the distance from the center of the cluster going outwards and the Y axis is the
magnitude of the density for a given cluster.
Graph > Scatter Plot is a 2D plot that is used to visualize the scatter plot for any two fields of
interest in a given dataset. The X axis represents the first selected field and the Y axis the second
selected field. The user, for a selected dataset can re-draw the plot for any two fields of choice.
Graph > Plot3D is a multi-functional 3D tool that can be used by the analyst to study multiple
clusters of interest. Firstly note that in ARGUS v0.8, this display is separate from the window
shown on the previous page. The 3D tool allows the analyst to analyze 3D cluster data. An analyst
can study multiple clusters at a given time. There are 3 distinct parts in this tool, namely the Data
Manager, the View Control, and the Cluster Controls.
 In the Data Manager, for a given view, the analyst can select the X, Y, and Z fields of
choice. Additionally a categorical variable can also be chosen should this be available in the dataset
being analyzed. There are two types of data views accessible via a toggle button titled Novelty
Detect or Same Time View depending on toggle state. The Same Time View (default) shows

Scalable Data Exploration and Novelty Detection 10 CMU /DYNAMiX /ManTech-CSEC

analyst selected clusters from the same time period. The Novelty Detect view is used to depict
cluster evolution, i.e., how does the same cluster evolve over time. This can be used to spot cluster
density changes, emergence of novel clusters, novel sub-clusters and the like. The Data Manager
also shows the total number of 3D records plotted in the current view.
 The View Control has a set of intuitive controls used to manipulate the current view.
Rotation and zoom are most useful to obtain appropriate views,
 The Cluster Controls help show and hide clusters of interest. A most useful feature is the 1-
sigma and 3-sigma toggle radio buttons that enable the user to render spheres (around the actual
data points) that represent the one standard deviation and three standard deviation ranges for that
cluster.
Action > Cluster on a selected dataset is used to cluster the data based on the leader-follower
clustering algorithm. A parameter dialog window enables the user to set two categories of
parameters. The first is the Cluster Distance Threshold, which in essence defines the clustering
neighborhood, so the smaller this number the smaller the neighborhood, hence smaller the number
of points within each cluster. Hence the total number of clusters needed to cover the entire data
space is proportionately large. In contrast, for a large Threshold, the total number of clusters is
relatively small, but the number of points within each cluster is large. The second parameter (of set
thereof) is the importance weight of each field in relation to the others. So with all weights set to
1.0, equal weighting is assumed, a weight of 0.0 effectively removes that particular field from the
clustering process, and so on.
Action > Recluster works on clusters generated by the leader-follower (Cluster) process above and
is used to refine the clusters generated by the leader-follower algorithm. Recluster uses the k-means
algorithm, hence is relatively slower, but it produces higher quality clusters.
Action > Novelty works on clusters generated by Cluster or Recluster and is used to typically
compare pairs of clusters. Ideally these are clusters that are contiguous in time over the same dataset
and the ideal is to track and detect novelty in cluster evolution through time. There are two
parameters used here, the Density Threshold which is a real valued number that determines the size
of the radial density bins and the Cluster Size Threshold, an integer that determines the number of
points in novel clusters.

References
[1] Pattern Classification, Second Edition. Richard O. Duda, Peter E. Hart, David G. Stork, Wiley, 2001.

[2] Novelty Detection in Data Streams: A Small Step Towards Anticipating Strategic Surprise. Cenk Gazen,
Jaime Carbonell, Phil Hayes, NIMD PI Meeting, Washington, DC, June 2005

[3] Rete: A fast algorithm for the many patterns/many objects match problem, Charles Forgy. Artificial
Intelligence, 19(1), pages 17–37, 1982.

[4] ARGUS: Rete + DBMS = Efficient Continuous Profile Matching on Large-Volume Data Streams, Chun
Jin and Jaime Carbonell, To appear in Proceedings of 15th International Symposium on Methodologies for
Intelligent Systems, May 2005.

 [5] Computation Sharing on Continuous Queries, C. Jin and J. Carbonell, Submitted to VLDB, 2006.

