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Preface

Restricted-orientation convexity, also called O-convexity, is the study of ge-
ometric objects whose intersections with lines from some fixed set are con-
nected. This notion generalizes standard convexity and several types of non-
traditional convexity. We explore this generalized convexity in multidimen-
sional Euclidean space and identify the properties of standard convex sets
that also hold for restricted-orientation convexity.

The purpose of the book is to present the current results on restricted-
orientation convexity to the research community and discuss related open
problems. The book requires only basic knowledge in geometry; the reader
should be familiar with the notion of higher-dimensional Euclidean space and
with basic objects in this space, such as lines, balls, and hyperplanes. We use
geometric techniques in most proofs, which are accessible to all mathematics
and computer-science researchers and graduate students.

O-convexity: We begin with basic properties of O-convex sets, and then in-
troduce O-connected sets, which are a subclass of O-convex sets. We study
restricted-orientation analogs of lines, flats and hyperplanes, and characterize
O-convex and O-connected sets in terms of their intersections with hyper-
planes. We also explore properties of O-connected curves; in particular, we
determine when the replacement of a segment of an O-connected curve gives
a new O-connected curve, and when the catenation of several curvilinear seg-
ments gives an O-connected segment. We use these results to characterize an
O-convex set in terms of O-convex segments joining its points, and an O-
connected set in terms of O-connected segments.

O-halfspaces: We introduce O-halfspaces, which are a generalization of stan-
dard halfspaces, defined as geometric objects whose intersection with every
line from some fixed set is empty, a ray or a line. We give basic properties of
O-halfspaces and compare them with standard halfspaces; in particular, we
show that O-halfspaces may be disconnected and characterize them through
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their connected components. We also characterize O-halfspaces in terms of
O-convexity of their boundaries, and give a condition under which the com-
plement of an O-halfspace is an O-halfspace.

Strong O-convexity: We also introduce the notion of strong O-convexity,
which is an alternative generalization of convexity. We describe properties of
strongly O-convex flats and halfspaces, and establish the strong O-convexity
of the affine hull of a strongly O-convex set. We then show that, for every point
in the boundary of a strongly O-convex set, there is a supporting strongly O-
convex hyperplane through it. Finally, we characterize strongly O-convex sets
in terms of the intersections of strongly O-convex halfspaces.
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Council of Hong Kong. The authors also thank the institutions at which they
have done this work, including Carnegie Mellon University, the Hong Kong
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1

Introduction

The study of convex sets is a branch of geometry, analysis and linear algebra,
which has numerous connections with other areas of mathematics, including
topology, number theory and combinatorics [6, 14, 21]. Researchers have ex-
plored not only mathematical properties of convex sets, but also related com-
putational problems [5, 13, 34], and applied the resulting algorithms in many
practical areas, such as graphics, finite-element analysis, VLSI design and
motion planning. They have also studied several types of nontraditional con-
vexity, such as ortho-convexity [28, 30], restricted-orientation convexity [35],
NESW convexity [25, 49, 50] and link convexity [2, 52].

The notion of restricted orientations has stemmed from the study of ortho-
polygons, which are polygons with edges parallel to the coordinate axes [19].
Researchers have extensively investigated ortho-polygons [1,3,4,11,33,58,59],
and used them in geometric models based on vertical and horizontal lines,
such as VLSI wiring and architectural floor plans. They have also studied
ortho-convex sets, which are sets whose intersection with every vertical and
every horizontal line is connected [28, 30, 32, 39, 42].

Güting introduced restricted orientations as a generalization of ortho-
polygons [16]; he explored computational properties of polygons whose edges
were parallel to the elements of some fixed set of lines [16–18]. Widmayer, Wu,
Schlag and Wong also studied computational problems related to restricted
orientations [55–57]. Nilsson, Ottmann, Schuierer and Icking reviewed and
extended the earlier results in restricted-orientation geometry [31].

Rawlins and Wood used restricted orientations to define the notion of O-
convexity, which generalized standard convexity and ortho-convexity [35, 37–
41]. Schuierer continued their exploration and presented an extensive study of
geometric and computational properties of O-convex sets [43]. Rawlins intro-
duced an alternative generalization of convexity based on restricted orienta-
tions, called strong O-convexity [35]. We considered computational problems
in strong O-convexity and developed a suite of related algorithms [10].
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(a) (b)
p

q x

(c)

Fig. 1.1. Standard convex hull (a) and standard kernels (b,c)

Although researchers have extensively studied nontraditional convexity in
the plane, they have not extended it to higher dimensions. The purpose of our
work is to develop a theory of restricted-orientation convexity in multidimen-
sional space [7–9].

We begin with a review of standard convexity, and define the related no-
tions of convex hulls and kernels (Sect. 1.1). We also review ortho-convexity
and strong ortho-convexity, which are special cases of restricted-orientation
convexity (Sects. 1.2 and 1.3), and define a topological generalization of convex
sets (Sect. 1.4). We then outline the organization of the book and dependencies
between its chapters (Sect. 1.5).

1.1 Standard Convexity

We review basic properties of convex sets in the plane; a much more ex-
tended review is available in several texts on convexity, including Convex
Polytopes by Grünbaum, Klee, Perles and Shephard [15], Geometry and Con-
vexity by Kelly and Weiss [20], Convex Sets by Valentine [51] and Convexity
by Webster [54].

We define convex sets through their intersections with lines; specifically, a
set is convex if its intersection with every line is connected.

Proposition 1.1 (Properties of standard convex sets).

1. The intersection of convex sets is a convex set.
2. Every convex set is simply connected.
3. A closed set is convex if and only if it is either the entire plane or the

intersection of halfplanes.

The convex hull of a geometric object is the intersection of all convex
sets that contain the object; for example, the shaded region in Fig. 1.1a is the
convex hull of the polygon shown by solid lines.

Proposition 1.2 (Properties of standard convex hulls).

1. The convex hull of a geometric object is the minimal convex set that con-
tains the object.
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Fig. 1.2. Ortho-convexity

2. An object is convex if and only if it is identical to its convex hull.

Two points of a geometric object are visible to each other if the line
segment joining them is wholly in the object; for example, the points p and q

of the polygon in Fig. 1.1b are visible to each other, whereas p and x are not.
Note that an object is convex if and only if every two of its points are visible
to each other. The kernel of a geometric object is the set of points that are
visible from all points of the object; for example, the kernel of the polygon
in Fig. 1.1b is empty, whereas the kernel of the polygon in Fig. 1.1c is the
nonempty shaded region.

Proposition 1.3 (Properties of standard kernels).

1. The kernel of any geometric object is convex.
2. An object is convex if and only if it is identical to its kernel.

1.2 Ortho-Convexity

We now consider ortho-convexity, which is weaker than standard convexity.
A set is ortho-convex if its intersection with every vertical line and every
horizontal line is connected. For example, the sets in Fig. 1.2b–d are ortho-
convex, whereas the set in Fig. 1.2e is not ortho-convex, since its intersection
with the dashed vertical line is disconnected. Note that ortho-convex sets may
be disconnected; for instance, the set in Fig. 1.2d consists of two components.

Proposition 1.4 (Properties of ortho-convex sets).

1. The intersection of ortho-convex sets is an ortho-convex set.
2. Every standard convex set is ortho-convex.
3. A disconnected set is ortho-convex if and only if every connected compo-

nent of the set is ortho-convex and no vertical or horizontal line intersects
two components.

4. Every connected ortho-convex set is simply connected.

The ortho-hull of a geometric object is the intersection of all ortho-convex
sets that contain the object; we give four examples of ortho-hulls in Fig. 1.3.
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Fig. 1.3. Ortho-hulls of two connected sets (b,c) and two disconnected sets (d,e)
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Fig. 1.4. Strong ortho-convexity

Proposition 1.5 (Properties of ortho-hulls).

1. The ortho-hull of a geometric object is the minimal ortho-convex set that
contains the object.

2. An object is ortho-convex if and only if it is identical to its ortho-hull.
3. The ortho-hull of an object is a subset of the standard convex hull of the

object.

1.3 Strong Ortho-Convexity

We next review a different type of nontraditional convexity, which is also de-
fined through vertical and horizontal lines, and consider the related notions of
ortho-rectangles and ortho-blocks. An ortho-rectangle is a rectangle whose
sides are parallel to the coordinate axes. An ortho-block of two points p and q

is the minimal ortho-rectangle that contains them; note that p and q are op-
posite vertices of this rectangle, as shown in Fig. 1.4b. In particular, if p and q

are on the same vertical or horizontal line, their ortho-block is the line segment
joining them, as shown in Fig. 1.4c.

A set is strongly ortho-convex if, for every two of its points, their
ortho-block is wholly in the set. For example, the rectangle in Fig. 1.4d is
strongly ortho-convex; two ortho-blocks contained in this rectangle are shown
by dashed lines. As another example, the unbounded sets in Fig. 1.4e,f are
also strongly ortho-convex. On the other hand, the square in Fig. 1.4g is not
strongly ortho-convex, because the dashed ortho-block is not in this square.

Proposition 1.6 (Properties of strongly ortho-convex sets).

1. The intersection of strongly ortho-convex sets is a strongly ortho-convex set.
2. Every strongly ortho-convex set is standard convex.
3. Every strongly ortho-convex set is simply connected.



1.3 Strong Ortho-Convexity 5

(a) (b) (c)

Fig. 1.5. Strong ortho-hull (b) and strong ortho-kernel (c)

4. A halfplane is strongly ortho-convex if and only if its boundary line is
vertical or horizontal.

5. A closed set is strongly ortho-convex if and only if it is either the entire
plane or the intersection of strongly ortho-convex halfplanes.

6. A closed bounded set is strongly ortho-convex if and only if it is an ortho-
rectangle.

The strong ortho-hull of a geometric object is the intersection of all
strongly ortho-convex sets that contain the object, as illustrated in Fig. 1.5b.

Proposition 1.7 (Properties of strong ortho-hulls).

1. The strong ortho-hull of a geometric object is the minimal strongly ortho-
convex set that contains the object.

2. An object is strongly ortho-convex if and only if it is identical to its strong
ortho-hull.

3. The standard convex hull of an object is a subset of the strong ortho-hull
of the object.

We can define strong ortho-visibility in terms of ortho-blocks; that is, two
points of a geometric object are strongly ortho-visible to each other if their
ortho-block is wholly in the object. Note that an object is strongly ortho-
convex if and only if every two of its points are strongly ortho-visible to each
other. The strong ortho-kernel of a geometric object is the set of points that
are strongly ortho-visible from every point of the object; we give an example
of a strong ortho-kernel in Fig. 1.5c.

Proposition 1.8 (Properties of strong ortho-kernels).

1. The strong ortho-kernel of any geometric object is strongly ortho-convex.
2. An object is strongly ortho-convex if and only if it is identical to its strong

ortho-kernel.
3. The strong ortho-kernel of an object is a subset of the standard kernel of

the object.
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Table 1.1. Comparison of different convexities

Intersection

Standard convexity: The intersection of convex sets is a convex set.

Ortho-convexity: The intersection of ortho-convex sets is an ortho-

convex set.

Strong ortho-convexity: The intersection of strongly ortho-convex sets is a

strongly ortho-convex set.

Line intersection

Standard convexity: A set is convex if and only if its intersection with every

line is connected.

Ortho-convexity: A set is ortho-convex if and only if its intersection with

every vertical line and every horizontal line is connected.

Connectedness

Standard convexity: Every convex set is simply connected.

Ortho-convexity: Every connected ortho-convex set is simply connected.

Strong ortho-convexity: Every strongly ortho-convex set is simply connected.

Visibility

Standard convexity: A set is convex if and only if, for every two of its points,

the line segment joining them is wholly in the set.

Strong ortho-convexity: A set is strongly ortho-convex if and only if, for every two

of its points, their ortho-block is wholly in the set.

Kernel convexity

Standard convexity: The standard kernel of any set is convex.

Ortho-convexity: The ortho-kernel of any set is ortho-convex.

Strong ortho-convexity: The strong ortho-kernel of any set is strongly ortho-

convex.

Halfspace intersection

Standard convexity: A closed set is convex if and only if it is either the entire

plane or the intersection of halfplanes.

Strong ortho-convexity: A closed set is strongly ortho-convex if and only if it

is either the entire plane or the intersection of strongly

ortho-convex halfplanes.

1.4 Convexity Spaces

The properties of ortho-convexity and strong ortho-convexity are similar to
those of standard convexity, as shown in Table 1.1. The basic results for other
types of nontraditional convexity are also analogous to those for standard
convexity. This similarity has led to the notion of convexity spaces [24], which
is a topological generalization of convex sets; a review of the related results is
available in the book by van de Vel [53].
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A convexity space is defined by two sets, X and C, where X is an
arbitrary set, and C is a collection of subsets of X that satisfies two conditions:

1. The empty set and the entire set X are elements of C.
2. For every subset C of C, the intersection ∩C of its elements is in C.

Informally, X is an analog of the plane in standard convexity, and the ele-
ments of C are analogs of convex sets, which are called C-convex sets. The two
conditions generalize the observation that the empty set and the entire plane
are convex, and the intersection of convex sets is a convex set.

The related definition of a hull is the same as in standard convexity; that
is, for every subset Y of X , the C-hull of Y is the intersection of all C-convex
sets that contain Y .

Proposition 1.9 (Properties of C-hulls).

1. The C-hull of a subset Y of X is the minimal C-convex set that contains Y .
2. A subset Y of X is C-convex if and only if it is identical to its C-hull.

Schuierer, Rawlins and Wood defined visibility in convexity spaces and
studied its properties [35,36,43,44,48,60]. Two elements p and q of a subset Y

of X are visible to each other if the C-hull of the two-element set {p, q} is
wholly in Y . Note that the hull of two points in standard convexity is the line
segment joining them, and the strong ortho-hull of two points is their ortho-
block, which means that visibility in convexity spaces generalizes standard
visibility and strong ortho-visibility.

1.5 Book Outline

We present the results of exploring two notions of nontraditional convexity
in multidimensional space, called O-convexity and strong O-convexity, which
also satisfy the general conditions of convexity spaces. These two notions
generalize standard convexity, ortho-convexity, and strong ortho-convexity. In
Fig. 1.6, we summarize the organization of the book.

We first describe the properties of O-convexity and strong O-convexity
in two dimensions (Chap. 2) and consider related computational problems
(Chap. 3). We then generalize O-convexity to higher dimensions, and show
that the properties of the resulting generalization are much richer than those
in two dimensions (Chap. 4). We also consider O-convexity analogs of half-
spaces and study their relationship to O-convex sets (Chap. 5). Finally, we
extend strong O-convexity to higher dimensions, describe the main properties
of strongly O-convex sets, and give additional properties of strongly O-convex
flats and halfspaces (Chap. 6). We conclude with a summary of results and
related open problems (Chap. 7).
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Fig. 1.6. Dependencies among chapters



2

Two Dimensions

We begin with two planar generalizations of convexity, called O-convexity and
strong O-convexity. We first define O-convex sets and present their basic prop-
erties (Sect. 2.1), then introduce a restricted-orientation analog of halfplanes
(Sect. 2.2), and finally describe strong O-convexity (Sect. 2.3).

2.1 O-Convex Sets

Rawlins introduced the notion of planar O-convexity in 1987, as a generaliza-
tion of ortho-convexity [32] and standard convexity. He defined O-convex sets
in terms of their intersections with lines by analogy with one of the definitions
of standard convex sets. Rawlins, Schuierer and Wood explored properties of
O-convex sets in two dimensions and demonstrated their similarity to stan-
dard convex sets [39, 41, 43].

Recall that convex sets can be described through their intersections with
lines; specifically, a set is convex if its intersection with every line is connected.
We define O-convex sets through their intersections with lines in a given set
rather than with all lines. To define such a restricted collection of lines, we first
introduce the notion of an orientation set O, which is a (possibly infinite) set
of lines through some fixed point o; we give an example of a finite orientation
set in Fig. 2.1a. A line that is a translate of an element of O is called an
O-line; for example, the dashed lines in Fig. 2.1b–e are O-lines. We use the
collection of all translates of all lines in a given O to define O-convex sets.

o

(e)(a) (b) (c) (d)

Fig. 2.1. Planar O-convexity
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Definition 2.1 (O-convexity). A set is O-convex if its intersection with
every O-line is connected.

For the orientation set in Fig. 2.1a, the objects in Fig. 2.1b,c are O-convex;
some O-lines intersecting them are shown by dashed lines. On the other hand,
the object in Fig. 2.1d is not O-convex, since its intersection with the dashed
O-line is disconnected. Note that the object in Fig. 2.1d is a rotation of that
in Fig. 2.1c, which shows that rotations may not preserve O-convexity. Unlike
standard convex sets, O-convex sets may be disconnected; for example, the
two rectangles in Fig. 2.1e form a disconnected O-convex set. We now give
some basic properties of planar O-convex sets [41].

Lemma 2.1.

1. Every translate of an O-convex set is O-convex.
2. If C is a collection of O-convex sets, then the intersection

⋂
C of these

sets is also an O-convex set.
3. Every standard convex set is O-convex.
4. If O1 ⊆ O2, then every O2-convex set is O1-convex.
5. A disconnected set is O-convex if and only if every connected component

of the set is O-convex and no O-line intersects two components.
6. If O is nonempty, then every connected O-convex set is simply connected.

Proof.
(1) By definition, every translate of an O-line is an O-line. Therefore, if

the intersection of a set with every O-line is connected, then the same holds
for every translate of the set.

(2) If C is a collection of O-convex sets, then, for every O-line l, the
intersection of each element of C with l is connected; hence, the intersection
of

⋂
C with l is also connected. We conclude that the intersection of

⋂
C with

every O-line is connected, which implies that
⋂

C is O-convex.
(3) The intersection of a convex set with every line is connected. In

particular, its intersection with every O-line is connected, which implies that
it is O-convex.

(4) If O1 ⊆ O2, then every O1-line is an O2-line. The intersection of an
O2-convex set with every O2-line is connected, which implies that its inter-
section with every O1-line is connected; thus, it is O1-convex.

(5) If a set P is the union of disjoint O-convex components and no O-
line intersects two components, then the intersection of P with every O-line is
connected; therefore, P is O-convex. If one of P ’s components is not O-convex,
then the intersection of this component with some O-line is disconnected. The
intersection of P with this O-line is also disconnected; hence, P is not O-
convex. Finally, if some O-line intersects two or more components, then the
intersection of P with this O-line is disconnected; therefore, we again conclude
that P is not O-convex.
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o

(b)

Fig. 2.2. Standard convex hull (a) and O-hull (b)
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l

Fig. 2.3. Proof of Theorem 2.3

(6) If a set P is connected but not simply connected, then P has a hole,
and there is an O-line that cuts through the hole. The intersection of P with
this O-line is disconnected; thus, P is not O-convex. ut

We now introduce the notion of an O-hull. Recall that the standard convex
hull of a geometric object is the intersection of all convex sets containing the
object. Similarly, the O-hull of an object is the intersection of all O-convex
sets that contain the object. We show a standard convex hull in Fig. 2.2a and
an O-hull in Fig. 2.2b. We list basic properties of O-hulls, which immediately
follow from the definition.

Lemma 2.2.

1. The O-hull of a geometric object contains the object.
2. A geometric object is O-convex if and only if it is identical to its O-hull.
3. The O-hull of a geometric object is a subset of the standard convex hull

of the object.
4. If O1 ⊆ O2, then the O1-hull of a geometric object is a subset of the

O2-hull of the object.

We now establish separation and decomposition properties of O-hulls [40,41].

Theorem 2.3 (Separation). Suppose that P is a connected set and p is a
point outside of P . Then, p ∈ O-hull(P ) if and only if there is an O-line
through p that intersects P on both sides of p.

Proof. If an O-line through p intersects P on both sides of p, as shown in
Fig. 2.3a, then every O-convex set that contains P also includes p, which
implies that p ∈ O-hull(P ).

To show the converse, suppose that p ∈ O-hull(P ). We draw the two rays
from p that support P , as shown in Fig. 2.3b, and consider the shaded angle,
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which does not include its vertex p. The exact definition of this angle depends
on whether P is open or closed. If both rays intersect P , they belong to the
angle. If the rays do not intersect P , as shown in Fig. 2.3c, the angle is an
open set that does not include its sides. Finally, if only one of the two rays
intersects P , as shown in Fig. 2.3d, the angle includes one of its sides.

In all cases, the angle contains P and does not include p. Since p ∈
O-hull(P ), the angle is not O-convex, which means that its intersection with
some O-line l is disconnected, as shown in Fig. 2.3e. The parallel-to-l line
through p is an O-line that intersects P on both sides of p. ut
Theorem 2.4 (Decomposition). If O1 and O2 are two orientation sets
through the same point o, then, for every connected set P ,

(O1 ∪ O2)-hull(P ) = O1-hull(O2-hull(P )) = O1-hull(P ) ∪ O2-hull(P ).

Proof. We readily conclude from Lemma 2.2 that

O1-hull(P ) ∪ O2-hull(P ) ⊆ O1-hull(O2-hull(P )) ⊆ (O1 ∪ O2)-hull(P ).

We now show that, if a point p is in (O1 ∪ O2)-hull(P ), then it is also in
O1-hull(P ) ∪ O2-hull(P ). By Theorem 2.3, if p is in (O1 ∪ O2)-hull(P ), then
some O1-line or O2-line through p intersects P on both sides of p, which
implies that p is in O1-hull(P ) or in O2-hull(P ). ut

2.2 O-Halfplanes

Standard halfplanes can also be characterized through their intersections with
lines; specifically, a closed set is a halfplane only if its intersection with every
line is empty, a ray or a line. We use this observation to define an O-convexity
analog of halfplanes.

Definition 2.2 (O-halfplanes). An O-halfplane is a closed set whose in-
tersection with every O-line is empty, a ray or a line.

Note that the empty set and the whole plane are considered O-halfplanes,
which simplifies some definitions and results. For example, the objects in
Fig. 2.4b–f are O-halfplanes for the orientation set in Fig. 2.4a; note that
the O-halfplane in Fig. 2.4f is disconnected. As another example, the objects
in Fig. 2.4h,i are O-halfplanes for the orientation set in Fig. 2.4g.

This notion of O-halfplanes is different from the O-convexity analogs of
halfplanes in the work of Rawlins, who defined an O-stairhalfplane as a
region of the plane bounded by an O-convex curve [35]. O-stairhalfplanes are
a proper subclass of O-halfplanes as follows from Lemma 5.8 (page 60).
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Fig. 2.4. O-halfplanes

Lemma 2.5.

1. Every translate of an O-halfplane is an O-halfplane.
2. Every standard closed halfplane is an O-halfplane.
3. Every O-halfplane is O-convex.
4. A disconnected set is an O-halfplane if and only if each of its connected

components is an O-halfplane and no O-line intersects two components.

Proof.
(1) If the intersection of a set with every O-line is empty, a ray or a line,

then the same holds for every translate of the set.
(2) The intersection of a standard halfplane with every line is empty, a

ray or a line; hence, it is an O-halfplane.
(3) The intersection of an O-halfplane with every O-line is connected;

therefore, every O-halfplane is O-convex.
(4) If P is the union of disjoint O-halfplanes and no O-line intersects two

of them, then the intersection of P with every O-line is empty, a ray or a line;
hence, P is an O-halfplane. If one of P ’s components is not an O-halfplane,
the intersection of this component with some O-line is not empty, not a ray
and not a line. Then, the intersection of P with this line is not empty, not
a ray and not a line; thus, P is not an O-halfplane. Finally, if some O-line
intersects two components, then its intersection with P is disconnected, which
implies that P is not an O-halfplane. ut

We characterize closed O-convex sets in terms of the intersections of O-
halfplanes [41].

Lemma 2.6. A closed connected set is O-convex if and only if it is the inter-
section of O-halfplanes.

Proof. Suppose that a set P is the intersection of O-halfplanes. Since every
O-halfplane is O-convex by Lemma 2.5, their intersection P is also O-convex
by Lemma 2.1.
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Fig. 2.6. Proof of Lemma 2.7

Now suppose, conversely, that P is O-convex. We show that P is the
intersection of O-halfplanes by demonstrating that, for every point p outside
of P , some O-halfplane contains P and does not contain p.

We draw the two lines through p that support P , as shown in Fig. 2.5a.
If the marked angle between these lines is less than π, there is a standard
halfplane that contains P and does not contain p, as shown in Fig. 2.5b.

If the marked angle is at least π, we consider the set Q shown by shading in
Fig. 2.5c. The boundary of Q consists of the segment of P ’s boundary between
the supporting lines and the parts of the supporting lines that extend this
segment. We show that Q is an O-halfplane.

If the intersection of Q with some O-line l is disconnected, then there is
an O-line parallel to l whose intersection with P is disconnected, as shown
in Fig. 2.5d, contradicting the assumption that P is O-convex. Furthermore,
there is no line whose intersection with Q is a point or segment. Therefore,
the intersection of Q with every O-line is empty, a ray or a line. ut

If O contains at least three distinct lines, then O-halfplanes have additional
basic properties. To derive these properties, we use the notion of the direction
of a ray; specifically, two rays have the same direction if they are translates
of each other.

Lemma 2.7. Suppose that the orientation set O contains at least three dis-
tinct lines. If the intersection of an O-halfplane with two parallel O-lines forms
two rays, these rays have the same direction, rather than opposite directions.

Proof. Suppose that the intersection of an O-halfplane P with parallel O-
lines l1 and l2 gives rays of opposite directions; we show these two rays by
solid lines in Fig. 2.6b. For convenience, we assume that l1 is below l2 and the
lower ray’s direction is to the left.
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Fig. 2.7. Directed O-halfplane (a) and nondirected O-halfplane (b)

Let l be the element of O parallel to l1 and l2, and let m and n be two
other elements of O, as shown in Fig. 2.6a. We assume that the marked angle
between l and m is smaller than the marked angle between l and n.

We choose a point p ∈ l1 and draw a line n1 through p parallel to n. We
select this point p in such a way that p is not in P and n1 intersects the upper
ray, as shown in Fig. 2.6b. Since n1 is an O-line, its intersection with P must
be empty, a ray or a line; hence, the part of n1 above l2 (shown by a solid
line) is in P .

We next choose a point q ∈ l2 and draw a line m1 through q parallel to m.
We pick q is such a way that q is not in P and m1 intersects the lower ray. Note
that m1 intersects n1 above l2, which implies that m1 intersects the part of
n1 contained in P . Since m1 is an O-line, its intersection with P is connected;
therefore, the segment of m1 between l1 and n1 is in P , contradicting the
assumption that q is not in P . ut

We illustrate the directed-ray property of O-halfplanes in Fig. 2.7a, where
the intersection of an O-halfplane with several parallel O-lines is shown by
dashed rays. The O-halfplanes that satisfy this property are called directed
O-halfplanes. If O contains two lines, an O-halfplane may not be directed;
for example, the O-halfplane in Fig. 2.7b is not directed, since the dashed
O-rays have opposite directions.

Lemma 2.8. Suppose O contains at least two distinct lines. Then:

1. Every O-halfplane is either connected or consists of two components.
2. Every directed O-halfplane is connected.
3. The boundary of every directed O-halfplane is connected and O-convex.

Proof.
(1) We prove that every O-halfplane P has at most two components by

showing that, for every three points p, q, a ∈ P , two of them are in the same
components.

Let l and m be two elements of O, and suppose for convenience that l

is horizontal, as shown in Fig. 2.8a. Since P is an O-halfplane, one of the
two horizontal rays with endpoint p is contained in P ; we show this ray in
Fig. 2.8b. Similarly, we can choose a horizontal ray with endpoint q and a
horizontal ray with endpoint a contained in P .
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Fig. 2.8. Proof of Lemma 2.8

We select two of these three rays that have the same direction; without
loss of generality, assume that the endpoints of the selected rays are p and q.
We choose a parallel-to-m line that intersects these two rays, and denote
the respective intersection points by x and y, as shown in Fig. 2.8b. The
polygonal line (p, x, y, q) is wholly in P , which implies that p and q are in the
same connected component.

(2) We show that every two points p and q of a directed O-halfplane P

can be connected by a polygonal line in P . We pick two parallel O-rays, with
endpoints p and q, that are contained in P and have the same direction, and
consider an O-line that intersects these rays. We illustrate this construction
in Fig. 2.8c, where the respective intersection points are denoted by x and y.
The polygonal line (p, x, y, q) is a path from p to q within P .

(3) Suppose that the boundary of a directed O-halfplane P is not con-
nected. Since P is connected, the complement of P is disconnected and we
can choose points p and q in different connected components of P ’s comple-
ment. Next, we pick two parallel O-rays, with endpoints p and q, that do not
intersect P and have the same direction, as shown in Fig. 2.8d. Finally, we
select an O-line l that intersects these two rays, and denote the respective
intersection points by x and y. The segment of l between x and y does not
intersect P , because, if some point z of this segment were in P , then one of
the two contained-in-l rays with endpoint z would be in P , contradicting the
assumption that x and y are not in P . Therefore, the polygonal line (p, x, y, q)
is wholly in P ’s complement, contradicting the assumption that p and q are
in different components of P ’s complement.

Now suppose that the boundary of P is not O-convex. Then, the intersec-
tion of some O-line l with P ’s boundary is disconnected, and we can select
points p, q ∈ l that are in the boundary and a point x ∈ l between them that is
not in the boundary; we assume that p is to the left of x, as shown in Fig. 2.8e.
Since the intersection of P with l is connected, x is in the interior of P , and
we can choose a circle Bx ⊆ P centered at x. Either all left-directed or all
right-directed rays with endpoints in Bx are contained in P ; we assume that
the left-directed rays are in P . Then, some circle Bp centered at p is wholly
in P ; therefore, p is in P ’s interior, which yields a contradiction. ut
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Fig. 2.9. Planar strong O-convexity

2.3 Strongly O-Convex Sets

We now consider an alternative generalization of convexity, called strong O-
convexity, which also stems from the notion of an orientation set. Rawlins
introduced planar strong O-convexity in his doctoral dissertation [35], as part
of his research on restricted-orientation visibility. Rawlins and Wood studied
the properties of strongly O-convex sets in two dimensions [39,41], and demon-
strated that strong O-convexity generalizes not only standard convexity but
also the notion of C-oriented polygons [16, 18].

The definition of strong O-convexity is based on a characterization of
convex sets in terms of visibility. Recall that a set is standard convex if and
only if every two of its points are visible to each other. In other words, for every
two points of a standard convex set, the line segment joining them is wholly
in the set. We introduce a new type of visibility by replacing line segments
with different objects, called O-blocks, and define strong convexity in terms
of this new visibility.

Definition 2.3 (O-blocks). If the orientation set O is nonempty, then the
O-block of two points is the intersection of all halfplanes, whose boundaries
are O-lines, that contain both points. If O is empty, then the O-block of any
two points is the entire plane.

To construct the O-block of two points p and q, we draw all O-rays with
endpoint p and choose the two that are closest to q, as illustrated in Fig. 2.9b.
The two selected rays, with common endpoint p, form the boundary of an
angle with vertex p that contains q.

If O is an infinite set, it may not be closed; thus, we may be unable to
choose the ray closest to q. We give an example of a nonclosed orientation set
in Fig. 2.9c; all lines in the shaded area are elements of this set, whereas the
dotted horizontal line is not in the set. If O is not closed, we choose two rays
with common endpoint p such that, for each of the two selected rays, (1) there
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is a sequence of O-rays convergent to this ray and (2) there are no O-rays
with endpoint p between this ray and the point q, as shown in Fig. 2.9d. The
two selected rays again form the boundary of an angle with vertex p.

Similarly, we draw the O-rays from q closest to p and obtain the angle with
vertex q whose boundary is formed by these rays. The O-block of p and q is the
intersection of the two angles, shown by the shaded parallelogram in Fig. 2.9e.
In particular, if the line through p and q is an O-line, then the O-block of p

and q is the line segment joining p and q, as shown in Fig. 2.9f.

Definition 2.4 (Strong O-convexity). A set is strongly O-convex if, for
every two of its points, their O-block is contained in the set.

We denote the orientation set in Fig. 2.9a by Oa and that in Fig. 2.9c by
Oc. The polygon in Fig. 2.9g is strongly Oa-convex and strongly Oc-convex;
two Oa-blocks contained in this polygon are shown by dashed lines. On the
other hand, the circle in Fig. 2.9h is neither strongly Oa-convex nor strongly
Oc-convex, because the dashed block is not in the circle. Finally, the polygon
in Fig. 2.9i is strongly Oc-convex, but not strongly Oa-convex.

Lemma 2.9.

1. Every translate of a strongly O-convex set is strongly O-convex.
2. If C is a collection of strongly O-convex sets, the intersection

⋂
C of these

sets is also strongly O-convex.
3. For every orientation set O, each strongly O-convex set is standard convex.
4. If O1 ⊆ O2, then every strongly O1-convex set is strongly O2-convex.
5. For two orientation sets O1 and O2 through the same point o, strong O1-

convexity is equivalent to strong O2-convexity if and only if the closure
of O1 is identical to the closure of O2.

6. For a closed orientation set O, a polygon is strongly O-convex if and only
if it is convex and its edges are parallel to elements of O.

Proof.
(1) Since translation preserves O-lines, it also preserves O-blocks, which

implies that translates of strongly O-convex sets are strongly O-convex.
(2) If C is a collection of strongly O-convex sets, then, for every two points

of the intersection
⋂

C, their O-block is a subset of every element of C; hence,
this O-block is contained in

⋂
C.

(3) For every two points, the line segment joining them is contained in
their O-block. Therefore, for every two points of a strongly O-convex set, the
segment joining them is wholly in the set.

(4) Suppose that O1 ⊆ O2. The definition of O-blocks readily implies
that, for every two points, their O2-block is a subset of their O1-block. If P

is strongly O1-convex, then, for every two points of P , their O2-block is in P ,
which means that P is strongly O2-convex.



2.3 Strongly O-Convex Sets 19

pl
l q

q

p

l

o

(b)(a)

Fig. 2.10. Proof of Lemma 2.9

(5) Let Ocl1 be the closure of O1, and Ocl2 be the closure of O2. By
definition, the notions of O1-blocks and Ocl1-blocks are equivalent, which im-
plies that strongO1-convexity is equivalent to strong Ocl1-convexity. Similarly,
strong O2-convexity is identical to strong Ocl2-convexity. If Ocl1 = Ocl2, then
strong O1-convexity is equivalent to strong O2-convexity. Suppose, conversely,
that Ocl1 6= Ocl2; without loss of generality, we assume that Ocl1 is not a sub-
set of Ocl2. We consider two distinct points such that the line through them is
an Ocl1-line and not an Ocl2-line. Then, the segment joining these two points
is strongly O1-convex but not strongly O2-convex.

(6) If a polygon P is not convex, it is not strongly O-convex by Part 3
of the proof. If some edge of P is not parallel to any element of O, then, for
any two distinct points of this edge, their O-block of is not in P , as shown in
Fig. 2.10a; hence, we again conclude that P is not strongly O-convex.

Now suppose that P is a convex polygon and all its edges are parallel
to elements of O. Then, P is the intersection of several halfplanes whose
boundaries are O-lines. To prove that P is strongly O-convex, we demonstrate
that each of these halfplanes is strongly O-convex. Specifically, we show that,
for every halfplane whose boundary l is an O-line, and every two points p and q

of this halfplane, the O-block of p and q is in the halfplane.
Let lp be the line through p parallel to l, and lq be the line through q

parallel to l, as shown in Fig. 2.10b. Since lp and lq are O-lines, the O-block
of p and q is contained in the “strip” between lp and lq; hence, this O-block
is in the halfplane.

We conclude that P is the intersection of several strongly O-convex half-
planes; therefore, P is strongly O-convex by Part 2 of the proof. ut

Finally, we introduce the notion of the strong O-hull of a geometric
object, which is the intersection of all strongly O-convex sets containing the
object; in Fig. 2.11, we show a standard convex hull and a strong O-hull.

Summary

We have introduced two notions of generalized convexity, called O-convexity
and strong O-convexity, and presented their basic properties. The impor-
tant properties of O-convex sets include the separation and decomposition
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Fig. 2.11. Standard convex hull (a) and strong O-hull (b)

results (Theorems 2.3 and 2.4), and the characterization of O-convex sets in
terms of O-halfplane intersections (Lemma 2.6). The main result for strong
O-convexity is the comparison of convexities induced by different orientation
sets (Lemma 2.9).


