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Abstract

Probabilistic graphical models and algorithms for genomic analysis

by

Poe Xing

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Richard Karp, co-Chair

Professor Michael Jordan, co-Chair

Professor Stuart Russell, co-Chair

In this thesis, I discuss two probabilistic modeling problems arising in metazoan genomic anal-

ysis: identifying motifs andcis-regulatory modules (CRMs) from transcriptional regulatory se-

quences, and inferring haplotypes from genotypes of single nucleotide polymorphisms. Motif and

CRM identification is important for understanding the gene regulatory network underlying meta-

zoan development and functioning. I discuss a modular Bayesian model that captures rich structural

characteristics of the transcriptional regulatory sequences and supports a variety of motif detection

tasks. Haplotype inference is essential for the understanding of genetic variation within and among

populations, with important applications to the genetic analysis of disease propensities. I discuss a

Bayesian model based on a prior distribution constructed from a Dirichlet process – a nonparamet-

ric prior which provides control over the size of the unknown pool of population haplotypes, and

on a likelihood function that allows statistical errors in the haplotype/genotype relationship. Our

models use the “probabilistic graphical model” formalism, a formalism that exploits the conjoined

capabilities of graph theory and probability theory to build complex models out of simpler pieces.

I discuss the mathematical underpinnings for the models, how they formally incorporate biolog-

ical prior knowledge about the data, and I present a generalized mean field theory and a generic

algorithm for approximate inference on such models.
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Chapter 1

Introduction

Understanding the structure and functional organization of the genome is a fundamental problem

in biology. This thesis introduces new computational statistical approaches for analyzing two par-

ticular types of genomic data: gene regulatory sequences, and single nucleotide polymorphisms.

It presents the methodology of applying theprobabilistic graphical modelformalism to designing

novel parametric and non-parametric Bayesian models for genomic data, in accordance with bio-

logical prior knowledge or genetic hypotheses about the population of subjects under investigation.

In particular, it presents algorithms for the problems ofmotif detectionandhaplotype inference, and

develops the general theory and algorithms ofgeneralized mean field approximationfor variational

inferenceon large-scale, hybrid, multivariate probabilistic models.

Although the major goal of this thesis is to develop probabilistic models and computational

algorithms for deciphering biological data and exploring the mechanisms and evolution of biological

systems based on mathematical principles, most of the ideas and results reported here can also

serve as building blocks of generic intelligent systems for a wide range of applications that involve

predictive understanding and reasoning under uncertainty.
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1.1 Genomic Analysis and the Graphical Model Approach

1.1 Genomic Analysis and the Graphical Model Approach

1.1.1 The Architecture and Function of the Genome

According to the central dogma, the genetic information that determines the functional and mor-

phological properties of the cells in a living organism is encoded in the DNA genome[Crick, 1970].

Biochemically, DNAs are double-stranded macromolecules representable as a pair of long comple-

mentary sequences of characters — A, T, G and C, denoting four kinds of basic elements, known as

nucleotides, that make up the DNA molecules. Residing in (and inherited via) the DNA molecules,

are a rich set of coding sequences referred to asgenes, which determine the structures and functions

of an essential set of biopolymer molecules, mostly proteins, but also including RNAs, which are

the main determinants of various cellular and physiological activities taking place in a living sys-

tem, such as biochemical catalysis, signal transduction, cellular defense, etc.[Lewin, 2003]. Also

abundant in the DNAs are a large number of so-called non-coding sequences, whose role was orig-

inally thought to be purely structural (e.g., serving as the physical scaffold of achromosome—

a long thread of DNA tightly packaged with the aid of several auxiliary proteins), but have been

recently discovered to play essential roles in the cellular implementation of thegene regulation

network[Davidson, 2001; Albertset al., 2002].

DNAs usually reside in the nucleus (or the nuclear region for prokaryotic organisms) of the

cell. Via a process calledtranscription(to be explained shortly), some genes in the DNA genome

are copied to molecules called messenger RNA (mRNA), which can travel out of the nucleus to

the protein synthesis apparatus, where proteins are assembled based on the coding information car-

ried by mRNA via a process calledtranslation [Alberts et al., 2002]. Although different cells of

an organism have the same DNA genome, it is well known that they have different protein com-

position and perform different functions[Davidson, 2001]. For example, red blood cells are rich

in hemoglobins that can carry oxygen, whereas muscle cells contain a large number of myosins

for muscular contraction. Even the same cell may bear different protein contents at different times

during its life span. This kind of diversity is a consequence of spatially and temporally regulated

2



1.1 Genomic Analysis and the Graphical Model Approach

expression of genes. It is believed that much of the information that determines when and in what

cellular environment a gene is expressed is encoded in certain genomic sequences, which possibly

account for a major portion of the total sequence of the genome, especially in the higher eukaryotes,

such as human[Davidson, 2001; Michelson, 2002].

Figure 1.1: The transcriptional regulatory machinery ( adapted from[Wasserman and Sandelin, 2004] ). TFBS: transcrip-
tion factor binding site, CRM:cis-regulatory module; chromatin: a long, extended thread of DNA packed with histone
proteins.

The creation of diverse cell types from an invariant set of genes is governed by complex bio-

chemical processes that regulate gene activities. Transcription, the initial step of gene expression,

is central to the regulatory mechanisms. Transcription refers to the process of making a single-

stranded mRNA molecule using one of the DNA strands as template. The timing and volume of

transcription are controlled by complex transcription regulatory machinery made up of both protein

and DNA elements[Ptashne, 1988; Ptashne and Gann, 1997]. As shown in Fig.1.1, the signals that

activate or suppress the transcription of a gene are physically mediated by different types of gene

regulatory proteins calledtranscription factors(TFs). To bring these signals into effect on a target

3



1.1 Genomic Analysis and the Graphical Model Approach

gene at a specific time in a specific cell, certain TFs must recognize specific binding sites in the

vicinity of the target gene, so that they can jointly interact with the basal transcription apparatus,

made up of an RNA polymerase and some general TFs, to turn on or off transcription in the right

physiological/developmental context.

DNA motifsare the protein binding sites on DNA sequences that can be recognized by specific

TFs to integrate complex gene regulatory signals (hence they are also referred to as transcription

factor binding sites, or TFBS). These sites are usually located in the vicinity of the transcription

initiation sites of the genes under their regulation — an extended sequence region generally re-

ferred to as thetranscriptional regulatory region[Lewin, 2003]. Depending on which organism the

genomic sequences are from, the complexities of the transcriptional regulatory regions vary signifi-

cantly. Their lengths range from a few hundred base pairs (e.g, in simple bacteria such as E. coli) to

over several hundred thousand base pairs (e.g., in more complex insects such asDrosophila); their

locations can be either immediately proximal to the transcription initiation sites, or much further

upstream or even downstream (i.e., into the intron regions of gene sequences); and their contents

range anywhere from sparse single-motif-promoters, to multiple complexcis-regulatory modules

(CRMs) each containing arrays of multiple motifs[Davidson, 2001] (Fig. 1.1). Motifs, together

with their specific pattern of deployment (e.g., ordering, contexts) in the genome, constitute the

hardwired part of the transcription regulatory machinery, which is present in every cell of an or-

ganism, although different subsets of motifs will be involved in gene regulation in different cells.

Deciphering the gene control circuitry encoded in DNA, its structure and its functional organization

is a fundamental problem in biology, and is a focus of this thesis.

1.1.2 The Populational Diversity and Evolution of the Genome

When the human genome project was launched over a decade ago, there was an interesting debate

over who should have the honor (but not without the courage of relinquishing the utmost privacy) to

have his/her genome sequenced. One rumor goes that the chief of the Celera company had taken this

privilege. This debate struck a key issue in genetics — that at the very sequence level, there exist
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individual distinctions and even populational diversities in the DNA genome. This phenomenon is

referred to asgenetic polymorphism.

A polymorphism is a neutral genetic variant that appears in at least 1% of the human population,

and does not directly elicit any substantial advantage or disadvantage for the survival of the individ-

ual bearing it[Kruglyak and Nickerson, 2001]. Polymorphisms are often regarded as fingerprints

of ancestral genetic alterations left on modern genomic sequences during evolution and can serve

as genetic markers of population- or disease-related phenotypes[Clark, 2003]. Common poly-

morphisms include insertion/deletion of minisatellites, microsatellites, Alu segments, etc., which

are non-functional DNA segments of various sizes; as well as single nucleotide polymorphisms

(SNPs)[Stoneking, 2001].

Figure 1.2: Single nucleotide polymorphisms as appeared in two chromosomes from a population (adapted
from [Chakravarti, 2001]).

SNP refers to the existence of two possible kinds of nucleotides at a single chromosomal locus

in a population; each variant is called anallele (Fig. 1.2). SNPs reflect past mutations that were

mostly (but not exclusively) unique events, and two individuals sharing a variant allele are thereby

marked with a common evolutionary heritage[Patil et al., 2001; Stoneking, 2001]. In other words,
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our genes have ancestors, and analyzing shared patterns of SNP variations can identify them. The

real importance of SNPs lies in their abundance. It is estimated that there are more than 5 million

common SNPs each with frequency 10-50% in the whole human population, which translates to

about one SNP in every 600 base pairs in the human genome[Zhanget al., 2002]. These SNPs

account for more than 90% of human DNA sequence difference.

As SNPs are remnants of ancient neutral DNA alterations dated back to a time measured at

a genealogicalscale, they contain more fine-grained information on molecular evolution than that

revealed by orthologous genomic sequences from multiple species, whose differences are accu-

mulated over ageologicalperiod of time and are subject to selection. In general, the higher the

frequency of a SNP allele, the older the mutation that produced it, so high-frequency SNPs largely

predate human population diversification. Therefore, population-specific alleles may bear important

information about human evolution that involves specific migrations (such as those that populated

Polynesia and the Americas)[Stoneking, 2001].

Most human variation that is influenced by genes can be related to SNPs (either as associated

markers or causative elements), especially for such medically (and commercially) important traits

as how likely one is to become afflicted with a particular disease, or how one might respond to

a particular pharmaceutical treatment, as discussed in[Chakravarti, 2001]. Even when a SNP is

not directly responsible, the dense distribution of SNPs in the genome suggests they can also be

used to locate genes that influence such traits based on a linkage disequilibrium test (for gametic

association between the putative causal gene(s) and SNPs in the vicinity)[Akey et al., 2001; Daly et

al., 2001; Pritchard, 2001]. For higher organisms, accurate inferences concerning population history

or association studies of disease propensities and other complex traits usually demand the analysis

of the states of sizable segments of the subject’s chromosome(s)[Kenneth and Clark, 2002]. To this

end, it is advantageous to study haplotypes, which consist of several closely spaced (hence linked)

SNPs and often prove to be more powerful discriminators of genetic variations within and among

populations, and hence serve as more informative markers for linkage analysis and evolutionary

studies.
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1.1.3 Probabilistic Graphical Models and Genomic Analysis

Due to the stochastic nature of genomic data, and the abundance of empirical biological prior knowl-

edge about their properties, the general methodologies adopted in this thesis are built on probabilis-

tic models that accommodate uncertainty and statistical errors associated with the data, and that

incorporate certain prior information in a principled way.

The models we develop in this thesis use a formalism calledprobabilistic graphical mod-

els [Pearl, 1988; Cowell et al., 1999; Lauritzen and Sheehan, 2002], which refer to a family of

probability distributions defined in terms of a directed or undirected graph with probabilistic se-

mantics (Fig.1.3).

X1

X2

X3

X6

X5X4

Figure 1.3: A directed graphical model for a joint probability distribution over{x1, x2, x3, x4, x5, x6}. It entails
p(x1, x2, x3, x4, x5, x6) = p(x1)p(x2|x1)p(x4|x1)p(x3|x2)p(x5|x4)p(x6|x2, x5).

A graphical model has both a structural (or topological) component — encoded by a graph

G(V, E), whereV is the set of nodes andE is the set of edges of the graph; and a parametric compo-

nent — encoded by numerical “potentials”{φC(xC) : C ⊂ V}, a set of positive numbers associated

with the state configurations of subsets of nodes in the graph. Each node in the graph represents

a random variableXi, which can be eitherobservedor latent, as indicated by the shading of the

node 1; the presence of edges between nodes denotes direct dependencies between the correspond-

ing variables. Independent and identically distributed (iid) random variables can be represented by

a macro called aplate, which allows a subgraph to be replicated. For example, the assertion that
1In the sequel, we use upper-caseX (resp. X) to denote a random variable (resp. variable set), and lower-casex

(resp.x) to denote a certain state (or value, configuration, etc.) taken by the corresponding variable (resp. variable set).
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variables{Xi} are conditionallyiid givenθ can be represented by a plate overXi (Fig.1.4a). The

family of joint probability distributions associated with a given graph can be parameterized in terms

of a product over potential functions associated with subsets of nodes in the graph. For directed

graphical models (associated with acyclic directed graphs), which are often referred to asBayesian

networks, each node,Xi, and its parents,Xπi , constitute the basic subset on which a potential func-

tion is defined, and the potential function turns out to be thelocal conditional probabilityp(xi|xπi).

Hence, we have the following representation for the joint probability:

p(x) =
∏
i∈V

p(xi|xπi). (1.1)

For undirected graphical models, which are often referred to asMarkov random fields, the basic

subsets arecliques(completely connected subsets of nodes) of the graph,{XDα : α ∈ A}, where

Dα denotes the set of node indices of cliqueα, andA denotes the index set of all cliques. The joint

probability in this case is:

p(x) =
1
Z

∏
α∈A

φα(xDα), (1.2)

whereZ is a normalizing constant, ensuring that
∫
p(x)dx = 1 (or

∑
x p(x) = 1 for discrete

models).

X1

N

θ
≡

X1

X2

XN

...

(a)

θ ⇒ θ

(b)

Figure 1.4: Various graphical models. Shaded nodes denote observed variables. (a) Plate. (b) From a flat parametric
model to a Bayesian model.
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Graphical models provide a compact graph-theoretic representation of probabilistic distribu-

tions in a way that clearly exposes the structure of a complex domain. They also provide a conve-

nient vehicle to adopt the Bayesian philosophy, because hierarchical Bayesian models can be natu-

rally specified as directed graphical models. For example, putting a prior on the model parameterθ,

now treated as a random variable, is equivalent to adding a parent node that denotes the hyperparam-

eter and associating the newly introduced edge with a prior distribution (Fig.1.4b). A distinctive

feature of the graphical model approach is its naturalness in formulating large probabilistic models

of complex phenomena, by facilitating modular combination of heterogeneous submodels, using

the property of the product rule of the joint distribution. Thus, a complex model can be assembled

in a piecewise fashion, and even solved via a divide-and-conquer approach, as will be done in this

thesis.

The field of computational genomics is fertile ground for the application of graphical models,

and many of its complex problems can be readily handled within this formalism in a canonical and

systematic way[Lauritzen and Sheehan, 2002]. For example, in a typical statistical genetics setting,

we may want to model some complex genetic patterns with both observed and hidden variables

using a likelihood model, and we concern ourselves with a sample set ofN individuals (Fig.1.5,

bottom level). If we imagine that the genetic pattern of each individual is stochastically sampled

fromK possible populational genetic patterns, or in other words, they formK clusters, then we can

make this explicit by adding the plate and nodes denotingK cluster centroids and the associated

variances (Fig.1.5, middle level). However, usually we do not know the number of clusters and

where the centroids lie; in that case we can use a non-parametric Bayesian prior model to introduce

a distribution over the space of all possible centroid sets (Fig.1.5, top level). By this modular

construction, we end up with a graphical model that corresponds to an infinite mixture model, as

depicted in Fig1.5. As you will see shortly, this graphical model is actually the formal foundation

of a haplotype inference model we will develop in this thesis.

In summary, the graphical model framework provides a clean mathematical formalism that has

made it possible to understand the relationships among a wide variety of network-based approaches
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K

Figure 1.5: A graphical model representation of an infinite mixture model for complex populational genetic patterns.

to statistical computation, and in particular to understand many domain-specific statistical inference

algorithms and architectures as instances of a broad probabilistic methodology. These features of

graphical models help to greatly simplify the design of complex probabilistic models needed for our

problems, and hopefully also make them easier to understand.

1.2 Thesis Overview

1.2.1 The Problem

In silicomotif detection is the task of identifying potential motif patterns from DNA sequences using

a pattern recognition program. Most contemporary motif detection algorithms were originally moti-

vated by promoter analysis of yeast or bacteria genomes, which in general have a simple motif struc-

ture and organization[Bailey and Elkan, 1995a; Lawrence and Reilly, 1990; Lawrenceet al., 1993;

Liu et al., 1995; Hugheset al., 2000; Liu et al., 2001]. Therefore, these algorithms usually em-

ploy a naive approach for motif modeling, which typically assumes that, locally, the probabilities

of the nucleotides at different sites within a motif are independent of each other; and globally,

instances of motifs are distributed uniformly and independently in the regulatory sequence. In

most cases, such an approach does not incorporate any prior knowledge of motif structures and

motif organizations, even though there is a wealth of valuable information regarding these prop-

erties present in the biological community. These deficiencies, although well recognized very
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early on, did not become a practical performance bottleneck (due to the small size and mod-

est complexity of the study sequences being considered) until the recent completion of several

grand sequencing projects that involve much more complex multicellular higher eukaryotes, such

as Drosophila and human[Venter et al., 2001]. With the availability of genomic sequences of

these complex organisms, contemporary research in functional genomics is moving toward under-

standing the mechanisms and coding schemes of gene regulation networks driving biological pro-

cesses unique to complex organisms, such as embryogenesis, differentiation, etc., which bear great

relevance to medical and pharmaceutical interests[Marksteinet al., 2002; Bermanet al., 2002;

Michelson, 2002]. A hallmark of the gene regulatory sequences of higher eukaryotes is the remark-

able sophistication of the control program they employ to direct combinatorially fine-tuned gene

expression in a time- and space-specific manner[Davidson, 2001]. The presence of highly sophis-

ticated deterministic and stochastic constraints on motif deployment and the diverse categorization

of motif structures in the aforementioned control programs, and the enormous size of the regula-

tory sequences in which motifs must be found, render existing methods inadequate for uncovering

motif signals from the complex genomic background. More powerful models and computational

algorithms are needed to cope with such challenge.

For autosomal loci in the genome of diploid organisms, when only thegenotypesof mul-

tiple SNPs for each individual are provided, the haplotype for those individuals with multiple

heterozygous genotypes is inherently ambiguous[Clark, 1990; Hodgeet al., 1999]. The prob-

lem of inferring haplotypes from genotypes of SNPs is essential for the understanding of ge-

netic variations within and among populations, with important applications to the genetic analy-

sis of disease propensities and other complex traits[Clark, 2003]. The problem can be formu-

lated as a mixture model, where the set of mixture components corresponds to the pool of hap-

lotypes in the population[Excoffier and Slatkin, 1995; Niu et al., 2002; Stephenset al., 2001;

Kimmel and Shamir, 2004]. The size of this pool is unknown; indeed, knowing the size of the pool

would correspond to knowing something significant about the genome and its history. Extant meth-

ods have largely bypassed explicitly modeling the uncertainty of this important quantity. Speaking
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under a broader context, this problem is closely related to the perennial problem of ”how many

clusters?” in the clustering literature, and is particularly salient in large data sets where the number

of clusters needs to be relatively large and open-ended. Current approaches based on fixing the

number of clusters and using the mixing proportions or an information-theoretic score to gauge the

appropriate number are clearly not adequate.

For many bioinformatics problems, including the problems we address in this thesis, proba-

bilistic models have an inherent appeal, because they provide an elegant and powerful methodology

to formulate various types of important problems such as classification, clustering, prediction and

reasoning under uncertainly, and can systematically handle issues such as missing values, noisy

data, prior knowledge, data fusion, etc.[Lauritzen and Sheehan, 2002; Jordan, 2004]. However,

large-scale probability models, as are often needed in bioinformatics problems, have outgrown the

ability of current (and probably future) exact inference algorithms to compute posteriors and learn

parameters. This is particularly true for the models developed in this thesis, which involve high-

dimensional Bayesian missing data problems. Although Monte Carlo algorithms[Gilks et al., 1996]

enjoy asymptotic correctness, and are often easy to implement, their prohibitive computational cost

renders them practically infeasible for some of the challenging problems, as we encountered in

motif detection. Some extant deterministic approximate inference algorithms, such as loopy belief

propagation[Pearl, 1988; Murphy et al., 1999], provide an alternative solution, but their generality

and quality remain an open problem, which hinders their widespread application.

1.2.2 Contributions of This Thesis

In this thesis, we present a modularly designed hierarchical Bayesian Markovian model for motif

detection in complex genomic sequences. This model, referred to asLOGOS, captures the de-

pendency structure of regulatory elements at two levels: the conservation dependencies between

sites within motifs, and the clustering of motifs into regulatory modules. In order to uncover un-

known motifsde novofrom higher eukaryotic genomes based solely on un-curated sequence data

(a realistic scenario we have to face in animal genome annotation),LOGOS employs a mixture of
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profile motif models, which can be trained on biologically identified motifs categorized according

to protein-binding mechanisms and which can serve as a structured Bayesian prior for a probabilis-

tic motif representation. Such a model biases the likelihoods of nucleotide strings toward those

corresponding to biologically meaningful motifs rather than trivial patterns recurring in the ge-

nomic sequence, but does so withouta priori committing to any specific consensus sequences. To

our knowledge, this is the first model that enablesde novomotif detection to benefit from prior

knowledge of biologically identified motifs, and classifies motifs based on protein binding mecha-

nisms. To model the locational organization of motifs in the genome,LOGOS also uses a hidden

Markov model (HMM) to encode the syntactic rules of motif dependencies, with model parameters

smoothed under empirical Bayesian priors. Using the graphical model formalism, the aforemen-

tioned model ingredients addressing different aspects of motif properties can be integrated into a

composite joint probabilistic model. The modular architecture ofLOGOS manifests a principled

framework for developing, extending and computing expressive biopolymer sequence models.

The second result is an extension of the finite mixture models to the more flexible paradigm of

countably-infinite mixture models. We present a nonparametric Bayesian model using the Dirichlet

process prior, in the context of SNP haplotype inference for multiple SNPs. The model, which is

referred to asDP-haplotyper, defines a prior distribution over both the centroids and the cardinality

of a mixture model, that is, the identities and the numbers of the possible haplotypes in a population

(rather than setting the number of haplotypes to anad hocfixed constant in extant models). It also

employs a flexible likelihood model for each haplotype (i.e., each mixture component) to model

the relationship between the haplotypes and the genotypes. As a result, DP-haplotyper accommo-

dates growing data collections as well as noisy and/or incomplete observations during experimental

genotyping, and imposes an implicit bias toward a small variety of haplotypes (i.e., a small number

of centroids in the mixture model terminology) which is reminiscent of parsimony methods. This

model outperforms the state-of-the-art haplotyping program, and is very promising as a building

block for expressive models necessary in more complex problems related to SNP analysis.

Finally, the thesis presents a generalized mean field (GMF) theory for variational inference in
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exponential family graphical models (to be defined in the sequel). A GMF method uses a fam-

ily of tractable distributions defined on arbitrary disjoint model decompositions to approximate an

intractable distribution, and solves the optimal approximation using a generic message passage pro-

cedure provably convergent to globally consistent fixed points of marginals and leading to a lower

bound on the likelihood of observed data under the distribution. This framework generalizes several

previous studies on model-specific structured variational approximation, yet specializes a previous

study suggesting non-disjoint model decompositions, and appears to strike the right balance be-

tween quality of approximation and computational complexity. This algorithm has been used as

the main inference engine for motif detection using theLOGOS model. The thesis also shows that

the task of model decomposition, which is a prerequisite for the GMF algorithm, can be automated

and optimized using graph partitioning; it demonstrates the empirical superiority of a minimal cut

over other partition schemes, as well as giving theoretical justifications. This combination of GMF

inference with combinatorial optimization represents an initial foray into the development of a truly

turnkey algorithm for distributed approximate inference with bounded performance.

1.2.3 Importance for Bioinformatics, Computer Science and Statistics

The immediate use of these models and algorithms is in allowing us to develop software for solving

certain long-standing computational genomics problems, specifically, motif detection and haplo-

type inference, under realistic and complex biological contexts, with noisy and incomplete mea-

surements, and in light of empirical prior knowledge as well as theoretical insight from biological

literature.

Biological systems are intrinsically complex and stochastic. In recognition of this, we have

strived to develop large-scale mathematical models using principles of probability theory, graph

theory and information theory to capture and appropriately handle these issues. It is our belief

that the lack of mathematical sophistication in many extant bioinformatics models and programs is

a concession to computational complexity, rather than a reflection of the biological reality of the

systems or mechanisms under study. As a step toward dealing with these realities, this thesis also
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concentrates on exploring computational techniques that can reliably and efficiently solve challeng-

ing large-scale probabilistic models.

Throughout the thesis, the formalism of probabilistic graphical models has been used to con-

struct problem-specific Bayesian models, and guide the implementation of computational algo-

rithms for inference and learning in solving the associated computational biology problem. The

longer term value of this thesis and the most important idea from it, we would hope, is that, in

certain problem domains, one can use probabilistic graphical models from beginning to end as a

general-purpose modeling language to systematically, modularly, and formally build large-scale

models for a complex domain in adivide-and-conquerand bottom-up fashion, avoiding being en-

tangled in the immensely complex and often messy details one has to face in these domains; and

to exploit the availability of general-purpose inference and learning algorithms for graphical mod-

els. As you proceed, the creation of theLOGOS model from theMotifPrototyperandCisModuler

models, and the elaboration ofPedi-haplotyperfrom the basicDP-haplotyperhopefully serve as

motivating examples.

We would particularly like to point out that, when pursuing probabilistic (in particular, Bayesian)

approaches to complicated statistical problems, such as those in the biological domain, it is helpful,

conceptually, to distinguish two separate issues[Stephens and Donnelly, 2003]:

• Themodel (e.g., prior distribution or likelihood function) for the quantities of interest. Exam-

ples (detailed shortly in the technical section) include, special prior models for thepositional

weight matricesof motifs, or for theancestral haplotype templatesof individual haplotypes.

For a given data set, different model assumptions will in general lead to different posterior

distributions and hence to different estimates.

• Thecomputational algorithm used. For challenging problems, including the ones addressed

in this thesis, the posterior distribution cannot be calculated exactly. Instead, computational

methods — such as a variational inference algorithm, or Monte Carlo algorithms — are used

to approximate it. Different computational tricks, or different settings of the “free knobs” in
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the algorithms (e.g., number of iterations, convergence test, etc.), will change the quality of

the approximation to the true posterior.

Not separating these two aspects in the face of a complex problem can be counter-productive. For

example, it is not unusual to see summary sentences or listings like “we compare our algorithm

TIGERwith the extant algorithmsCAT, EM, the Gibbs sampler, and the hidden Markov model ...”,

which is technically confusing and misleading, and strictly speaking, formally inappropriate. It ob-

scures the technical ingredients of each algorithm, and conceals possible distinctions (or very often,

lack of technical distinctions) between different algorithms—be it a model distinction, an algorith-

mic distinction for computation, or a distinction in the implementation. For instance, algorithm

“TIGER” may also employ a Gibbs sampling algorithm for computation, and the “EM” and “Gibbs

sampler” may have adopted the same probabilistic model. This blurring can cause unnecessary

confusion when analyzing different models and possible duplication of previous work, and makes

it difficult for practitioners or end-users to pick the appropriate algorithm for a certain task, and

for developers to identify technical aspects subject to improvement. In this thesis, we intentionally

make explicit these two aspects of computational probabilistic methodology in the exposition of

existing and new models and algorithms.

The main theme of this thesis is the application of statistical machine learning approaches to

computational biology. However, computational biology is not about simple matching between

textbook algorithms and biological datasets. Close interactions between well-designed biological

experiments and elegant yet realistic formulation of the mathematical models, as well as the de-

velopment of efficient algorithms, are all essential to computational biology research. This thesis

attempts to reflect the intimate interactions between biological concepts, mathematical formalisms,

and computational algorithms, via an exposition that starts from highly problem-specific modeling

efforts, followed by generalizations and combinations thereof, and eventually motivates an attempt

to develop a generic computation technique. We believe that progress in the fields of machine learn-

ing and in biological research can be synergistic. Insights gained from theoretical and algorithmic

research in machine learning can bring a new perspective and tools for studying biological objects,
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and can foster new applications. On the other hand, biological research, facing systems of immense

complexity and stochasticity rarely encountered elsewhere, challenges advanced mathematical and

computational techniques for analysis and interpretation, and could lead to new developments that

find broader application in fields outside biology that involve predictive understanding, learning and

reasoning under uncertainty.

1.3 Technical Results of This Thesis

1.3.1 A Modular Parametric Bayesian Model for Transcriptional Regulatory Se-
quences

Most conventional motif models lack a clean formalism for imposing useful controls over where to

search for motifs (hence, all regions are taken as equally likely to harbor motifs) and what substring

patterns are preferred over others as candidate motifs (therefore, all recurring substring patterns are

equally likely to be accepted as functionally meaningful motifs). In Chapter 2, we propose a princi-

pled framework for introducing such controls for motif modeling. The goal is to develop a formal-

ism that is expressive (in terms of being able to capture the internal structures, organizational rules,

and other properties of motifs, and readily incorporating prior knowledge about these properties

from biological literature), yet mathematically and algorithmically transparent and well-structured,

hence simplifying model construction, computation and extension. Based on the product rule of the

joint probability in the graphical model formalism, we outline the formal architecture of a modular

motif model with the following three components: thelocal alignment model, which captures the

intrinsic properties within motifs, including characteristic position weight matrices (PWMs) and

site dependencies; theglobal distribution model, which models the frequencies of different motifs

and the dependencies between motif occurrences in a sequence; and thebackground model, which

defines the distribution of non-motif nucleotide sequences. The model components can be designed

separately, and then fused into a consistent, more expressive joint model.
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1.3.1.1 Profile Bayesian models for motif sequence pattern

It is well known that the DNA-binding domains of gene-regulatory proteins fall into several distinc-

tive classes, such as the zinc-finger class or the helix-turn-helix class. This classification strongly

suggests that different motif patterns with different consensus sequences may share some local

structural regularities intrinsic to a family of different motifs corresponding to a specific class of

DNA-binding proteins.

In Section§2.4, we address the problem of modeling generic features ofstructurally but not

textuallyrelated DNA motifs, that is, motifs whose consensus sequences are entirely different, but

nevertheless share “meta-sequence features” reflecting similarities in the DNA binding domains of

their associated protein recognizers. We present MotifPrototyper, a profile hidden Markov Dirichlet-

multinomial (HMDM) model that is able to capture regularities of thenucleotide-distribution pro-

totypesand thesite-conservation couplingstypical to a particular family of motifs that correspond

to regulatory proteins with similar types of structural signatures in their DNA binding domains.

Central to this framework is the idea of formulating a profile motif model as a family-specific struc-

tured Bayesian prior model for the PWMs of motifs belonging to the family being modeled, thereby

relating these motif patterns at themeta-sequence level.

The HMDM model assumes that positional dependencies within a motif are induced at a higher

level among a finite number of informative Dirichlet priors, rather than directly between the position-

specific distributions (which are generally set to be multinomials) of the nucleotides of the sites

inside a motif. Under this framework, one can explicitly capture meta-sequence features, such

as different conservation patterns of nucleotide distribution (e.g., beinghomogeneousor heteroge-

neous), and the 1st-order Markov dependencies of such patterns between adjacent sites. In general,

the HMDM model can be used to formally encode prior knowledge about the intrinsic structure of a

family of different motifs sharing meta-sequence features, by learning the parameters of the model

from experimentally identified motifs of the family. This can be done by using a stochastic EM al-

gorithm to compute the empirical Bayes estimate of the parameters. The result is a family-specific

Bayesian profile model that implicitly encodes meta-sequence features shared in this family.
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We then show how the family-specific profile HMDMs, or MotifPrototypers, can be used to

classify aligned multiple instances of motifs into different classes each corresponding to a certain

class of DNA-binding proteins; and most importantly, how a mixture model built on top of multiple

profile models can facilitate a Bayesian estimation of the PWM of a novel motif. The Bayesian

estimation approach connects biologically identified motifs in the database to previously unknown

motifs in a statistically consistent way (which is not possible under the single-motif-based repre-

sentations described previously) and turnsde novomotif detection, a task conventionally cast as an

unsupervisedlearning problem, into asemi-unsupervisedlearning problem that makes substantial

use of existing biological knowledge.

A recent paper by Barashet al. proposes several expressive Bayesian network representations

(e.g., tree network, mixture of trees, etc.) for motifs, which are also intended for modeling de-

pendencies between motif sites[Barashet al., 2003]. An important difference between these two

approaches is that, in Barash’s Bayesian network representations, the site-dependencies are modeled

directly at the level of site-specific nucleotide distributions in a “sequence-context dependent” way;

whereas in the HMDM model, the site-dependencies are modeled at the level of theprior distribu-

tions of the site-specific nucleotide-distributions in a “conservation-context dependent” way. Thus,

Barash’s motif models have one-to-one correspondence with particular motif consensus patterns,

and need to be trained on an one-model-per-motif basis. On the other hand, the HMDM model

corresponds to a generic signature structure at the meta-sequence level; it is not meant to commit

to any specific consensus motif sequence, but aims at generalizing across different motifs bearing

similar conservation structures. In terms of the resulting computational task inde novomotif de-

tection, Barash’s model needs to be estimated in anunsupervisedfashion and makes no use of the

biologically identified motifs in the database, whereas the HMDM model helps to turn the model

estimation task into asemi-unsupervisedlearning problem that draws a connection between novel

motifs to be found and the biologically identified motifs via a shared Bayesian prior, so that the pat-

terns to be found are biased toward biologically more plausible motifs. It is interesting to note that
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these two approaches are complementary in that Barash’s models provide a more expressive likeli-

hood model of the motif instances, and the HMDM model can be straightforwardly generalized to

define a prior distribution for these more expressive models (e.g., replacing the Markov chain for

the prototype sequence in the HMDM model with a tree model and/or introducing Dirichlet mixture

priors for the parameters of Barash’s models).

1.3.1.2 Bayesian HMM for motif organization

In complex multi-cellular organisms such as higher eukaryotes, the distribution of motif strings

in the genome often follows a general principle called modular organization. That is, the motifs

that are involved in regulating the expression of a given gene are not distributed uniformly and at

random in the regulatory region of the gene. Instead, they are organized into a series of discrete se-

quence regions calledcis-regulatory modules, each of which controls a distinct aspect of the gene.

Within each module certain combinations of motifs occur with increased frequency; these motifs

are capable of integrating, amplifying, or attenuating multiple regulatory signals via combinatorial

interaction with multiple regulatory proteins. This architecture is somewhat analogous to the gram-

matical rules we use to synthesize natural language from words. A motif detection algorithm that

ignores these syntactic rules often fails to correctly score true signals in a motif-dense region but on

the other hand is sensitive to false positives in the background region.

Taking an approach that has been widely adopted in many language and sequence segmentation

problems, we assume that underlying each sequence of nucleotides is a 1st-order hidden Markov

model, whose realizable state sequences correspond to segmentations of the DNA sequence. For

states corresponding to motif sites, the PWM of the corresponding motif is used to define the emis-

sion probabilities of observed nucleotides. For a non-motif state, it is assumed that probability of

the corresponding nucleotide iskth-order Markovian. What is unique about this specialized HMM

model, which we refer to as CisModuler, is the design of the state space of the hidden variables,

which corresponds to a rich set of possible functional annotations of each position in the transcrip-

tional regulatory sequences; and the state-transition scheme, which encodes the stochastic syntactic
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rules of the CRM organizations of motifs known from the literature. Also somewhat novel is that

this model is trained in a semi-unsupervised fashion, from unlabeled sequences under a Bayesian

prior centered around empirical guesses of state transition probabilities. Thus, soft controls over the

distances between motif instances and motif modules, and over their dependencies, can be imposed

based on empirical knowledge from some reasonable sources (e.g., domain experts, literature, etc.),

and, due to the Bayesian approach, are subject to dominance by (rather than over) the evidence

when the study data is abundant.

1.3.1.3 The LOGOS model

A combination of the MotifPrototyper and CisModuler models, using the product rule of joint prob-

ability in a graphical model, leads to a novel Bayesian model that is significantly more expressive

than any extant motif detection model. It is referred to asLOGOS, for integratedLOcal andGlObal

motif Sequence model.2 In LOGOS, the functional annotations of a DNA sequence that determine

the motif locations and modular structures are determined by a CisModuler HMM model; but the

emission probabilities of the motif states, or the PWMs of the motifs, are assumed to be generated

from the MotifPrototyper model or a mixture of MotifPrototypers, whereby prior knowledge re-

garding both global motif organization and local motif structure is incorporated. As in other recent

motif models, the background model used byLOGOS is a local 3rd-order Markov model. Under

the trained prior models,LOGOS performsde novomotif detection in a semi-unsupervised fashion.

Note thatLOGOS defines a very general framework for modeling gene regulatory sequences,

using a modular graphical model. Each module can be designed separately to model different

aspects of the motif properties and can be updated without overhauling the whole model. The

Bayesian missing data problem associated withLOGOS is a challenging computational problem

that cannot be handled by extant exact inference algorithms. Nevertheless, the modular structure

of theLOGOS model motives a divide-and-conquer approach for approximate inference using the

2Not to be confused with ‘logo,’ a graphic representation of an aligned set of biopolymer sequences first introduced by
Tom Schneider[Schneider and Stephens, 1990] to help in visualizing the consensus and the entropy (or “information”)
patterns of monomer frequencies. Alogo is not a motif finding algorithm, but is often used as a way to present motifs
visually.
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GMF algorithm (described shortly). GMF essentially coupleslocal exact inference computations

for each submodel ofLOGOS using an iterative procedure, and leads to a variational approximation

to the Bayesian estimation. The theoretical and algorithmic issues of variational inference in general

and of GMF in particular are addressed in Chapter 4.

Thanks to the flexibility of assembling a full motif model with different combinations of sub-

models under theLOGOS framework, several variants of theLOGOS model that differ in model

expressiveness (e.g., MotifPrototyper + CisModuler, PWMs + uniform global model, etc.) are con-

structed to examine the performance gain (or loss) due to different model components. There is

strong evidence that improvements introduced in this thesis on both the local aspect (i.e., Motif-

Prototyper over the independent PWMs) and the global aspect (i.e., CisModuler over the uniform

model) of the motif model improve performance. Due to the lack of a sufficient number of well

annotated human regulatory sequences for model evaluation, validations are primarily conducted

on yeast andDrosophilaDNA sequences. It is evident that on both the regulatory sequences of

yeast and those ofDrosophila—whose sizes and complexity are comparable to that of human—the

LOGOS model outperforms the popular MEME and AlignACE algorithms.

1.3.2 A Non-Parametric Bayesian Model for Single Nucleotide Polymorphisms

The problem of inferring haplotypes from genotypes of single nucleotide polymorphisms can be

formulated as a mixture model, where the mixture components correspond to the haplotypes in

the population. The size of the pool of haplotypes is unknown, and biologically, a parsimonious

bias toward a more compact haplotype reconstruction (i.e., a pool with smaller number of distinct

population haplotypes sufficient for explaining the genotypes) is desired. Thus methods for fitting

the genotype mixture must crucially address the problem of estimating a mixture with an unknown

number of mixture components and the parsimony bias. Chapter 3 presents a Bayesian approach

to this problem based on a nonparametric prior known as theDirichlet process[Ferguson, 1973],

which attempts to provide more explicit control over the number of inferred haplotypes than has

been provided by the statistical methods proposed thus far. The resulting inference algorithm has
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commonalities with parsimony-based schemes.

In the setting of finite mixture models, the Dirichlet process—not to be confused with the

Dirichlet distribution—is able to capture uncertainty about the number of mixture components[Es-

cobar and West, 2002]. The basic setup can be explained in terms of an urn model, and a process

that proceeds through data sequentially. Consider an urn which at the outset contains a ball of a

single color. At each step we either draw a ball from the urn, and replace it with two balls of the

same color, or we are given a ball of a new color which we place in the urn, with a parameter

defining the probabilities of these two possibilities. The association of data points to colors defines

a “clustering” of the data. As pointed out byTavare and Ewens[1998], this process is not only a

mathematically convenient model to deal with uncertainty of the cardinality of a mixture model, but

it indeed corresponds to an interesting metaphor of “biological evolution without selection.”

To make the link with Bayesian mixture models, we associate with each color a draw from

the distribution defining the parameters of the mixture components. This process defines aprior

distribution for a mixture model with a random number of components. Multiplying this prior by a

likelihood yields aposterior distribution. In Chapter 5, Markov chain Monte Carlo algorithms are

developed to sample from the posterior distributions associated with Dirichlet process priors.

The usefulness of this framework for the haplotype problem should be clear—using a Dirich-

let process prior we in essence maintain a pool of haplotype candidates that grows as observed

genotypes are processed. The growth is controlled via a parameter in the prior distribution that cor-

responds to the choice of a new color in the urn model, and via the likelihood, which assesses the

match of the new genotype to the available haplotypes. This latter point also manifests an advantage

of the probabilistic formalism in that it is straightforward to elaborate the observation model for the

genotypes to include the possibility of errors. Trading off these errors against the size of the pool of

haplotypes can be gauged in a natural and statistically consistent way. Overall, the Dirichlet process

mixture naturally imposes an implicit bias toward small ancestral pools during inference (reminis-

cent of parsimony methods), and does so in a well-founded statistical framework that permits errors.

We call the this non-parametric Bayesian modelDP-haplotyper.
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The state-of-the-art algorithm for haplotype inference is the algorithm known as “PHASE.”

The performance of DP-haplotyper is equivalent to PHASE on the easier phasing problems that we

study, and improves on PHASE for the hardest problem; also DP-haplotyper requires less compu-

tation time. It also provides an upgrade path to models that permit recombination and incorporate

pedigrees as we outline in section§3.3, and can potentially generalize to linkage analysis and other

population genetics problems. Thus, DP-haplotyper serves as a promising building block for more

expressive models necessary for more complex problems.

1.3.3 The Generalized Mean Field Algorithms for Variational Inference

A critical limitation of using sophisticated probabilistic models for complex problems has been

the time and space complexity of the inference and learning algorithms. For example, to predict

motif locations and estimate motif PWMs under theLOGOS model, one has to manipulate (e.g.,

marginalize) a posterior distribution over the Cartesian product of a continuous state space and a

discrete one, both of very high dimension. Such computations are prohibitively expensive for any

exact algorithms. Although applying Monte Carlo algorithms is possible, efficiency and perfor-

mance concerns motivated us to pursue deterministic approximation methods based on a variational

calculus technique.

In Chapter 4, we present a class of generalized mean field algorithms for approximate inference

in exponential family graphical models. GMF is analogous to cluster variational methods such

as generalized belief propagation (GBP). While those (GBP) methods are based on overlapping

clusters of variables in the model to define local marginals to be approximated and messages to

be exchanged among local marginals, GMF is based on nonoverlapping variable clusters. Unlike

the cluster variational methods, GMF is proved to converge to a globally consistent set of cluster

marginals and a lower bound on the likelihood, while providing much of the flexibility associated

with cluster variational methods.

Given an arbitrary decomposition of the original model into disjoint clusters, the GMF algo-

rithm computes the posterior marginal for each cluster given its own evidence and theexpected
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sufficient statistics, obtained from its neighboring clusters, of the variables in the cluster’s Markov

blanket (to be defined in the sequel) — thence referred to as the Markov blanket messages. The al-

gorithm operates in an iterative, message-passing style until a fixed point is reached. We show that

under very general conditions on the nature of the inter-cluster dependencies, the cluster marginals

retain exactly the intra-cluster dependencies of the original model, which means that the inference

problem within each cluster can be solved independently of the other clusters (given the Markov

blanket messages) by any inference method.

One way to understand the algorithm is to consider a situation in which all the Markov blanket

variables of each cluster are observed. In that case, the joint posterior decomposes:

p(xC1
, . . . ,xCn |xE) =

∏
i

p(xCi
|MB(xCi

),xEi,Ci
),

whereMB(xCi
) denotes the Markov blanket of clusterCi, andxEi,Ci

denotes the evidence node

within clusteri. GMF approximates this situation, using the expected Markov blanket (obtained

from neighboring clusters) instead of an observed Markov blanket and iterating this process to

obtain the best possible “self-consistent” approximation.

In its use of expectations in messages between clusters, GMF resembles the expectation propa-

gation (EP) algorithm[Minka, 2001], but in the basic EP algorithm the messages convey the influ-

ence of only a single variable. In providing a generic variational algorithm that can be applied to a

broad range of models with convergence guarantees, GMF resembles VIBES[Bishopet al., 2003],

whose original version was based on a decomposition into individual variables, and later generalized

to allow more coarse-grained disjoint decompositions similar to what we used for GMF[Bishop and

Winn, 2003]. Thus GMF is a generic algorithm suitable for approximate inference in large, complex

probability models.

Disjoint clusters have another virtue as well, which is explored in the second half of Chapter 4

— they open the door to a role for graph partitioning algorithms in choosing clusters for inference.

We provide a preliminary formal analysis and a thoroughgoing empirical exploration on how to

choose a good partition of the graph automatically using graph partitioning algorithms, so that the
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entire GMF inference algorithm can be implemented in a fully autonomous way, with little or no

human intervention. We present a theorem that relates the weight of the graph cut to the quality of

the bound of GMF approximation, and study random graphs and a variety of settings of parameter

values. We compare several different kinds of partitioning algorithms empirically and the results

turn out to provide rather clear support for a clustering algorithm based on minimal cut, which is

consistent with implications drawn from the formal analysis.

The combination of GMF inference with graph partitioning based on combinatorial optimiza-

tion make it possible to develop truly turnkey algorithms for distributed approximate inference with

bounded performance.

1.4 Thesis Organization

The thesis stands at the intersection of several areas, namely, computer science, statistics, molecular

biology and genetics, and draws heavily on statistical machine learning, Bayesian statistics, opti-

mization theory, graph theory, and various biology-related sub-areas. Nonetheless, the reader is not

assumed to have a thorough background in any of these areas, but a general knowledge of the basic

concepts and techniques (e.g., discrete and continuous probability, EM algorithms, etc.) and I have

made some effort to make the thesis readable to a general audience in machine learning, statistics,

and computational biology.

Chapters 2-5 present the main contributions in this thesis. Chapters 2, 3, and 4 are self-contained

and can be read separately from the rest, whereas Chapter 5 should be read in the context of Chap-

ters 2 and 3. Chapter 2 describes a modular parametric Bayesian model for motif detection in

complex genomes. Chapter 3 presents a non-parametric Bayesian model for inferring the haplo-

types of SNPs in a population. Chapter 4 presents a generalized mean field theory and algorithm

for variational inference in exponential family graphical models (to be defined in the sequel) and its

application to motif detection using the models developed in Chapter 2. Chapter 5 provides Monte

Carlo algorithms for inferring motifs and haplotypes based on models in Chapters 2 and 3.

Those readers most interested in novel motif detection techniques as well as a detailed overview
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of extant methods are advised to read Chapter 2 first and then chapter 4 and section 2 of Chapter

5. Those interested in new models for haplotype inference should start with Chapter 3 and continue

to sections 3-5 of Chapter 5. Those interested in approximate inference theory and algorithms are

advised to read Chapter 4, and then Chapter 2 as an instance of large-scale application.

Chapter 6 summarizes the results of this thesis, draws a few conclusions and presents a set of

open questions and directions for further investigation.

Some of the material in this thesis has appeared before in[Xing et al., 2003a; Xing et al., 2003b;

Xing et al., 2004a; Xing et al., 2004c; Xing et al., 2004b; Xing and Karp, 2004].
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Chapter 2

Modeling Transcriptional Regulatory
Sequences for Motif Detection
— A Parametric Bayesian Approach

Motifs are short recurring string patterns scattered in biopolymer sequences such as DNA and

proteins. The characteristic sequence patterns of motifs and their locations often relate to important

biological functions, such as serving as thecis-elements for gene regulation or as the catalytic sites

for protein activity. The identification of motif sites within biopolymer sequences is an important

task in molecular biology and is essential in advancing our knowledge about biological systems.

It is well known that only a small fraction of the genomic sequences in multi-cellular higher or-

ganisms constitute the protein coding information of the genes (e.g., only 1.5% for human genomes

[Albertset al., 2002]), whereas the rest of the genome, besides playing purely structural roles such

as forming the centromeres and telomeres of the chromosomes, contains a large number of short

DNA motifs that make up the immensely rich codebook of the gene regulation program, known as

the cis-regulatory system[Blackwood and Kadonaga, 1998; Davidson, 2001]. It is believed that

this regulatory program determines the level, location and chronology of gene expression, which

significantly, if not predominantly, contributes to the developmental, morphological and behavioral

diversity of complex organisms[Davidson, 2001].

For proteins, functional specificities are usually realized by the presence of sporadic, but struc-

turally pivotal and/or biochemically reactiveactivity sitesin the amino acid sequences[Lockless
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and Ranganathan, 1999; Li et al., 2003]. Therefore, proteins with very different overall sequences

and structures can fall into common functional categories, such askinaseandmethylase, and bear

common polypeptide motifs (which constitute the activity sites) embedded in diverse sequence and

structural environments. Polypeptide motifs are regarded as signatures of unique biophysical and

biochemical functions. Due to the functional importance of polypeptide motifs to their host pro-

teins, they usually represent regions in protein sequences that resist drift and are prone to stabilizing

selection[Page and Holmes, 1998]. Thus, protein motifs provide important clues to understanding

the function and evolution of proteins and organisms.

Motifs can be identified via “wet lab” biological experiments, such as DNAase protection assay

(for DNA motifs) [Ludwiget al., 2000] and site-specific mutagenesis (for protein motifs)[Haldimann

et al., 1996], which are often very labor-intensive and time-consuming, but arguably most reliable in

the biological sense (although in some cases the truthfulness ofin vitro assays or mutational pertur-

bation results with respect to biological reality is debatable). The best collections of experimentally

identified and verified motifs can be found in the TRANSFAC and the PROSITE databases[Win-

genderet al., 2000; Sigristet al., 2002]. But since experimental motif identification is often very

expensive and tedious, with the rapid accumulation of genomic sequence information from more

and more species, advances in molecular biology call for the development of more cost-effective,

computation-based methods for motif detection directly from the sequence data. In this chapter, we

review previous advances and extant methods in this direction and present a new Bayesian approach

we developed. Some of the material in this chapter has appeared before in[Xing et al., 2003a;

Xing et al., 2004b; Xing and Karp, 2004]. To simplify our exposition, we use DNA motif detection

as a running example, but it should be clear that the models we present are readily applicable to

protein motifs.

2.1 Biological Foundations and Motivations

Transcription, the process of making a single-stranded RNA molecule using one of the two DNA

strands of a gene sequence as a template, is exquisitely but robustly controlled by the interactions
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between the transcription factors that bind thecis-regulatory elements in DNA, the basal transcrip-

tional apparatus, additional co-factors, plus the influences from the chromatin structures (Fig.1.1).

An initial step in the analysis of the function and behavior of any gene is the identification of ge-

nomic regions that might harbor thecis-regulatory elements, and the elucidation of the identities

and organization of these elements.

Figure 2.1: Motif recognition and transcriptional regulation.

DNA motifs can be recognized by specific regulatory proteins, which relay complex regulatory

signals to the basal transcriptional machinery made up of an RNA polymerase and general tran-

scriptional factors via physical interactions, and accordingly turn on/off or fine-tune the expression

of a gene[Ptashne and Gann, 1997] (Fig. 2.1). The specific motif-protein recognition underly-

ing the physical foundation of transcription regulation suggests that there exists a unique structural

complementarity between each motif sequence and the corresponding protein recognizer[Stormo

and Fields, 1998; Stormo, 2000; Benoset al., 2002]. For a simple organism such as a bacterium,

the cis-regulatory systems usually contain a small number of motifs located closely proximal to

the transcription initiation sites of the genes[Albertset al., 2002]. On the other hand, in complex

multi-cellular organisms such as higher eukaryotes, the distribution of motif sites in the genomic

sequences often follows a general principle calledmodular organization[Davidson, 2001]. The

top panel of Fig.2.2 shows a diagram of the regulatory region of theDrosophila even-skipped
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(eve) gene. This gene is involved in establishing the body segmentation duringDrosophilaem-

bryogenesis by expressing itself in different parts of the early embryo, know as thestripes(mid-

dle panel, Fig.2.2), at different times, to determine the developmental fate of the correspond-

ing stripes[Harding et al., 1989; Goto et al., 1989; Stanojevicet al., 1991; Small et al., 1996;

Sackersonet al., 1999; Fujioka et al., 1999]. For example, the first two stripes shown in Fig.2.2

will grow into the head of the animal, and the third one will become a pair of legs[Gilbert, 2003;

Albertset al., 2002]. As shown in this diagram, the motifs that are involved in regulating the expres-

sion of this gene are not distributed uniformly and at random in the regulatory region of the gene.

Instead, they are organized into a series of discrete sequence regions calledcis-regulatory mod-

ules(or CRMs), each of which controls a distinct aspect of the gene’s expression pattern, namely,

when, in which stripe, and in roughly how many copies it is to be transcribed[Davidson, 2001;

Michelson, 2002]. This general architecture applies to most transcriptional regulatory sequences in

complex organisms, but does not apply to simple uni-cellular biological systems[Davidson, 2001].

stripe 3/7 stripe 2 eve transcript stripe 4/6 stripe 1/5

Figure 2.2: TheDrosophilaCRMs and their roles in early embryogenesis.

As mentioned,in silico motif detection is the task of identifying potential motif patterns from

DNA sequences using a pattern recognition program. However, unlike another pattern recognition

problem on DNA sequences — gene finding — which searches for “macroscopic” entities such
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as genes (or more precisely, exons of the genes) in the genome, motif finding focuses on “micro-

scopic” substring patterns embedded in a long stream of noisy background full of false positive

signals. To the best of our knowledge, most of the biologically verified motifs are very short (i.e.,

about6 ∼ 30 monomers), stochastic (i.e., different instances of the same motif usually differ slightly

in sequence content, as detailed shortly in§2.2.1), and poorly structured (i.e., they contain no sub-

structure bearing universal sequence signatures such as the intron-exon junctions for genes). Thus,

a coarse-grained model, such as a generic HMM that captures a universal intron/exon boundary

signature and the overall nucleotide frequencies of coding sequences, as used in the GENESCAN

program[Burge and Karlin, 1997], is infeasible for detecting small and very diverse motif signals.

More specific models for short sequence patterns, which correspond to regulatory proteins that bear

unique functions, are necessary to represent and search for DNA motifs.

What distinguishes a motif sequence from other random patterns in the background? Besides

the fact that a motif has a recurring consensus polynucleotide pattern, numerous studies of the

biophysical mechanisms of DNA-protein binding underlying thecis-transregulatory interactions

reveal that a typical binding protein (e.g., a transcription factor with helix-turn-helix binding motifs

or tandem zinc-fingers) only interacts with a DNA motif through a few highly specific amino acid-

nucleotide interactions, but is tolerant of variations in other sites[Stryer, 1995; Eisen, 2003]. It is

also well known that for higher eukaryotic organisms, motifs usually cluster into CRMs[Davidson,

2001]. Each CRM consists of a locally enriched battery of motifs occurring in a certain combination

and ordering, capable of enhancing or integrating multiple regulatory signals via concurrent physical

interaction with multiple TFs[Bermanet al., 2002]. The spatial organization of CRMs in the

regulatory regions of the genes is also essential for coordinating gene activities. These features are

not directly reflected in the composition or consensus of a sequence pattern, and therefore can be

referred to asmeta-sequence features.

The meta-sequence features of motif structure and motif organization, which are believed to be

crucial in distinguishing biologically meaningful motifs from a random background or trivial re-

curring patterns, have raised significant challenges to conventional motif-finding algorithms, most
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of which rely on models that describe motifs only at their sequence level and use simplifying in-

dependence assumptions that decouple potential associations among sites within each single mo-

tif and among multiple instances of motifs[Bailey and Elkan, 1995a; Bussemakeret al., 2000;

Hugheset al., 2000; Liu et al., 2001; Gupta and Liu, 2003]. Therefore, although there is much

success for motif detection on short, well curated bacterial or yeast gene regulatory sequences using

extant methods, generalization to longer, more complex and weakly characterized input sequences

such as those from higher eukaryotic genomes seems less immediate[Papatsenkoet al., 2002;

Rajewskyet al., 2002]. A recent survey by Eisen[2003] raises concerns over the inability of some

contemporary motif models to incorporate biological knowledge of global motif distribution, motif

structure and motif sequence composition.

2.2 Problem Formulation

2.2.1 Motif Representation

To formulate the motif detection problem, we begin with a brief discussion on how to represent a

motif pattern. The representations of motif patterns largely fall into two categories: deterministic

representations, and stochastic representations.

For concreteness, Fig.2.3 shows an example of a stretch of regulatory DNA sequence that

contains instances of multiple motifs. All the sub-strings highlighted with the same color in this

example correspond to the binding sites that can be recognized by the same TF. The simplest way

to represent a motif pattern corresponding to a TF is to consider each motif as a “word” — a de-

terministic substring pattern. However, as shown in Fig.2.3, the instances of a motif are merely

“similar,” but not identical to each other. Thus some flexibility is needed to accommodate dis-

crepancies among instances of the same motif. Usually, biologists record a motif pattern using

a multiple alignmentof all the instances of a motif (Fig.2.3a). An inspection of the alignment

shown in Fig.2.3a suggests that the word “TTTTTATG” may be a reasonable representation of this

motif because it records the most frequent nucleotide at each column of the alignment (although

nucleotides “T” and “A” draw a tie at the 6th column). A word derived from a multiple alignment
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in this way is called aconsensusof the motif [Stormo, 2000]. In using a consensus sequence to

match additional instances of the motif it represents, some deviations, such ask mismatches with

the consensus (wherek is a small integer compared to the length of the consensus, say,m), are

usually allowed between the instances and the consensus. Aregular expression— in the foregoing

case, “TTTTTXTG”, where “X” means “don’t care” — is another popular deterministic represen-

tation. It can be used to restrict the allowable mismatches to certain positions when matching for

motif instances[Mehldau and Myers, 1993]. There have been several approaches for motif de-

tection directly based on word enumeration[van Heldenet al., 1998; Sinha and Tompa, 2000;

Bussemakeret al., 2000], some of which will be reviewed in the sequel.

(a) (b)

Figure 2.3: A close-up of motif instances and CRMs in aDrosophilasequence.

Alternative to the deterministic representations, due to the stochastic nature of motif patterns,

it is also natural to consider motif instances as samples drawn from a stochastic representation,

which usually corresponds to a generative probabilistic model. For example, a motif can be rep-

resented by aposition weight matrix[Cardon and Stormo, 1992; Hertz and Stormo, 1996], which

records the nucleotide frequencies at each column of the alignment. Pictorially, a motif pattern

can also be represented by asequence logo[Schneider and Stephens, 1990], in which the height
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of each column corresponds to the degree of conservativeness, measured by the entropy of the nu-

cleotide distribution at a column of the motif alignment; the height of each character in a column

relates to the relative frequency of the respective nucleotides in the corresponding position in the

motif (Fig. 2.3b). With a stochastic motif representation, one can rank the “strength” of matches

of candidate motif instances to a given motif representation with a score that bears probabilistic or

information-theoretic interpretation, such as likelihood or log odds[Stormo, 2000]. In this thesis,

we focus on probabilistic representations of motifs and explore models and algorithms for learning

and prediction under such representations.

2.2.2 Computational Tasks forIn Silico Motif Detection

The term “motif detection”, or “motif finding”, has been heavily loaded in the literature, often

with ambiguous meanings in terms of the exact nature of the intended computational task. To

avoid possible confusion in the forthcoming exposition, in the following we make explicit three

distinct, but related, computational tasks underlying a typical motif detection problem, and assign a

technically unambiguous handle to each.

First, given a set of experimentally identified instances of a certain motif (i.e., all the DNA seg-

ments elucidated from a DNAase-protection assay for a specific DNA-binding regulatory protein),

we call the task of extracting a motif representation, or a motif model, from such a set,motif train-

ing. In machine learning terminology, motif training can be understood as asupervised learning

problem, and the aforementioned set of instances of the motif is called atraining set. As elaborated

in the sequel, depending on the choice of motif representation, different approaches can be used for

motif training, which typically begins with a multiple alignment of all the instances in the training

set, followed by specific procedures to learn the representations, such as a regular expression, a

consensus, or a probabilistic model, from the resulting alignment. In particular, when a motif patten

is represented as a probabilistic model (e.g., the local models in the sequel), motif training boils

down toparameter estimationof the probabilistic model.

Second, given a model or a representation of a known motif, the task of searching for the
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presence of the sites of this motif in an unannotated set of sequences via computational means is

calledmotif scan. Frequently, generalization to simultaneousmultiple-motif scanis needed. In

many combinatorial motif detection algorithms, motif scan is typically formulated as a “k-m string

matching” problem, that is, finding all substrings of lengthm (i.e.,m-mers, wherem is the length of

the given motif pattern) that has at mostk mismatches with the motif pattern. Accordingly, the motif

patterns to be scanned for are represented by their respective consensus sequences. From a machine

learning point of view, in the simplest case, motif scan can be formulated as a standardclassification

problem for all substrings in the sequences according to a deterministic or probabilistic motif model.

Under a more sophisticated formulation, in which the contextual information and the dependencies

among instances are to be considered, an explicit locational distribution model of motifs (e.g., the

global model in the sequel) can be used, and motif scan can be cast as the problem ofprobabilistic

inferencefor latent random variables in the model that indicate the locations of the motifs.

Finally, given only a set of unannotated sequences potentially containing previously unchar-

acterized motifs (i.e., motifs whose representations are not known), the task of learning the repre-

sentations of these unknown motifs and at the same time locating all the instances of these motifs

in the study sequences is referred to asde novomotif detection. Under a combinatorial setting,

which typically adopts a deterministic representation of a motif pattern,de novomotif detection

often amounts to finding all over-representedm-mers from the sequences, wherem is the length of

the anticipated motifs. Some parameters are needed to qualify a match (e.g., thek in the aforemen-

tionedk-m score) and to determine how many over-represented patterns are to be accepted (e.g.,

a cutoff value for the minimal number of matches)[Papatsenkoet al., 2002]. Under a probabilis-

tic framework, which will be studied in detail in this thesis, one can viewde novomotif detection

as a coupledmissing value inferenceandparameter estimationproblem, often formulated as an

unsupervised learningproblem[Bailey and Elkan, 1995a].

As we will elaborate shortly, besides avoiding possible ambiguities about what one means by

“motif detection”, the foregoing clarification of the computational tasks underlying the motif detec-

tion problem also bodes well for the logic of amodular formulation of thein silico motif detection
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problem, and adivide-and-conquerstrategy to solve such problems. Just as a quick overview, it is

not difficult to realize that the models (and the algorithms) formotif trainingandmotif scan, respec-

tively, can be viewed as submodels (and subroutines) of the more difficultde novomotif detection

problem in that, computationally,de novomotif detection often amounts to an iterative procedure

(modulo some technical issues regarding how to jump start the iteration, whether it will ever con-

verge, etc.) that alternates between: 1) scanning for instances of a motif using a newly-trained motif

model, and, 2) training an updated motif model using the newly-scanned set of motif instances.

Hence, the full model and the algorithm forde novomotif detection is in essence a combination of

the two models underlying motif scan and motif training, respectively. This modular logic indeed

underlies the two main families of algorithms currently in use forde novomotif detection under

various model settings, namely, expectation-maximization (EM) (e.g.,[Lawrence and Reilly, 1990;

Bailey and Elkan, 1995a]) and Monte Carlo (MC) (e.g.[Lawrenceet al., 1993; Liu et al., 2001]) al-

gorithms. In the sequel, we will adopt this logic to analyze several extant motif models and present

new models and algorithms for motif detection.

2.2.3 General Setting and Notation

Now we introduce the necessary notation for the formal presentation. We denote a regulatory DNA

sequence by a character stringy = (y1, . . . , yT ) ∈ NT , whereN = {A,T,C,G} denotes the set of

all possible nucleotides (nt) that make up a DNA sequence (for proteins, this set can be redefined

as the set of all possible amino acids). An indicator stringx signals the locations of the motif

occurrences (the range ofx dependents on its specific definition and the model, see later sections

for details). Following biological convention, we denote themulti-alignmentof M instances of a

motif of lengthL by anM × L matrix A, in which eachcolumncorresponds to apositionor site

in the motif. The multi-alignment of all instances of motifk specified by the indicator stringx in

sequencey is denoted byA(k)(x, y). We define acounting matrixh(A(k)) (or h(k)(x, y)) for each

motif alignment, where each columnhl = [hl,1, . . . , hl,4]t is an integer vector with four elements

(the superscriptt denotes vector or matrix transpose), specifying the number of occurrences of
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each nucleotide at positionl of the motif. (Similarly we define thecounting vectorhbg for the

background sequencey −A, where the somewhat abusive use of the minus sign means excluding

all motif sub-sequences inA from y.) We assume that the nucleotides at positionl of motif k

admit aposition-specific multinomial distribution(PSMD),θ(k)

l =[θ(k)

l,1 , . . . , θ
(k)

l,4 ]t. The ordered set

of position-specific multinomial parameters of all positions of motifk, θ(k) = [θ(k)

1 , . . . , θ(k)

L(k) ], is

referred to as aposition weight matrix. It is clear that the counting matrixh(k) corresponds to the

sufficient statisticsfor estimating the PWMθ(k). Formally, the problem of motif training is that of

estimatingθ(k) given the multiple alignmentA(k), for eachk; the problem of motif scan is that of

inferring x(n) given a sequencey(n) andθ(k), ∀n, k; and the problem ofde novomotif detection is

that of inferringx={x(1), . . . , x(N)} and estimatingθ={θ(1), . . . , θ(K)} simultaneously, given a set

of sequencesy={y(1), . . . , y(N)}. For simplicity, we omit the superscriptk (motif type index) of

the variableθ and the superscriptn (sequence index) of the variablesx andy wherever it is clear

from the context that we are focusing on a generic motif type or a generic sequence.

2.2.4 The LOGOS Framework: a Modular Formulation

Without loss of generality, assume that the locations of motifs in a DNA sequence, as indicated by

x, are governed by aglobal distribution model p(x|Θg,Mg), and for each type of motif, the nu-

cleotide sequence of all its instances (collected in an alignment matrix) jointly admits alocal align-

ment modelp(A(x, y)|x,Θl,Ml). Further assume that the background non-motif sequences are

modeled by a conditional model,p(y−A(y, x)|x,Θbg,Mbg), where the background nt-distribution

parametersΘbg are usually assumed to be estimateda priori from the entire sequence. The symbols

Θ[·] andM[·] stand for the parameters (e.g., the PWMs) and model classes (e.g., a product multi-

nomial model as described in the sequel) in the respective submodels. Thus, marginalizing over all

possible values of the indicator sequencex, the likelihood of a regulatory sequencey is:

p(y|Θ,M) =
∑

x

p(x|Θg,Mg)p(y|x,Θl,Ml,Θbg,Mbg)

=
∑

x

p(x|Θg,Mg)p(A|x,Θl,Ml)p(y−A|x,Θbg,Mbg), (2.1)
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whereA , A(x, y). Note thatΘl here is not necessarily equivalent to the PWMs,θ, of the motifs,

but is a generic symbol for the parameters of a more general model of the aligned motif instances.

(E.g., in the HMDM model to be defined shortly,Θl refers to the hyperparameters that describe a

distribution of PWMs.)

Equation (2.1) makes explicit the modular structure of the probabilistic framework for generic

motif models. The submodelp(x|Θg,Mg) captures properties such as the frequencies of different

motifs, the dependencies between motif occurrences, and the global organization of motif instances.

On the other hand, the submodelp(A|x,Θl,Ml) captures the intrinsic properties within motifs that

can help to improve sensitivity and specificity to genuine motif patterns. Depending on the value

of the latent indicatorxt (e.g., motif or not) at each positiont, yt follows different probabilistic

distributions, such as a specific nucleotide distribution of a particular position inside a motif or a

background distribution. This probabilistic architecture is namedLOGOS, for integratedLOcal

andGlObal motifSequence model.

As equation (2.1) suggests, the specific submodels inLOGOS can be designed separately, and

they are roughly aligned with our specification of the actual computational tasks underlying the

motif detection problem. The local model alone suffices to solve the motif training task, the global

model plus a given set of motif representations suffices to answer the motif scan problem, and their

combination represents thede novomotif detection problem. Recall that the graphical model for-

malism facilitates a modular combination of heterogeneous submodels, using the property of the

product rule of the joint distribution.LOGOS is an instance of such a modeling strategy, and es-

sentially facilitates a bottom-up approach for solving the complexde novomotif detection problem,

by starting from relatively simpler subproblems. This strategy clearly exposes the main technical

issues involved in the motif detection problem, which helps in analyzing existing algorithms and

understanding their merits and limitations. It also enables one to design more sophisticated models

in a piecewise manner to address different aspects of the problem without being overburdened by

the complexity of the overall problem, and to envisage a straightforward path toward solving even

more complex problems, such as joint modeling of motifs and gene expression patterns, by using
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existing or designing new models for each problem (now viewed as subproblems) separately, and

integrating them under the joint graphical model formalism.

2.3 An Overview of Related Work

In the following, we briefly review some representative models for motif detection in the literature.

We will describe these models from theLOGOS point of view, by making explicit the background,

local and global components of the model, even though almost none of the models were originally

constructed and described in such a way, so that the pros and cons of these models can be clearly

understood and compared.

2.3.1 Background Models

2.3.1.1 The models

It is generally assumed that the sequences outside the motifs have diverged sufficiently to be mod-

eled as random background. Thus a simple but very popular model for all the non-motif nucleotides

in the the background sequence is aniid multinomial model:

p(y −A|x,Θbg) =
∏
t∈B

∏
i∈N

[
θbg

]I(yt,i) =
∏
i∈N

[
θbg

]hbg,i , (2.2)

whereB is the set of indices of the background positions, andθbg denotes the vector of multinomial

parameters of the background model, which is usually directly computed as the overall nucleotide

frequency distributions of the entire input sequence, assuming that motif instances are sparse in the

sequence and thus would not bias the estimated frequencies[Bailey and Elkan, 1995a; Hugheset

al., 2000; Liu et al., 2001]. (This assumption is somewhat unwarranted in some early literature in

which the input sequences are usually assumed to be sets of100 ∼ 200-mers, each containing, say,

one motif, which suggests a quite significant10% motif coverage! e.g.,[Cardon and Stormo, 1992;

Lawrenceet al., 1993])

Several recent papers have stressed the importance of using a richer background model for the

non-motif sequences[Thijs et al., 2001; Liu et al., 2001; Huanget al., 2004]. In particular, a number
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of higher-order Markov models have been explored by various authors and reportedly contribute to

notable improvements in the performance of motif scan andde novomotif detection. Under a global

kth-order Markov model for non-motif nucleotide sequences, the conditional probability of a single

nucleotidej at sitet is contingent on thek preceding bases following the usual Markov dependency

definition

p(Yt = i|Xt = bg) = p(Yt = i|yt−1, . . . , yt−k) = fi(yt−1, . . . , yt−k).

Thus the probabilities of all the background can be computed by enumerating all(k + 1)-tuples

of nucleotides in the entire sequencey (note that these probabilities need to be computed only

once, and then stored for repeated references during probabilistic inference). The total time for this

operation isO(T ), whereT is the total length of the input sequences. One can also use a local

kth-order Markov model, in which the conditional probability of a nucleotidei at positiont, f t
i (·),

is estimated from a local window centered at positiont.

2.3.1.2 The use of background models

As detailed in the sequel, one family of motif scan algorithms seek to score candidate sequence

segments for their similarity to a known motif pattern. The background model plays an important

role in formulating a good scoring function. For example, the standardlikelihood ratio score for

candidate segmentyt,t+L−1 at positionst to t+ L− 1 is computed as follows

rt =
p(yt,t+L−1|Θl,Ml)
p(yt,t+L−1|Θbg,Mbg)

. (2.3)

A variant of the likelihood ratio score is thelog oddsscore

lt = log rt = log p(yt,t+L−1|Θl,Ml)− log p(yt,t+L−1|Θbg,Mbg). (2.4)

From these two scoring schemes, it is apparent that, even though the motif model, which defines

the probability of a motif segment, is the most important component in these scoring functions, a

good background model will help to improve the contrast of motif to background, and therefore the

discriminating power ofrt or lt at each position.
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Note that while probabilities are used in constructing the scoring functions, the scores them-

selves (e.g., likelihood ratio, log odds) cannot be interpreted statistically. Usually, they will be

compared against anad hoccutoff value to generate computational motif predictions, and choosing

the score cutoff values for each motif and background model is generally difficult. This may have

contributed to the large number of false positive predictions seen in practice. To assess the signifi-

cance for a set of predicted motif instances,Liu et al.[1995] developed a rank test that compares the

prediction results from the study data with those from control data generated by a random shuffle

of the study data. They applied a Wilcoxon signed rank test to the predictions made from paired

(concatenated) study and control data, and obtain ap value of the prediction from the study data

under the rationale that, under the null hypothesis, the motifs are equally likely to be solicited from

either the study or the control sequences.Huanget al. [2004] proposed ap-value based scoring

scheme, which computes the probability that the null (i.e., background) model can achieve a stan-

dard log-likelihood score for a candidate sequence segment at least as high as that of a signal (i.e.,

motif) model defined by PWMs. They developed an exact algorithm based on probability generating

functions to compute thep-value for a generalkth-order Markov background model with respect

to motif models represented by PWMs. The CREME program bySharanet al. [2003] proposed

a number of closed-form statistical scores for assessing the significance of single motif abundance

or abundance of a motif cluster (multiple spatially-close motifs) out of a subregion of a study se-

quence over that of the background sequences. Note that “abundance” (i.e., the number of motif

matches), rather than the score of the matches, is tested for significance in the CREME program, and

it was demonstrated to be a competent method to scan for CRMs in higher eukaryotic transcription

regulatory sequences.

Generally, depending on the choice of grammatical models for global sequence annotation, the

background model can be plugged in as a conditional model for the background state and contribute

to various scoring functions for motif detection. For example, it can be used as an emission model

under a background state in the case of a HMM global model (see§2.5 for details). Rather than

contributing anr or l score, in these cases, the background model will contribute indirectly to the
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posterior probability distribution of the indicator sequencex.

2.3.2 Local Models — for the Consensus and Stochasticity of Motif Sites

A local alignment model attempts to captures the consensus and the accompanied stochasticity of

the set of binding sites (i.e., motif instances) corresponding to a certain TF.

2.3.2.1 Product multinomial model

The position weight matrix introduced in§2.2.3 is the most commonly used representation for a

motif pattern in extant motif detection algorithms[Bailey and Elkan, 1995a; Hugheset al., 2000;

Liu et al., 2001; Frith et al., 2001; Liu et al., 2002; Gupta and Liu, 2003]. Statistically, a PWM can

be used to define aproduct multinomial(PM) model for every observed instance of a motif[Liu

et al., 1995]. Formally, given the PWM,θ = [θ1, θ2, . . . , θL], of a motif, the probability of an

observed instance of this motif, which corresponds to a row in the motif alignment matrixA, say,

Am = [Am,1, Am,2,, . . . , Am,L], is

p(Am|Θl) =
L∏

l=1

∏
i∈N

[
θl,i

]I(Am,l,i). (2.5)

For an alignment ofM motif instances,A = {Am}M
m=1, the joint probability of all motif

instances inA is

p(A|Θl) =
M∏

m=1

p(Am|Θl) =
L∏

l=1

∏
i∈N

[
θl,i

]hl,i . (2.6)

Recall thath ≡ {hl,i} is thenucleotide count matrixassociated with alignmentA, thus,hl,i =∑
m I(Am,l, i).

The PM model inherently assumes that the nt-contents of positions within the motif are inde-

pendent of each other. Thus, a PWM only models independent statistical variations with respect to

a consensus pattern of a motif, but ignores potential couplings between positions inside the motif

— a limitation that often weakens its ability to discern genuine instances of a motif from a very

complex background that may harbor random recurring patterns, due to the low signal/noise ratios

reflected in the likelihood-based scores computed from the PM model.
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Given a set of aligned instances of a certain motif (i.e., atraining alignment), under the PM

model, the PWM of this motif can be obtained via maximal likelihood estimation (MLE), which is

equivalent to computing the nt-frequency at each motif position. If the training alignment contains

only a small number of motif instances, MLE tends to lead to a non-robust model (i.e., with a

high variance associated with the estimates of the model parameters), which tends to generalize

poorly to unseen instances of the same motif. For example, if a particular nucleotide does not

appear at a certain position among all the instances in the training alignment, possibly just because

the alignment is too small to be sufficiently representative, then every candidate instance from a

new dataset that bears this nucleotide at this position (but is otherwise highly consistent with the

motif consensus,) will be assigned a zero probability. This artifact is calledoverfittingin statistical

learning, and should be avoided when learning from a small training dataset. In the motif modeling

literature, the most popular remedy is to add to the actual count matrixh a uniformpseudo-count

matrix (i.e., all elements of the matrix are equal)[Lawrenceet al., 1993; Bailey and Elkan, 1994],

which can be regarded as the nt-count from an imaginary set of “motif instances”. The column sum

of the pseudo-count matrix, typically set to 1, can be understood as the total number of “imaginary

motif instances” from which the “count” is obtained. The larger this number is, the more difficult

to override the pseudo-counts with the actual counts from the training data.

Mathematically, incorporating uniform pseudo-counts into the MLE of a PWM is equivalent to

introducing a symmetric Dirichlet prior (AppendixA.1) for the values of each column of the PWM,

and the resulting motif model is also called aproduct Dirichlet (PD) model[Bailey and Elkan,

1995b; Liu et al., 1995]. Note that pseudo-counts or PD models are primarily used for smoothing,

rather than for explicitly incorporating prior knowledge about motifs, and the parameters are chosen

ad hoc.

2.3.2.2 Constrained PM models

Although there are some obvious limitations of PWMs, they have proved to be reasonably effective

in describing the set of sequences bound by a given TF and have shown considerable predictive
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power [Stormo, 2000]. However, in an unsupervisedde novomotif finding scenario where the

PWMs have to be estimatedab initio, the estimated PWMs under the PM model, or even with

pseudo-counts or symmetric Dirichlet priors, are sensitive to noise and random or trivial recurrent

patterns (e.g., poly-N or repetitions of shortk-mers such as CpG islands). Furthermore, the PM

model is unable to capture potential position dependencies inside the motifs.

Various pattern-driven approaches have been developed to handle motifs with specific motif

patterns. For example, in the early Lawrence and Reilly paper[1990], the authors introduced con-

straints on the parameters of the PWM to enforce palindromicity. Frechet al.’s method[1993]

proposed to originate the PWMs from a highly conserved consensus core and then extend the core

in one or both directions. Some of the recent methods providead hocways of allowing motifs to

have two conserved blocks separated by a few background sites, such as splitting a “two-block”

motif into two coupled sub-motifs[Liu et al., 2001; Bailey and Elkan, 1995a]. The fragmentation

model ofLiu et al. [1995] allows an arbitraryL < W positions in an aligned segment of widthW

to constitute the conserved motif sites.

Note that in addition to the nt-frequencies represented by the matrix elements, PWMs can also

provide theinformation content profile[Schneideret al., 1986] of the corresponding motif. The

information content (IC) at a positionl in a motif is given by

Il = log2 |N|+
∑
i∈N

log2 θl,i, (2.7)

and can be thought as a measure of how conserved positionl is.

Keleset al. [2003] noted that the PWMs describing motifs with very different nt-specificities

can have similar information profiles, and speculated that there is a direct relationship between the

structural footprint of a TF and the information content profile of the corresponding motif. They

developed a method that explicitly enforces nt-biases, e.g., high versus low information contents at

various positions, when computing the MLE of the PWM from samples. They have proposed several

canonical information content patterns, such as the one with aU-shapedcontour, or abell-shaped

contour, to be plausible constraints forde novomotif detection, and have developed a sequential
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quadratic programing method to solve the constrained optimization problem. A constrained EM

algorithm was developed by Kechriset al.[2004] to incorporate similar IC constrains for estimating

motif PWMs.

The IC-constraint approach represents a significant advance in learning local motif models be-

cause it takes into consideration the commonalities shared among motifs of different TFs (with dif-

ferent nt-specificities), and reveals something intrinsic to biologically genuine motifs. However, it

defines a hard constraint that must be respected no matter how many actual motif instances are used

to estimate the PWM, and cannot be overridden when the IC of an abundant novel motif deviates

from the predetermined constraints.

2.3.2.3 Motif Bayesian networks

A recent article by Barashet al. [2003] proposed a family of more sophisticated representations

to capture richer characteristics of motifs. These representations are based on directed probabilis-

tic graphical models, i.e., Bayesian networks. Barashet al. suggested that a mixture of product

multinomial models (MPM),

pMPM (A|Θl) =
∑

j

wjpPM (A|θ(j)), (2.8)

wherewj is theweightof thejth mixture component andθ(j) is the PM parameter of thejth mixture

component, can capture potential multi-modalities of the biophysical mechanism underlying the

protein-DNA interaction between a TF and its target motif sites. Under the MPM model, a motif

is characterized by multiple PWMs, each corresponding to a component PM model. Barashet

al. further proposed a tree-based Bayesian network capable of capturing pairwise dependencies

of nucleotide contents between nonadjacent positions within the motif. A natural combination of

the above two models leads to a more expressive model, a mixture of trees, which captures more

complex dependency characteristics of motifs. In a series of experiments with simulated and real

data, Barashet al. showed that these more expressive motif models lead to better likelihood scores

for motifs, and can improve the sensitivity and specificity of motif detection in yeast regulatory

sequences under a simple scenario of motif occurrence (i.e., at most one motif per sequence).
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In principle, it is possible to construct even more expressive models for motifs by systematically

exploiting the power of graphical models, although fitting more complex models reliably demands

more training data. Thus, striking the right balance between expressiveness and complexity remains

an open research problem in motif modeling.

2.3.3 Global Models — for the Genomic Distributions of Motif Sites

The local model of a motif pattern only creates aligned multiple instances of a motif, but does

not complete the generation of the observed sequence set, even with the addition of the background

model. It is necessary to have a set of “rules” that define where and how instances of one or multiple

motifs are embedded in the background sequence so that they can constitute a sort of “language”

or “program” interpretable by the TFs in a liquid solution environment, and in a TF composition

and concentration sensitive manner. In theLOGOS framework, these “rules” are encoded in the

global distribution model for the indicator variable sequencex that can specify the locations and

organization of all motif instances.

2.3.3.1 Theoopsand zoopsmodel

The probabilistic model forde novomotif detection developed by Lawrence and Reilly in their

seminal 1990 paper[Lawrence and Reilly, 1990] assumes that each of theN input DNA sequences

contains exactly one binding site of the same TF. This assumption is an idealization of a scenario in

which a set of “co-regulated” genes are analyzed, and the co-regulation is induced by a single TF

that can bind to a unique motif site present in the regulatory region of each of the regulated genes.

Accordingly, this model is called a “one motif per sequence” (oops) model. Although hardly a

realistic model, the oops model has historical importance (and is still in use in many contemporary

programs) in that it provides a clean abstraction that helps in understanding the motif detection

problem and points out a direction for formulating and upgrading the global model. Formally, let

y(n) = {y(n)

t }Tn
t=1, y(n)

t ∈ N, denote the data of thenth sequence with lengthTn; and letX(n) ∈

{1, . . . , Tn − L+ 1} denote the latentaddressvariable of a motif with lengthL in sequencen (the

address of the motif is defined as the position of the most proximal nucleotide in the motif instance,
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w.r.t. the end of the study sequence). The oops model assumes that the location of the (only) motif

in each sequence admits a uniform distribution over all possible positions in the sequence. That is,

p(X(n) = t) =
1

Tn − L+ 1
. (2.9)

Givenx(n), the oops model assumes that nucleotides at positions not corresponding to the mo-

tif, hence falling into the background, are independently and identically distributed; whereas the

nucleotides of all positions within a motif instance jointly follow a local motif model (e.g., a PM

model as in[Lawrence and Reilly, 1990]). Motif instances in different input sequences are assumed

to be independent and identically distributed. Thus, given the PWMθ of the motif andθbg for the

background, and denoting the nt-count vector of the entire sequencey(n) by h(n), the joint proba-

bility distribution of the observed sequencey(n) and the latent addressesx(n) of the motif therein

is:

p(X(n) = t, y(n)|Θ = {θ, θbg}) = p(X(n) = t)p(y(n)|X(n) = t,Θ = {θ, θbg})

=
1

Tn − L+ 1

L−1∏
l=0

∏
j∈N

[
θl,j

]I(y(n)
t+l,j) ·

∏
j∈N

[
θbg,j

]h(n)
bg,j ,

=
1

Tn − L+ 1

L−1∏
l=0

∏
j∈N

[ θl,j

θbg,j

]I(y(n)
t+l,j) ·

∏
j∈N

[
θbg,j

]h(n)
j ,(2.10)

which leads to the following posterior distribution of the latent variableX(n):

p(X(n) = t|y(n),Θ) =

∏L−1
l=0

∏
j∈N

[
θl,j/θbg,j

]I(y(n)
t+l,j)∑T−L+1

t′=1

∏L−1
l=0

∏
j∈N

[
θl,j/θbg,j

]I(y(n)

t′+l
,j)
. (2.11)

Thus, the probability of positiont being a motif start address is proportional to the likelihood ratio

of a sub-sequence of lengthL started att being a motif sequence with respect to its probability of

being a background sequence, which is exactly the likelihood ratio score we described in§2.3.1.

A simple extension of the oops model is thezoopsmodel, for “zero or one motif per sequence”,

adopted by Bailey and Elkan[1994] in their precursor of the MEME algorithm. As the name

suggests, this model is slightly more flexible than oops. For each sequence, zoops introduces an

indicator variableZn ∈ {0, 1}, which indicates the presence (Zn = 1) or absence (Zn = 0) of
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a motif instance in sequencen. The prior distribution ofZn can be defined as a simple Bernoulli

distribution,Zn ∼ Ber(α, 1 − α), and the indicator is independent and identically distributed for

each sequence. Under this setting, the conditional likelihood of the observed sequence is

p(y(n)|X(n) = t, Zn = 1,Θ = {θ, θ0}) =
1

Tn − L+ 1

L−1∏
l=0

∏
j∈N

[ θl,j

θ0,j

]I(y(n)
t+l,j) ·

∏
j∈N

[
θ0,j

]h(n)
j ,

p(y(n)|Zn = 0,Θ = {θ, θ0}) =
∏
j∈N

[
θ0,j

]h(n)
j . (2.12)

Thus the probability of having a motif at positiont of sequencen is regularized by the prior

probability of motif presence,

p(X(n) = t, Zn = 1|y(n),Θ) =
p(y(n)|X(n) = t, Zn = 1,Θ)p(X(n) = t)p(Zn = 1)

p(y(n)|Θ)

=

∏L−1
l=0

∏
j∈N

[
θl,j/θ0,j

]I(y(n)
t+l,j)∑T−L+1

t′=1

∏L−1
l=0

∏
j∈N

[
θl,j/θ0,j

]I(y(n)

t′+l
,j) + (1−α)(Tn−L+1)

α

.

(2.13)

2.3.3.2 General uniform and independent models

Essentially, both the oops and zoops models areuniform (over all possible positions in a study

sequence) andindependent(between motif instances and between study sequences) global models,

or in short, UI models, which are intended for simple and idealized motif-bearing sequences. It

is straightforward to generalize the baseline UI model to handle slightly more complex scenarios,

such as multiple motifs per sequence. For example, rather than allowing at most one motif per

sequence, some motif detection algorithms assume that a fixed number of motif instances can be

present independently with uniform probability at all possible locations in a sequence[Bailey and

Elkan, 1995a]. That is, the joint distribution of the addresses of, say,M motif instances in a study

sequencen, x(n) = {x(n)

1 , . . . , x(n)

M }, can be written asp(x(n)) =
∏

M

m=1
p(x(n)

m ), wherep(x(n)
m =t)

is the prior probability of themth motif instance at locationt in sequencen, in this case, a uniform

distribution over all validt’s and the same for allm = 1, . . . ,M . It can be shown that the marginal

posterior probability of any one of the addresses under this setting,p(x(n)
m |y(n),Θ), is proportional
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to the likelihood ratio score of each sequence position (i.e., Eq. (2.11)), and the joint posterior of

all addresses is the product of the posterior probabilities of individual addresses,p(x(n)|y(n),Θ) =∏
m p(x(n)

m |y(n),Θ). This model is called anM motifs per sequencemodel (mops), and is used in

various contemporary algorithms, such as MEME. A drawback of this approach is the requirement

of a prespecified number of motif instances. An inaccurately supplied number will lead to either

significant false positives, or false negatives, or both. Also problematic is that the mops model

ignores possible constraints on co-occurrences of motifs.

A slightly more sophisticated model for multiple motif locations per sequence is aniid Bernoulli

indicator model[Liu et al., 1995], which assumes that each host sequencey is associated with

a binary indicator sequence,x = (x1, . . . , xT ), xt ∈ {0, 1}, where0 signals background and1

signals a motif starting at positiont; eachXt is an independent Bernoulli random variable,xt ∼

Ber(α); and the Bernoulli parameter[α, 1 − α] follows a Beta prior. This model is essentially a

clustering model for all possibleL-mers of the sequences, allowing anyL-mer to be either a motif

or background.

Under both the mops and Bernoulli indicator models, there is no formalmodel constraintto pre-

vent having overlapping motif instances. Although overlapping motifs are possible in real genomic

sequences, the possibility of overloading every sequence position with multiple motif instances is

not desirable. Therefore, in practice, both models are augmented heuristically with an artificialnon-

overlapping constraint, which requires that noL-mer is allowed to harbor, say, more thanl motif

start positions, where1 < l ≤ L. This constraint is enforced by either rescaling the joint posterior

p(x|y) (as in an EM-based inference strategy for MEME[Bailey and Elkan, 1995a]), or simply

throwing away any overlapping motif samples (when using a Gibbs-sampling-based inference strat-

egy [Liu et al., 1995]). Nevertheless, these heuristics may result in inconsistencies between the

computed motif distribution and the one defined by the model, and incur a sizable overhead due to

wasteful computations.

Despite their simplicity and some unwarranted heuristic assumptions, UI models appear to be

competent in motif scan andde novomotif detection for bacterial or simple yeast sequence sets, in
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which the input sequences are usually short and enriched (e.g., pre-screened according to mRNA

co-expression). But some recent studies including our own experiments suggest that the correctness

of motif detection based on the UI assumptions starts to break down for less well pre-screened input

sequences or for those with clustered motif occurrences, such as theDrosophilagene regulatory

sequences[Bermanet al., 2002]. Higher eukaryotic genomes indeed present a challenge to the

computational identification of motifs because of their long non-coding regions and large number

of repeat elements.

2.3.3.3 The dictionary model

Bussemakeret al. proposed a novel formulation of the motif-finding problem, which is based on

word segmentation and dictionary construction[Bussemakeret al., 2000]. In their MobyDick algo-

rithm, they view the regulatory DNA sequences as sentences written in an unknown language built

from an alphabet of 4 characters (i.e.,N = {A, T,G,C} as defined previously), with no separators

between words. (In fact, some major human languages, such as Chinese and Japanese, are of this

kind, although using a much larger alphabet, e.g.,> 104, for Chinese.) Under this framework,

the motif-finding problem can be cast as finding over-represented words from consecutive lists of

characters, and the algorithm boils down to an iterative procedure alternating between building up a

dictionary of words and estimating the values of parameters of a language model from a given word

segmentation (e.g., word frequencies), and finding the optimum segmentation of the sequence given

the dictionary and the language model. From theLOGOS point of view, the noise-less “words”

in the motif dictionary represent a deterministic local model of the motifs. Consequently, a de-

generate motif pattern could be represented by several similar words during the construction of the

dictionary, which can be merged into a consensus afterward. The “language model” adopted by the

MobyDick algorithm consists of an array of word-usage probabilities and an assemblage scheme

(analogous to a “grammar” of word usage in natural language) of the sequences, which manifests

a novel global model for motif distribution, and largely contributes to the strength of the Moby-

Dick algorithm. This language model assumes that each word is associated with a frequency of its
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usage, and a sequence is realized by a non-overlapping concatenation of words sampled according

to their frequency (which implicitly assumes that the background model corresponds to a large set

of short words with low frequencies). The conditional probability of a sequence given a possible

segmentation specified by indicator sequencex under this setting is

p(y|x) =
1
Z

∏
k

ρ
nk(x)
k , (2.14)

whereρk denotes the frequency of wordk, nk(x) denotes the counts of wordk in y under segmen-

tationx, andZ is a normalization constant (i.e., the partition function).

Some key advantages of this global model are its emphasis on combinatorial analysis of a large

set of potential motifs (up to all possible substring patterns ofk-mers allowable by the computing

resource), and an explicit non-overlapping constraint on individual substrings induced by the word

segmentation. Since the number of segmentations of an average-sized sequence could be huge,

computing the partition functionZ of Eq. (2.14) and various derivatives ofZ is non-trivial, and a

dynamic programming algorithm is developed.

To account for the sequence variations of each motif pattern, in a recent paper,Gupta and

Liu [2003] extended the MobyDick model to a stochastic dictionary (SD) model by replacing the

words in the dictionary with PWMs. From aLOGOS point of view, this corresponds to upgrading

the local model of MobyDick from deterministic words to PM. Letx denote a word-segmentation

of sequence sety, H = {h(1), . . . , h(D)} denote the set of nt-count matrices for all the words (with

PWMs{θ(k)}D
k=1) due to segmentationx, andN = {n1, . . . , nD} denote the counts of word oc-

currences. The complete data likelihood given all PWMsθ and the word usage probabilitiesρ

is:

p(N ,H, x|θ, ρ) ∝
D∏

k=1

ρnk
k

Lk∏
l=1

4∏
j=1

[θ(k)

l,j ]h
(k)
l,j . (2.15)

Essentially, SD adopts a specific distribution model for motif instances which treats the ob-

served sequences as being generated by concatenating words independently drawn from a dictio-

nary according to a vector of word usage probabilities, while retaining the PM model for aligned

52



2.3 An Overview of Related Work

motif instances. This is equivalent to upgrading the UI model to a finite mixture model with mixture

components being all the PWMs in the dictionary weighted by the word usage probabilities. Due

to this nice connection to the conventional motif models, many of the modeling ideas originally

introduced to the conventional models were readily adaptable to the SD model, such as smoothing

the model with conjugate priors for the PWM and word usage probabilities, and an extension al-

lowing stochastic insertions and deletions in motif instances (to model gaped motifs.) Since in the

model SD, the motif indicatorX is defined as a segmentation variable, with a huge state space that

prohibits exact inference, inference and parameter estimation are performed using a Monte Carlo

procedure.

2.3.3.4 The sliding-window approaches

The uniform and independent models and the word-segmentation models described above treat all

regions in a sequence equally, ignoring potential coupling of multiple motif instances in any sub-

regions of the sequence. However, as discussed in the introduction, in higher eukaryotic genomes,

motifs are often organized intocis-regulatory modules, in which the motif occurrences tend to be

significantly enriched compared to the background region, and encode some complex combinatorial

signals. This architecture implies that during motif scan, locally clustered weak motif signals may

need to be treated with higher weights because they may suggest co-occurring weak binding sites in

a CRM; whereas an occasional seemingly strong signal out of a long stretch of sequence with low

score may need to be weighted lower because it may be just a spurious signal in the background.

The sliding-window method is one of the most popular approaches for motif and CRM predic-

tion that tries to incorporate the aforementioned architectural features of motif distribution[Halfon

et al., 2002; Papatsenkoet al., 2002; Rajewskyet al., 2002; Nazina and Papatsenko, 2004]. Typ-

ically, a sliding-window method counts the number of matches of some minimal strength to given

motif patterns within a certain window of DNA sequences using certain scoring functions, such as a

likelihood ratio (when the motifs are represented by PWMs[Sharanet al., 2003]) or thek-m score
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(when the motifs are represented by deterministic words)[Papatsenkoet al., 2002]. From a mod-

eling point of view, this family of algorithms assumes that motifs are uniformly and independently

distributed only within each window. Anad hocwindow size needs to be specified and careful

statistical analysis of matching strength is required to determine a good cutoff or scoring scheme.

The CREME algorithm[Sharanet al., 2003] uses a comparative genomic approach to identify

the putative CRM regions (thus avoiding the need to specify the window size), and a number of

sophisticated scoring functions were proposed to measure the statistical significance of local en-

richment of candidate motif matches in these regions.

Nazina and Papatsenko[2004] addressed the issue of compensating the matching scores for

co-occurring weak motif sites using an updatable “word-frequency” measure, which leads to higher

scores for motifs occurring more frequently within a window of a given size. This approach is anal-

ogous to a MobyDick model applied to each window. A sliding-window version of the stochastic

dictionary model was used by Rajewskyet al. in their Ahab/Argos program[Rajewskyet al., 2002].

2.3.3.5 The hidden Markov model

Another way to handle sequences bearing rich motif content and architecture is to explicitly model

the organizations of the motifs using a stochastic sequential model that encodes “rules” to generate

such motif organizations. For example, the program Cister[Frith et al., 2001] assumes that the

indicator sequence of a study sequence,x, admits a 1st-order Markov model,

p(x) = p(x1)
T∏

t=2

p(xt|xt−1), (2.16)

whose state space consists of background states and motif states. The occurrences of motifs and

CRMs are induced by an emission model,p(yt|xt), which generates state-specific nucleotide out-

puts belonging to a motif or the background. Note that the stochastic rules of the motif organization,

such as how often a CRM appears, how long a CRM tends to be, and how often motifs appear in a

CRM, are encoded in the state-transition probabilities of these indicator variables. Since the indica-

torsx are not observed, this is a classical hidden Markov model with discrete output.
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An HMM for motif scan renders both the window size and the score cutoff unnecessary, and

takes into account not only the strengths of motif matches, but also the spatial distances between

matches (arguably more informative than co-occurrences within a window). The hidden Markov

model used in Cister translates to a set of soft specifications of the expected CRM length and the

inter-motif distance (i.e., in terms of geometric distributions). However, since training data for fitting

the HMM parameters hardly exists, these parameters have to be determined based on empirical

guesses.

2.3.4 Other Models

The local and global models discussed in the previous sections concern pure DNA sequence data,

and implicitly assume that the sequences to be analyzed come from a single species. With the avail-

ability of near complete sequences of several complex genomes, such as human andDrosophila,

and the anticipation of sequencing more evolutionarily related species in near future, comparative

genomic analysis of sequences from multiple evolutionarily related species has become a promis-

ing direction forin silico motif detection[Pennacchio and Rubin, 2001; Rubin, 2001; Wasserman

and Sandelin, 2004]. The emergence of high-throughput gene expression or protein-binding pro-

filing techniques, such as microarray analysis[Shalonet al., 1996] and ChIP-array analysis[Ren

et al., 2000], provides another source of information to decode the transcription regulatory pro-

gram. In particular, joint analysis of regulatory sequences together with the expression patterns of

the genes regulated by these sequences appears to be a practical approach for motif detection, and

is potentially more informative than methods solely based on sequence data[Segalet al., 2003b;

Wasserman and Sandelin, 2004]. A detailed discussion of motif detection models along these two

directions is beyond the scope of this thesis. In the following, we briefly overview major research

along these lines, and we point out their connection to theLOGOS framework and how an integra-

tion can be pursued.
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2.3.4.1 Comparative genomic approach

Under the assumption that mutations within functional regions of the genome will accumulate

more slowly than mutations in regions without sequence-specific functions, the comparison of se-

quences from orthologous genes and their associated regulatory regions can indicate segments that

might direct transcription. For the prediction of motifs and CRMs, a major family of algorithms

motivated by comparative genomic analysis is phylogenetic footprinting[Blanchetteet al., 2002;

Ureta-Vidalet al., 2003]. A phylogenetic footprinting algorithm usually consists of three compo-

nents: 1) defining suitable orthologous gene sequences for comparison, 2) aligning the promoter

sequences of orthologous genes, and, 3) identifying segments of significant conservation. For each

component, there exist a wide variety of methods/programs, whose details are beyond the scope

of this thesis. To name a few, to generate a multiple alignment of regularity regions of ortholo-

gous genes, BLASTZ[Schwartzet al., 2003] and LAGAN [Brudnoet al., 2003] are often used

because they tend to find a proper balance between preserving short stretches of highly conserved

regions and finding long but marginally conserved regions; to interpret the aligned data, one can use

a VISTA [Lootset al., 2002] browser to plot the amount of nt-identity across the aligned sequences

from multiple species within a sliding window, or use a dynamic programming algorithm to find an

optimal segmentation of homogeneous and heterogeneous regions from the alignment[Xing et al.,

2001].

Kellis et al. [2003] developed a suite of techniques that work together for whole genome mo-

tif detection on the basis of within-genome over-representativeness and cross-genome evolutionary

conservation of motif patterns. In their approach, they adopt a regular expression representation for

a motif pattern, and begin with exhaustive enumeration of all over-represented regular expressions

in all the genomes under their study to generate a long list of candidate core motifs referred to as

“partial words.” Then they iteratively prune this list based on three evolutionarily-motivated crite-

ria drawn from an empirical study of the conservation patterns of thegal4 motifs in multiple yeast

species: 1) overall genome-wide intergenic conservation, 2) preference for intergenic (i.e. between
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gene sequences) conservation over genic (i.e., within a gene) conservation, 3) differential conserva-

tion in upstream-only vs. downstream-only regions. Finally they extend the qualified core regular

expressions to include neighboring positions, collapsing degenerate regular expressions based on

sequence similarity and genome-wide co-occurrence. They reported a remarkable analysis of the

Saccharomyces cerevisiaegenome in light of draft sequences of three related yeast species, in which

they confirmed numerous well characterized motifs and identified several previously unknown mo-

tifs. It is noteworthy that Kellis’s approach does not attempt to pursue formal modeling of the

motif properties under an evolutionary context, such as a stochastic motif model for intra-species

variation, evolutionary model for inter-species variations, global distribution model for motif or-

ganization, etc.. Their approach also heavily relies on high-quality gene finding results, and the

assumption that even for each instance of a motif, one can expect an one-to-one correspondence

of its presence across species (i.e., several particular instances of a motif, one in each species, are

evolved from the same ancestor, whereas other instances of the same motif in a species have their

own counterparts in other species), and that this correspondence can be revealed in a multiple align-

ment of the whole genomes (which implicitly assumes that, certain, but not arbitrary instances of

a motif across species are “orthologous”, and multiple “paralogous” instances of the same motif

in each particular species are order-preserving across species so that they can be aligned to their

respective orthologous counterparts in other species in a single multiple alignment). This is a rather

strong assumption, which may not hold for higher eukaryotic genomes.

In summary, extant phylogenetic footprinting and other comparative genomics approaches are

restricted to short regulatory sequences from very closely related species, or genomes of simple

organisms in which high-quality gene identification is possible and the regulation involves simple

motif organization. For evolutionarily distant species and large complex genomes, not only are the

non-coding regions hard to identify and align, but also the assumption that the aligned non-coding

sequences are orthologous is often not substantiated for small and degenerate functional elements

such as motifs and CRMs. Formal modeling of motifs under an evolutionary context is still an

open and little addressed problem, and could lead to important methodological advances in motif

57



2.3 An Overview of Related Work

detection.

2.3.4.2 Joint models for motifs and expression profiles

A direct consequence of combinatorial interactions between TFs and their corresponding motifs is

the highly regulated and coordinated transcription of the genes under their control. It is reasonable

to expect that the expression profile of genes in a certain genome must bear some information

useful for predicting the presence and the identity of regulatory motifs. Indeed, this idea was used

even when motif detection models and algorithms were still in their infancy, although in a rather

primitive fashion. For example, many algorithms assume that co-expression of a set of genes implies

their co-regulation, and furthermore, implies co-existence of instances of the same motif in their

respective regulatory regions[Cardon and Stormo, 1992; Heldenet al., 2000]. Unfortunately, this

assumption may not hold true for genes under complex control mechanisms. Among the more

sophisticated and explicit applications of expression profiles, especially high throughput data from

mRNA microarrays, for inferring motif patterns are the “regression-based methods,” which try to

capture some of the interactions among motifs (e.g., their cumulative effects), and relate them to

gene expression levels via a deterministic function. For example, Bussemakeret al. [2001] used a

linear regression model to capture correlations between the abundances of regulatory elements and

gene expression. It is straightforward to generalize this method to a logistic regression model that

captures non-linear response (i.e., binary “on” and “off” response) between gene expression and

motif presence. Keleset al. [2004] proposed a more expressive logic regression function to capture

complex interactions, such as logical OR, between motifs. Segalet al. [2003a; 2003b] went beyond

merely fitting deterministic mapping functions between motif spectrum and gene expression, and

proposed to jointly model probabilistic distributions of gene expressions recorded in time series

or other experimental conditions, together with the locations and stochastic variations of motifs,

using a large-scale probabilistic graphical model. Segal’s approach spearheads an emerging trend of

using the systems biology principle in computational analysis of biological data, that is, combining

correlated data from heterogeneous sources for complex prediction tasks. A recent publication went
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as far as combining gene expressions, motif-bearing sequences and sequences from evolutionarily

related species under a unified computational protocol[Chianget al., 2003]. However, although

some extant models and algorithms have reached an unprecedented level of complexity in terms

of the size and diversity of objects being modeled, the level of sophistication and the biological

foundation of the models for different aspects of the heterogeneous biological data are far from

satisfactory and lack systematic verification. For example, in almost all cases, the simple PM model

and UI model were used to model the local and global aspects of motifs. More investigations

are needed to make full and appropriate use of the systems biology approach forin silico motif

detection.

2.3.5 Summary: Understanding Motif Detection Algorithms

The design of motif detection algorithms can be understood as a quest for realistic and well-founded

mathematical models that capture the biological nature of the structure, organization and function

of TF binding sites in the genome; for efficient computational algorithms that solve such models;

and for data fusion strategies that integrate diverse sources of experimental data and produce consis-

tent and both biologically and mathematically interpretable hypotheses and predictions. Different

algorithms can differ in only one of these three aspects (e.g., using different techniques, such as EM

or Monte Carlo methods, for probabilistic inference), or more aspects. To understand the essential

differences between different motif detection algorithms, it is important to analyze these algorithms

with respect to the aforementioned three aspects and identify their merits and deficiencies in these

aspects, so that improvement can be made systematically and purposefully. In this section, we at-

tempted to provide an overview of a wide range ofmodeling strategiescurrently in use, which is, to

our opinion, the most important aspect that determines the capacity of a motif detection algorithm.

In Table2.1, we briefly summarize representative motif detection algorithms and/or software pack-

ages in the literature in terms of their model specificities, as well as the computational algorithm

and data fusion strategies.
As Table2.1 makes clear, many early methods lack any mechanism for incorporating knowl-

edges about meta-sequence features of the motifs at both the local and global level. Recent studies
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Table 2.1: A summary of popular motif detection software/algorithms
Software/ Al-
gorithm

local model global model data fusion inference al-
gorithm

task ref.

MEME PM/PD UI (mops) - EM de novo [Bailey and Elkan, 1995a]
BioProspector PM/PD UI (mops) - Gibbs de novo [Liu et al., 2001]
AlignACE PM UI (Bernouli

indicator)
- Gibbs de novo [Hugheset al., 2000]

MobyDick word word con-
catenation

- DP de novo [Bussemakeret al., 2000].

SD PM word con-
catenation

- Gibbs de novo [Gupta and Liu, 2003]

Cister PM HMM - Forward-
Backward

scan [Frith et al., 2001]

CREME word/PWM window - various tests scan [Sharanet al., 2003]
Ahab/Argos word/PWM window - exhaustive

search
scan/de novo [Rajewskyet al., 2002]

PRM PM UI sequence +
microarray

BP de novo [Segalet al., 2003a; Segal
et al., 2003b]

FootPrinter word UI sequence
of multiple
species

Phylogenetic
Footprinting

de novo [Blanchette and Tompa,
2003; Blanchette et al.,
2002]

have tried to address these problems from several different angles. Though these attempts head in the

direction of more expressive motif models, it is not clear whether these ideas can be integrated to as-

semble a powerful yet transparent and computationally efficient motif detection algorithm. There is

a trend of combining heterogeneous source of data and constructing composite models for such data

from simple building blocks. It is argued that the correlations and internal dependencies between

different sources of data could serve to validate each other, and lead to more reliable predictions.

However, it is also possible that, due to the lack of sophistication of each component submodel

for different aspects of a complex model, and the difficulties of performing exact inference com-

putations on such models, errors resulting from approximate inference or from deficiencies of each

submodel may tend to propagate rather cancel. Thus, large composite models built from a plethora

of heterogeneous components may generate highly unreliable predictions if the biological legiti-

macy, computational tractability and quality of approximate computation of the model components

are unwarranted.

In summary, numerous advances notwithstanding, successful results ofin silico motif discovery

remain limited to simple bacterial and yeast sequences. Performance on sequences with complex

intra- or inter motif structures are far less robust. One of the possible causes for compromised
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generalizability and scalability of many extant algorithms is believed to be their incorrect inde-

pendence assumptions about motif sites and motif occurrences, which leads to inability to cap-

ture possible intra-motif spatial dependencies corresponding to the signature physical structure for

unique recognition and stable molecular interaction, and inter-motif dependencies that elicit syn-

ergy or simply avoid overlap. As mentioned in the introduction, there have been some recent at-

tempts at addressing these issues at various levels[Hertz and Stormo, 1999; Heldenet al., 2000;

Frith et al., 2001; GuhaThakurta and Stormo, 2001; Rajewskyet al., 2002; Barashet al., 2003;

Nazina and Papatsenko, 2004]. In the following, we will develop an expressive modular motif

model that builds on these previous lines of research.

2.4 MotifPrototyper: Modeling Canonical Meta-Sequence Features
Shared in a Motif Family

For the gene regulatory system to work properly, a TF must display much higher binding affinities to

its own recognition sites than to non-site DNA. This correspondence suggests possible regularities

in the DNA motif structure that match the structural signatures in the DNA-binding domains of their

corresponding TFs. Can these regularities hidden in the true DNA motif patterns be exploited to

improve sensitivity and specificity during motif discovery? As Michael Eisen has pointed out (pri-

vate communications), there should be great potential for improving motif recognition by modeling

and exploiting such structural regularities.

As reviewed in the previous sections, all extant local models of DNA motifs are essentially

motif-specific and are intended to generalize only to different instances of the same motif. An im-

portant issue that remains little addressed is how to build models that can generalize over different

motifs that are somewhat related (for instance, belonging to a family of regulatory sites that are

targets of TFs bearing the same class of binding domains) even though they do not share appar-

ent commonality in consensus sequences. This issue is important in computational motif analysis

because,

• often, we want to roughly predict the biological property of anin silico identified motif pattern
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(e.g., to what kind of TFs it is likely to bind) to reduce the search space of experimental

verification;

• we may need to introduce some generic but biologically meaningful bias duringde novomotif

detection so that we can distinguish a biologically plausible binding site (i.e., specifically

recognizable by some TF) from a trivial recurring pattern (e.g., micro-satellites);

• we may also want to restrict attention to a particular class of proteins in performing tasks

such as: “find a regulatory site that potentially binds to type X TF”, or “find co-occurring

regulatory sites that can be recognized by type X and type Y TFs, respectively.”

These tasks are important in inferring gene regulatory networks from genomic sequences, possibly

in conjunction with relevant expression information.

In this section, we address the problem of modeling generic features ofstructurally but not

textuallyrelated DNA motifs, that is, motifs whose consensus sequences are entirely different, but

nevertheless share “meta-sequence features” reflecting similarities in the DNA binding domains of

their associated protein recognizers. We present MotifPrototyper, a profile hidden Markov Dirichlet-

multinomial (HMDM) model which can capture regularities ofnt-distribution prototypesandsite-

conservation couplingstypical to each particular family of motifs that corresponds to TFs with

similar types of structural signatures in their DNA binding domains. Central to this framework is

the idea of formulating a profile motif model as a family-specific structured Bayesian prior model

for the PWMs of motifs belonging to the family being modeled, thereby relating these motif patterns

at themeta-sequence level. In the following, after a brief discussion of the biological motivation

underlying our model, we will first develop the theoretical framework of the HMDM model, and

then show how to learn family-specific profile HMDMs, or MotifPrototypers, from biologically

identified motifs categorized in standard biological databases; how the model can be used as a

classifier for aligned multiple instances of motifs; and most importantly, how a mixture model

built on top of multiple profile models can facilitate Bayesian estimation of the PWM of a novel

motif. The Bayesian estimation approach connects biologically identified motifs in the database
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to previously unknown motifs in a statistically consistent way (which is not possible under the

single-motif-based representations described previously) and turnsde novomotif detection, a task

conventionally cast as anunsupervisedlearning problem, into asemi-unsupervisedlearning problem

that makes substantial use of existing biological knowledge.

2.4.1 Categorization of Motifs Based on Biological Classification of DNA Binding
Proteins

TF categorization from TRANSFAC r6.0
Superclass class # of training matrices # of test

alignments
1.1 : Leucine zipper factors (bZIP) 34
1.2 : Helix-loop-helix factors (bHLH) 13
1.3 : Helix-loop-helix/leucine zipper factors 22
1.4 : NF-1 6
1.5 : RF-X 1

1:
Basic domains

1.6 : bHSH 6

82 48

2.1 : Cys4 zinc finger or nuclear receptor type 14
2.2 : diverse Cys4 zinc fingers 13
2.3 : Cys2His2 zinc domain 21
2.4 : Cys5 cycteine-zinc cluster 3

2:
Zinc-coordinating
DNA-binding
domains

2.5 : Zinc fingers of alternating composition 1

52 36

3.1 : Homeo domain 41
3.2 : Paired box 6
3.3 : Fork head / winged helix 4
3.4 : Heat shock factors 7
3.5 : Tryptophan clusters 17

3:
Helix-turn-helix

3.6 : TEA domain 1

76 64

4.1 : RHR (Rel homology region) 15
4.2 : STAT 13
4.3 : p53 2
4.4 : MADs box 9
4.5 : β-Barrelα-helix TFs 1
4.6 : TATA-biding proteins 3
4.7 : HMG 5
4.8 : Heteromeric CCAAT factors 9
4.9 : Grainyhead 2
4.10: Cold-shock domain factors 0

4:
beta-scaffold fac-
tors

4.11: Runt 1

60 13

0: Other TFs . . . . . . 1

Table 2.2: The TRANSFAC categorization of transcription factors (for the training set, the counts are made on TFs that
have more than 10 biologically identified binding sites; for the test set, TFs with at least 6 sites are counted.)

Unlike proteins or genes, which usually have a one-to-one correspondence to monomer se-

quences and hence are directly comparable based on sequence similarity, a DNA motif is a collective

object referring to a set of similar short DNA substrings that can be recognized by a specific protein

transcription factor. Different motifs are characterized by differences in consensus, stochasticity
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and number of occurrences. Since each motif usually corresponds to a profile of gap-less, multiple-

aligned instances rather than a single sequence as for genes and proteins, comparisons based on

sequence similarity for different motif patterns are not as straightforward as for genes or proteins.

From a biological point of view, perhaps the most informative way of categorizing DNA motifs

is according to the regularities of the DNA-binding domains of their corresponding transcription

factors. Advances in structural biology have provided an extensive categorization of the biophysical

structures of DNA-binding proteins. The most recent update of the TRANSFAC database[Wingen-

deret al., 2000] lists 4219 entries, many of which are homologous proteins from different species

but are nevertheless indicative of the vast number of transcription factors now known that regulate

gene expression. Table2.2 shows a fraction (the top two levels in the cluster hierarchy) of the

TRANSFAC categorization of TFs. This categorization provides a good indication of the types of

binding mechanisms involved in motif-TF recognition. For concreteness, the following is a brief

summary of the structural regularities of four of the major classes of DNA-binding proteins, para-

phrasing[Stryer, 1995]. Due to the correspondence between a TF and a DNA motif, the TF catego-

rization strongly suggests possible features in the structure of motif sequences that are intrinsic to a

family of motifs corresponding to a specific class of TFs.

Theleucine zippersignature (Figure2.4a) under the superclass of basic-domain is an important

feature of many eukaryotic regulatory proteins. The hallmark of leucine zipper proteins is the

presence of leucine at every 7th position in a stretch of 35 residues. This regularity suggests the

presence of a zipper-likeα-helical coiled coil bringing together a pair of DNA-binding modules to

bind two adjacent DNA sequences. Leucine zippers can couple identical or nonidentical chains,

suggesting a homodimeric or heterodimeric signature in the recognition site. A variation of this

structural theme often seen in prokaryotic transcription factors is thehelix-loop-helixsignature. In

this case, the basic DNA-binding helices are connected into a dimer by a short loop.

The zinc finger domain (Figure2.4b) is also common in eukaryotic TFs and regulates gene

expression by binding to extended DNA sequences. A zinc finger grips a specific region of DNA,

binds to the major groove of DNA and wraps part of the way around the double helix. Each finger
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(a) leucine zipper (b) zinc fingers

(c) helix−turn−helix (d) beta scaffold

Figure 2.4: DNA binding domains in TFs.

makes contact with a short stretch of the DNA, and residues from the amino-terminal part of the

α-helix form hydrogen bonds with the exposed bases in the major groove. Zinc-finger DNA binding

proteins are highly versatile and can have various numbers of zinc fingers in the binding domain.

Arrays of zinc fingers are well suited for combinatorial recognition of DNA sequences.

The helix-turn-helix domain (Figure2.4c) contains twoα-helices separated by 34̊A - the pitch

of a DNA double helix. Molecular modeling studies showed that these two helices would fit into

two successive major grooves. This domain, common in bacterial DNA-binding proteins, such

as the bacteriophageλ Cro protein, also occurs in the eukaryotic homeobox proteins controlling

development in insects and vertebrates.

The beta-scaffold factors (Figure2.4d) are somewhat unusual in that they bind to the minor

groove of DNA. The binding domain is globular rather than elongated, suggesting extensive contact

between the DNA sequence and the protein binding domain.
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Figure 2.5: Conservation-coupling of a zinc-finger motifgal4 and a helix-loop-helix motifpho4. Since typical
conservation-couplings are often reflected in the “contour shape” (e.g.,U- or bell-shape) of the motif logo (a graph-
ical display of thespatial pattern of information content over all sites), we can understand this property as a “shape
bias”.

These class-specific protein-binding mechanisms suggest the existence of features that are char-

acteristic of different families of DNA motifs, and shared by different motifs in the same family.

It is evident that the positions within the motifs are not necessarily uniformly conserved, nor are

the conserved positions randomly distributed. Since only a subset of the positions inside the motif

are directly involved in protein binding, the degree of conservation of positions inside the motif is

likely to be spatially dependent, and such dependencies may be typical for each motif family cor-

responding to a TF class due to structural complementarity between motifs and the corresponding

TFs. It is also possible that due to different degrees of variability-tolerance for different TF classes,

each family of motifs may require a different selection of prototypes for the distributions of possible

nucleotides at the positions within the motifs. Note that such regularities are less likely to be pre-

served in a non-functional recurring pattern, thus they also provide important clues to distinguishing

genuine from false motif patterns duringde novomotif finding. Figure2.5provides two examples

for the so-calledconservation-couplingproperty of the position dependencies in functional motifs.

On the left-hand side are two genuine motifs from two different families. On the right are artifi-

cial patterns resulting from a column permutation of the original motifs. Although the two patterns

will receive the same likelihood score under conventional PWM representations, clearly the pat-

terns on the left are biologically more plausible because of the complementarity of their patterns of

conserved positions to the structures of their binding proteins. Again, it is important to remember

that the conservation-coupling property and nt-distribution prototypes are only associated with the

generic biophysical properties of a motif family, butnot with any specific consensus sequence of a

single motif; thus, they are calledmeta-sequence features.
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2.4.2 HMDM: a Bayesian Profile Model for Motif Families

The goal is to build a statistical model to capture the generic properties of a motif family so that it

can generalize to novel motifs belonging to the same family. In the following we develop such a

model using a hierarchical Bayesian approach.

The column of nucleotides at each position in a motif can be modeled by aposition specific

multinomial distribution(PSMD). A multinomial distribution overK symbols can be viewed a

point in a regular(K − 1)-dimensional simplex; the probabilities of the symbols are the distances

from the point to the faces of the simplex (an example of a 2-dimensional simplex is shown in

Figure2.6a). A Dirichlet distribution is a particular type of distribution over the simplex, hence a

distribution over the multinomial distributions. Each specific Dirichlet is characterized by a vector

of K parameters. It can impose a bias toward a particular type of PSMD in terms of how strongly

it is conserved, and to what nucleotide it is conserved. For example, in Figure2.6a, the center of

probability mass is near the center of the simplex, meaning that the multinomial distributions that

define a near uniform probability for all possible nucleotides will have a higher prior probability.

But for a Dirichlet density whose center of mass is close to a corner associated with a particular

nucleotide, say, “A” (Figure2.6b), the multinomial distributions with high frequencies for “A” have

high prior probabilities. Therefore, we can regard a Dirichlet distribution as a “prototype” for the

PSMDs of motifs.

(a) (b)

Figure 2.6: Dirichlet densities over a three-nucleotide simplex.

We propose a generative model that generates a multi-alignmentA containingM instances of a

motif of lengthL, in the following way (as illustrated in Figure2.7). 1) Sample a sequence of states
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s = (s1, . . . , sL) from a first-order Markov chain with initial distributionυ and transition matrix

Υ. The states in this sequence can be viewed as prototype indicators for the columns (positions)

of the motif. Associated with each state, is a corresponding Dirichlet distribution specified by the

value of the state. For example, ifsl = i, then columnl is associated with a Dirichlet distribution

αi = [αi,1, . . . , αi,4]t. 2) For eachl ∈ {1, . . . , L}, sample a multinomial distributionθl according

to p(θ|αsl
), the probability defined by the Dirichlet componentαsl

. 3) Generate all the nucleotides

in columnl iid according to the multinomial distribution parametrized byθl.

I
s s

θ θ θ

1 2 L

1 2 L

...

...

s

Am,1

MMM

Am,2 Am,L

profile HMDP

α

{ }υ,Υ

Figure 2.7: The graphical model representation of a MotifPrototyper. Empty circles represent random variables associated
with a single motif and the boxes are plates representingiid replicates (i.e.,M observed instances of the motif). Black
arrows denote dependencies between the variables. Parameters of the MotifPrototyper are represented by the center-
dotted circles, and the round-cornered box over theα parameter denotesI sets of Dirichlet parameters. The round-
cornered dashed box denotes plate of parameters of a single HMDM model, and hence represent a possible mixture of
HMDMs.

Thus, the complete likelihood of a motif alignmentAM×L characterized by a nucleotide-count

matrixh is:

p(A, s, θ|α, υ,Υ) = p(A|θ)p(θ|s, α)p(s|υ,Υ). (2.17)

where (using the update properties of the Dirichlet distribution and lettingsi
l = 1 if sl is at statei

and 0 otherwise)

p(h|x, θ)p(θ|s, α) =
L∏

l=1

I∏
i=1

Dir(αi + hl)si
l , (2.18)

p(s|υ,Υ) =
I∏

i=1

[υi]s
i
1

L−1∏
l=1

I∏
i,j=1

[Υi,j ]s
i
ls

j
l+1 . (2.19)
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Technically, such a model, which is named aMotifPrototyper, is ahidden Markov Dirichlet-

multinomial model. It defines a structured prior for the PWM of a motif.

With the availability of a categorization for motifs, each family of motifs can be associated with

a family-specific profile HMDM model that imposes PSMD prototypes and positional-dependencies

unique to this family.

What do we gain from a MotifPrototyper? First, a MotifPrototyper introduces prior information

about the joint distribution of the nt-distribution in different positions of a motif of the corresponding

family, and gives high probabilities to those commonly found distributions possibly compatible

with the degree of variability-tolerance intrinsic to the class of TFs corresponding to the motif

family. Under a MotifPrototyper,a posteriori, each PSMD in a motif follows a family-specific

mixture of multiple Dirichlet distributions, which blends the different prototypes that might dictate

the nt-distribution at that position. Furthermore, a MotifPrototyper stochastically imposes family-

specific spatial dependencies for different columns within a motif. As Figure2.7 makes clear, a

MotifPrototyper isnot a simple HMM for sequence data. In an HMM model the transitions would

be between the emission models (i.e., multinomials) themselves, and the output at each step would

be a single monomer in the sequence. In MotifPrototyper, the transitions are between different prior

components for the emission models, and the direct output of this HMM is the parameter vector of

a generative model, which will be sampled multiple times at each position to generateiid instances.

This approach is especially useful when we have prior knowledge about motif properties, such as

conservation-couplingor other positional dependencies. In contract to the IC profile used in the

constrained PM model, due to the stochastic nature of a probabilistic model, MotifPrototyper will

in general not be rigidly confined to any particular motif shape (unless we explicitly forbid certain

transitions in the transition matrixΥ of the hidden Markov chain). These properties relieve our

motif model from the restricted, often brittle constraints needed in other models, such as exactly

what shape to look for, the widths of the conserved and unserved patches in a motif, the length of

the whole motif1, etc., and as a result provide desirable flexibility and robustness under practical

1In an HMDM model, the length of the motif pattern to be modeled does not have to be rigorously defined but only
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motif detection environment.

Secondly, rather than using a maximum likelihood (ML) approach to estimate the PWM, which

considers only the relative frequency of nucleotides but is indifferent to the actual number of in-

stances observed, MotifPrototyper facilitates a Bayesian estimation of the PWM under a family-

specific prior, thus taking into consideration the actual number of observations available for PWM

estimation along with the biological prior. It is possible with only a few instances to obtain a robust

estimation of the nucleotide frequency at each position of a motif.

Note that a MotifPrototyper defines a family-specific structured prior for the PWMs without

committing to any specific consensus motif sequence.

2.4.2.1 Training a MotifPrototyper

Given biologically identified instances of motifs of a particular family, we can compile a multiple-

alignment for each motif and write down the joint likelihood of the training data under a single

profile model (i.e., a MotifPrototyper) by marginalizing out the PWMs (i.e.,θ’s) and the hidden

Markov states (i.e.,s) of each motif in Eq. (2.17). This likelihood is a function of the model

parameters. Thus we can compute the empirical Bayes estimation of the model parameters,Θl :=

{α, υ,Υ}, by maximizing the likelihood over each parameter using a EM algorithm with a quasi-

Newton procedure for the parameter update step[Sjölanderet al., 1996] (see AppendixA.2 for

details). The result is a set of parameters intrinsic to the training data.

Note that this training process also involves a model selection issue of how many Dirichlet

components should be used. As in any statistical model, a balance must be struck between the

complexity of the model and the data available to estimate the parameters of the model. Empirically,

we found that 8 components appears to be a robust choice and also provides good interpretability.

needs a rough specification (e.g., a length, say,L =20 bp, that is unlikely to be exceeded by most of the plausible motifs).
Because under the HMDM model, both conserved and heterogeneous sites are allowed in a candidate motif pattern; a
motif whose length is smaller thanL can still be picked up by the model with a over-specified length with high probability
by allowing heterogeneous sites padded at the ends of the true motif pattern to make up the total length.
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2.4.3 Mixture of MotifPrototypers

Now we have built a model that captures the meta-sequence features of structurally but not textually

related motifs. The model is a Bayesian profile model that is defined on each motif family rather than

each individual motif; thus we call it a MotifPrototyper. To estimate the PWM of a novel motif, since

we do not know which family-specific MotifPrototyper is corresponds best to the novel pattern, we

can assume that the motifs are generated from a weighted combination of several MotifPrototypers.

Statistically, this defines a mixture of MotifPrototypers as the prior distribution of the PWM of a

motif,

p(θ|{α, υ,Υ}k, k = 1, . . . ,K) =
K∑

k=1

wkp(θ|{α, υ,Υ}k), (2.20)

wherewk is the mixing weight of each family-specific MotifPrototyper.

Under this setting, one can perform several important probabilistic computations regarding

motif detection, such as classifying motifs in terms of their preferred binding protein family by

identifying the most likely MotifPrototyper for a given motif alignment; computing the Bayesian

estimations of the motif parameters; and biasing thede novomotif detection to solutions that are

structurally more consistent with biologically genuine motifs. In other words, we effectively turn

the originally unsupervisedde novomotif detection into a semi-unsupervised learning problem that

integrates the observed sequences with prior knowledge about motif structures.

2.4.3.1 Classifying motifs

Identifying that a motif belongs to a family, and relating it to other members of the family, often

allows inference about its functions. Given multiple profile models each corresponding to a distinct

motif family, we can compute the conditional likelihood of a set of aligned instances of an unlabeled

motif under each profile model by integrating out the hidden variables (i.e.,θ ands) in each result-

ing complete likelihood function. The posterior probability of each possible assignment of class

membership to the motif under test is proportional to the magnitude of the conditional likelihood

multiplied by the prior probabilities of the respective motif families (which can be computed from

the empirical frequency of each motif family). LettingZ denote the family membership indicator,
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the posterior probability ofZ = k is proportional to the magnitude of the conditional likelihood

under thekth MotifPrototyper multiplied by the prior probability ofZ = k:

p(Z = k|A) ∝ p(Z = k)p(A|{α, υ,Υ}k)

Thus, we can estimate the family membership by amaximum a posteriori(MAP) scheme. It is

noteworthy that, here, we are classifying a set of aligned instances of a motif as a whole, rather than

a single sequence substring as in a standard classification task, such as predicting the function or

structure of a protein based on its amino acid sequence[Karchinet al., 2002; Moriyama and Kim,

2003].

2.4.3.2 Bayesian estimation of PWMs

Given a set of aligned instances of a motif, if we know the family membership of this motif, we can

directly compute the posterior distribution of its PWM, using the family-specific MotifPrototyper

as a prior according to Bayes rule. The Bayesian estimate of a PWM is defined as the expectation

of the PWM w.r.t. this posterior.

If the family membership is not knowna priori (i.e., we do not pre-specify what family of motif

to look for, but allow the motif to come from any family), then we can simply assume that the PWM

admits a mixture of profile models. The posterior distribution of a PWM under a mixture prior is

only slightly more complex:

p(θ|A, {α, υ,Υ}K
k=1) =

∑
k

p(θ|A, {α, υ,Υ}k, Z = k)p(Z = k|A, {α, υ,Υ}K
k=1)

∝
∑

k

p(θ|A, {α, υ,Υ}k)p(A|{α, υ,Υ}k)p(Z = k), (2.21)

whereZ denotes the family membership indicator. A useful variant of this mixture model is to

replace the mixture with the maximal-likelihood component:

p(θ|A, {α, υ,Υ}K
k=1) ≡ p(θ|A, {α, υ,Υ}k∗), wherek∗ = arg max

k
p(A|{α, υ,Υ}k).(2.22)

It is straightforward to generalize the current formulation of the MotifPrototyper model to

family-specific prior distributions over more sophisticated motif representations, such as trees or
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mixture of trees, by slightly reparameterizing the MotifPrototyper model. The training procedure

and the usage for classification andde novomotif detection require little modification.

2.4.3.3 Semi-unsupervisedde novomotif detection

In de novomotif detection where locations of motif instances are not known, the motif matrixA

is an unobserved random variable. One can iterate between predicting motif locations based on the

current Bayesian estimate of the motif PWM, and updating the Bayesian estimate based on newly

predicted motif instances. We will elaborate on this point in§2.5, where we describe aLOGOS

model that uses MotifPrototyper as the local model and an expressive hidden Markov model to

be developed in the next section, CisModuler, as the global model, forde novomotif detection in

higher eukaryotic genomic sequences. But as a “prove-of-concept” demonstration of the influence

of MotifPrototyper on the performance ofde novomotif detection, in this section, we only use a

simple oops model as the global model. It can be proved that the iterative procedure we described

is guaranteed to converge to a locally optimal solution (cf. Chapter 4). But unlike the standard EM

algorithm for estimating a PWM, since we can compute the Bayesian estimate based on a trained

profile motif prior, we essentially turnde novomotif detection from an originally unsupervised

learning problem into a semi-unsupervised learning problem that can make use of biological training

data without committing to any particular consensus motif pattern.

2.4.4 Experiments

Under theLOGOS framework, the MotifPrototyper and mixture of MotifPrototypers are both struc-

tured Bayesian upgrades of the standard PM local models for motifs. These models can be learned

from categorized training motifs to define family-specific priors for the PWMs, and when coupled

with a global model, can be used to introduce useful bias duringde novomotif detection.

In this sub-section, we present results of learning MotifPrototyper models from categorized

families of motifs, and demonstrate applications of the learned MotifPrototypers with three exper-

iments, each addressing a typical issue of interest inin silico motif analysis. (1) Given instances

of a (computationally) identified motif, assign the motif to a motif family that corresponds to a
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particular class of transcription factors. (2) Provide a Bayesian estimate of a PWM which may

be more informative than a maximum likelihood estimate. (3) Improvede novomotif detection by

casting the problem as asemi-supervised learningtask that makes use of biological prior knowledge

incorporated in the family-specific MotifPrototypers.

2.4.4.1 Parameter estimation

The TRANSFAC database (version r6.0) contains 336 nucleotide-count matrices of aligned motif

sequences. These matrices summarize a significant portion of the biologically identified transcrip-

tion regulatory motifs reported in the literature, and are well categorized and curated. (Although

the original aligned sequences corresponding to the count matrices are not provided.) We used 271

of the matrices as training data, each derived from at least 10 recognition sites of a TF in one of

the 4 well-represented superclasses (Table2.2), to compute the empirical Bayes estimates of the

parameters of 4 profile Bayesian models of motif families.
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Figure 2.8: Parameters of 4 profile models learned from training motifs. Each of the 8 panels underα represents the
4-dimensional parameter vector of a Dirichlet component (the height of the bar represents the magnitude of the corre-
sponding element in the vector); vectorυ and matrixΥ are represented by color images, of which each element ofυ or
Υ specifies the color of a rectilinear patch in the image.

We performed 50 random restarts for the quasi-Newton algorithm for parameter estimation and

picked the solutions corresponding to the highest log likelihood achieved at convergence. Figure2.8

illustrates the parameters of the 4 resulting profile models pictorially. Here we do not intend to fully
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interpret these numerical representations of each profile model in terms of their biological impli-

cations. But based on a rough inspection, it is not difficult to read off some interesting high-level

biological characteristics. For example, for thebasic-domainprofile model, the transition probabil-

ities between the 4 conserved nt-distribution prototypes2 (the first four mixture components of the

Dirichlet mixture) appear to be rather high (evident from the bright diagonal block at the upper left

corner of theΥ matrix), as are the self-transition probabilities of all of the 4 non-conserved Dirichlet

components (evident from the bright diagonal stripe at the lower right corner of theΥ matrix). The

transition probabilities between the conserved and non-conserved Dirichlet components are rela-

tively low (dark off-diagonal areas inΥ). Furthermore, it appears that the initial probability is high

for the 6th Dirichlet component, a fairly non-conserved one. This suggests a general meta-sequence

feature, namely that motifs of the basic-domain family are likely to begin with a consecutive run of

mostly non-conserved positions, followed by a consecutive stretch of mostly conserved positions,

and possibly followed by another consecutive run of mostly non-conserved positions, reminiscent of

the bell-shaped signature in Figure2.5. Although it is possible to find many other similar high-level

characteristics, some of which may even reveal previously unnoticed biological features (e.g., char-

acteristic PSMD prototypes of motif families), here we refrain from such elaborations, but simply

maintain that MotifPrototyper is a formal mathematical abstraction of the meta-sequence properties

intrinsic to a motif profile represented by the training examples.

To evaluate the training quality of the profile models, we define thetraining error as the per-

centage of misclassification of the superclass-identities of the training motif matrices using profile

models learned from the full training set. As Table2.3 shows, our training errors range from 10-

28%, with the beta-scaffold MotifPrototyper having the best fit. Given that “motif family” is rather

loosely defined based on TF superclasses, and that each superclass still has very diverse and ambigu-

ous internal structures, these training errors indicate that family-specific regularities can be captured

2Note that the parameter vector of a Dirichlet component can be regarded as a vector of pseudo-counts of the
nucleotides. Thus a Dirichlet parameter vector with a dominant element implies a conserved nt-distribution proto-
type, whereas a Dirichlet parameter vector without a dominant elements implies a heterogeneous, or non-conserved
nt-distribution prototype.
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reasonably well by MotifPrototyper.

Table 2.3: Learning MotifPrototyper
Basic domains Zinc-fingers Helix-turn-helix beta-scaffold

training error 0.168 0.173 0.276 0.100

2.4.4.2 Motif classification

To examine the generalizability of MotifPrototyper to newly encountered motif patterns, we per-

formed a 10-fold cross-validation (CV) test for motif classification, in which the profile models are

learned from 90% of the training motif matrices, and their classification performance is evaluated

on the remaining 10% of the motif matrices. We do so 10 times so that each motif pattern corre-

sponding to a particular TF will be classified exactly once as a test case. The performances over

each family of motifs are summarized in Table2.4. Classification error rates for both the entire

dataset and the reduced dataset that contains only the major motif subclasses (i.e., those with at

least 10 different motifs) under each superclass are presented. Not surprisingly, performance on the

dataset with only major subclasses is significantly better, suggesting that the minor classes in each

superclass are possibly more ambiguous and less typical with respect to the overall characteristics

of the superclass. In fact, some minor classes are unanimously assigned to a different superclass

by our classifier, for example, all 6 members of class 1.6 (bHSH) and all 7 members of class 3.4

(heat shock factors) are assigned to superclass 4 (beta-scaffold), whereas all 5 members of class 4.7

(HMG) are assigned to superclass 3 (helix-turn-helix). Whether such inconsistencies reflect a defi-

ciency of our classifier or possible true biological ambiguity of these motif patterns is an interesting

problem to be investigated further.

Table 2.4: Motif classification using MotifPrototyper
Basic domains Zinc-fingers Helix-turn-helix Beta-scaffold

CV error (whole set) 0.256 0.423 0.443 0.403
CV error (major classes) 0.217 0.373 0.379 0.178

To our knowledge, there has been no algorithm that classifies aligned sets of motif instances as
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collective objects based on meta-sequence features shared within motif families. The closest coun-

terpart in sequence analysis is the profile HMM (pHMM) model for protein classification[Kroghet

al., 1994], but pHMM is based on the assumption that proteins of the same family share sequence-

level similarities, and the objects classified are single sequences. Thus, no direct comparison can be

made between pHMM and MotifPrototyper. Nevertheless, note that although pHMM is based on

much more stringent features at the sequence level and aimed at the relatively simpler task of eval-

uating single sequences, the typical accuracy of pHMM is around 20-50% for short polypeptides

(i.e.,< 100 aa)[Karchinet al., 2002; Moriyama and Kim, 2003], comparable to the performance of

motif classification using MotifPrototyper. Thus we believe that MotifPrototyper exhibits a reason-

able performance given that the labeling of motif family membership is more ambiguous than that

of single protein sequences, the meta-sequence features we use are far less stringent than sequence

similarities, and motif patterns are much shorter than polypeptides.

2.4.4.3 PWM estimation and motif scoring

A major application of MotifPrototyper is to serve as an informative prior for Bayesian estimation

of the PWM from a set of aligned instances of a novel motif. Since in a realisticde novomotif

detection scenario, one has to evaluate many substrings corresponding to either a true motif, or ran-

dom patterns in the background, it is expected that the Bayesian estimate of a PWM resulting from

MotifPrototyper is more reliable than the maximum likelihood estimate in discriminating between

true motifs and background sequences. We demonstrate this ability by comparing the likelihood of

a true motif substring with the likelihoods of background substrings, all scored under the estimated

PWM of the motif. To get an objective evaluation for this comparison, the following experiments

were performed: 1) for a set of aligned instances of a motif, compute the Bayesian estimate of the

PWM from 66% of the instances, and then use it to score (i.e., compute the likelihood of) the re-

maining 34% of the instances in terms of their joint log likelihood; 2) use the same PWM to score

M sets of background strings, each having the same length and number of instances as the motif

instances being scored in step 1; 3) compute the mean log-likelihood-odds between the motif and
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the background substrings (overM sets of randomly sampled background substrings). For each

motif, we repeat this procedure 3 times so that each motif substring will be scored exactly once.

The performance on each motif is summarized by the average log-likelihood-odds per motif in-

stance. (Larger odds means that the background substrings are less likely to be mistakenly accepted

as motif instances, and thence, the false positive rate is smaller).

Since the original aligned motif sequences corresponding to the count matrices used for Mo-

tifPrototyper training are not provided in TRANSFAC and are hard to retrieve from the original

literature, we compiled an independent collection of aligned motif instances for 161 TFs in TRANS-

FAC, each of which has at least 6 binding sites whose sequence information is available (Table2.2).

Background substrings from a uniform and random model were simulated3.
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Figure 2.9: Evaluation of PWM estimation by 4 different schemes. Cyan:symmetric-Dirichlet smoothing; green: ML;
red: mixture of profile models; black: maximal-likelihood profile model out of the mixture. Motifs are listed along the
x-axis, ordered by the log-likelihood-odds of their PWM based on the “true” (according to their original family label)
profile prior model.

The results of the evaluation are highlighted in Figure2.9. We compared 4 PWM estimation

schemes: maximum likelihood estimation (i.e., plain relative frequencies); Bayesian smoothing

using a single symmetric Dirichlet prior; Bayesian estimation using a mixture of profile models;

and Bayesian estimation using the maximal-likelihood profile model from the mixture. Depicted

as the bars in Figure2.9 for reference are the results for Bayesian estimation using a single profile

model corresponding to the original family label of each motif, an unrealistic scenario inde novo

3This corresponds to examining the log-likelihood-odds under a motif model w.r.t. a uniform and random null hy-
pothesis. Sampling of background substrings from a genuine genomic sequence as the null hypothesis was also done
at a small scale (for some motifs) and yields largely the same results. But since the motifs we studied are from diverse
genomic sources, a comprehensive evaluation in this manner is tedious and hence was omitted.
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motif detection.

As evident from Figure2.9and2.10, the discriminative power of the Bayesian estimate of the

PWM, measured by the log-likelihood-odds (of motif vs. background substrings), is indeed better

than that of the maximum likelihood estimate for most of the motifs we tested. In particular, in

cases where only a small number of instances are available for estimation, the mixture of profile

models still leads to a good estimate that generalizes well to new instances and results in high

log-likelihood-odds, whereas the ML estimation does not generalize as well (Fig.2.9).
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Figure 2.10: A comparison of Bayesian and ML estimates of the PWM. Each point represents a motif being tested, the
x-coordinate (resp.y-coordinate) represents the log-likelihood-odds due to the ML (resp. Bayesian) estimation.

These results give strong support to the claim that in many cases, a MotifPrototyper-based

approach can significantly improve the sensitivity and specificity for novel motifs, and provide a

robust estimation of their PWMs under few observations. These are very useful properties forde

novomotif detection in complex genomic sequences.

2.4.4.4 De novomotif discovery

Now we present a comparison of the profile Bayesian motif model – MotifPrototyper – with the

conventional PM model forde novomotif detection, using semi-realistic test data for which the

ground truth (i.e., full annotation of motif types and locations) is known for evaluating the prediction

results. Note that the experiments described here are a small excerpt from a large suite ofde novo

motif detection experiments under various scenarios. We will return to the bulk of these experiments
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in §2.7, after the development of a more powerful global model.

We tested on 28 well-represented yeast motifs from thePromoter Database of Saccharomyces

cerevisiae(SCPD). Each motif has 5 to 32 recorded instances, all of which have been identi-

fied/verified via biological experiments and hence are considered “authentic”. For each motif, a

test dataset is created by planting each of the “authentic” instances of that motif at a random posi-

tion in a 500bp simulated background sequence (i.e., one motif per sequence). To further increase

the difficulty of the motif detection task, a “decoy” signal, which is an artificial pattern obtained by

randomly permuting the positions in the motif, was inserted into the study sequence4. Since each

sequence has only one true motif occurrence, prediction was made by finding the position with the

maximal log-likelihood ratio (for the substring that begins with that position) under the estimated

motif PWM (obtained at the convergence point of a procedure that iterates between computing the

posterior distribution of motif locations based on current estimate of the PWM, and computing the

Bayesian estimate of the PWM based on the current posterior distribution of motif locations), and

under the background nt-distribution (assumed to be the nt-frequencies estimated from the entire

sequence). This scenario frees us from modeling the global distribution of motif occurrences, as

needed for more complex sequences (cf. the LOGOS model), and therefore demonstrates the in-

fluence of different models for motif patterns onde novodetection. We evaluate the performance

based onhit-rate, the ratio of correctly identified motif instances (within± 3bp offset with respect

to the locations of the authentic instances) to the total number of instances to be identified. To obtain

robust estimation, for each motif 40 experiments were performed, each with a different test dataset

(i.e., with different background sequences, motif and decoy locations, and decoy patterns).

Specificity of a single MotifPrototyper. Before presenting the full-scale test of the mixture of

MotifPrototypers trained on four categories of motifs from the TRANSFAC database on the yeast

motifs from the SCPD database, here we first examine whether the motif properties captured in

a MotifPrototyper effectively bias the posterior prediction of motif presence toward the desired

4By permutation we mean that the same permuted order is applied to all the instances of a motif so that the multinomial
distribution of each position is not changed but their order is changed.
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pattern represented in the training set. For this purpose we trained a MotifPrototyper from the 28

yeast motifs in the SCPD database described above, and examined the resulting MotifPrototyper for

its ability to detect motifs present in this training set in the presence of a “decoy”. Figure2.11shows

the Boxplot (which shows the median, lower quartile, upper quartile, outliers, etc.) of the hit (i.e.,

finding the genuine motif) and mishit (i.e., finding the decoy) rate of MotifPrototyper onabf1and

gal4. Note the dramatic contrast of the specificity of the MotifPrototyper to true motifs compared

to that of the PM model.

It is noteworthy that the MotifPrototyper model actually does not contain any explicit infor-

mation about the consensus sequences of the training motifs; it merely captures the dependencies

between general heterogeneous and homogeneous motif sites whose nucleotide distributions are not

fixed, but instead are drawn from specified priors over the space of nucleotide distributions. Thus,

the high specificity of MotifPrototyper to a genuine motif pattern under the interference of a false

motif pattern suggests its remarkable ability to implicitly capture sensible “motif shapes”.
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Figure 2.11: Boxplots of hit and mishit rate of MotifPrototyper (1) and PM (2) on two motifs used during MotifPrototyper
training.

Generalizability of a single MotifPrototyper. How well does a MotifPrototyper generalize to

motifs not present in the training set? Here we use the MotifPrototyper learned from 20 of the 28

SCPD motifs to detect motifs from an independent test set containing the rest of the 8 SCPD motifs.

In the first motif finding task, we use synthetic sequences each having only one true motif instance

at a random position. Figure2.12summarizes the results over 40 experiments. As shown in the

figure, the MotifPrototyper significantly outperforms the PM model for motifsabf1, gal4 andcrp,

and achieves comparable performance for motifsgcn4andmig1. It does poorly for motifsmat-a2

andmcb. Note that these two motifs are quite short and somewhat uniformly “conserved,” which is
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in fact “atypical” in the training set. The smallish sizes of the motifs also diminish the utility of the

Markov model in MotifPrototyper.
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Figure 2.12: Boxplots of hit rate of MotifPrototyper (1) and PM (2) on sequences each embedded with one motif instance
from the test dataset.

In the foregoing motif detection task, the PM model shows decent performance, especially for

those more-or-less uniformly conserved motifs such asgcn1, mat andmcb. But it already shows

signs of failure for motifs with more complex shapes (e.g.gal4). The second task is more challeng-

ing and biologically more realistic, where we have both the true motifs and the permuted “decoys.”

Figure 2.13 shows the boxplot of the hit-rate as well as the mishit-rate for motif detection over

40 experiments. As expected, under the interference of the decoys, the PM model apparently gets

confused and often decides to pick the permuted false motifs. Only two of the eight motifs are cor-

rectly detected by the PM model with high hit-rate. In contrast, the MotifPrototyper model exhibits

remarkable robustness under this more difficult situation, and maintains a high hit-rate in six of the

eight motifs. But for two of the motifs (again,mat-a2andmcb), MotifPrototyper biases toward the

permuted version, which suggests that indeed the originalmat-a2andmcbpatterns are not captured

by MotifPrototyper, consistent with the result from the first task.

De novomotif detection using a mixture of MotifPrototypers. Now we conclude this section

with an evaluation of a mixture of MotifPrototypers trained from the TRANSFAC database. We

test this model on all the 28 motifs from the SCPD database. As shown in Figure2.14, the mixture

of MotifPrototypers significantly outperforms the PM model (i.e. with> 20% margin) on 11 of

the 28 motifs, and is comparable to the PM model (within±10% difference) for the remaining
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Figure 2.13: Boxplots of hit (left panel) and mishit (right panel) rates of MotifPrototyper (1) and PM (2) on sequences
each containing one motif instance from the test dataset together with a permuted decoy.

17 motifs. Overall, the mixture of MotifPrototypers correctly identifies 50% or more of the motif

instances for 16 of the 28 motifs, whereas the PM model achieves 50% hit-rate for only 8 of the

28 motifs. Note that the mixture of MotifPrototypers is fully autonomous and requires no user

specification of which particular profile motif model to use. If we are willing to introduce a manual

post-processing step, in which we use each of the 4 profile motif models described before separately

for de novomotif finding, and generate 4 sets of motif predictions instead of one (as for the mixture

of MotifPrototypers) for visual inspection, it is possible to obtain even better predictions (diamond

symbols in Figure2.14).
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Figure 2.14: Median hit-rates ofde novodetection of 28 yeast motifs using MotifPrototyper (square), PM (circle), and
the best outcome out of 4 single-profile-based predictions using MotifPrototyper (diamond). Motifs are listed along the
x-axis, ordered by the hit-rates of MotifPrototyper for each motif.

The ability to provide multiple candidate solutions, each corresponding to a specific TF cate-

gory, manifests a key advantage of the profile motif model. It allows a user to capture different

types of prior knowledge about motif structures and bias motif prediction toward a particular meta-

sequence structure in a well-controlled way. A human observer given a visual presentation of the

most likely motifs suggested by different profile motif models could easily pick out the best one
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from these candidates, whereas the PM model can yield only a singlemost likelyanswer.

2.4.5 Summary and Discussion

We have presented MotifPrototyper, a novel profile Bayesian motif model that captures generic

meta-sequence featuresshared by motifs corresponding to common transcription factor superclasses.

It is a probabilistic graphical model that captures the positional dependencies and nucleotide dis-

tribution prototypes typical to each motif family, and defines a prior distribution of the position

weight matrices of motifs for each family. We demonstrated how MotifPrototyper can be trained

from biologically identified motif examples, and its applications for motif classification, Bayesian

estimation of PWMs, andde novomotif detection.

To the best of our knowledge, all extant motif models are intended to be motif-specific, empha-

sizing the ability to characterize sequence-level features unique to a particular motif pattern. Thus

when one defines such a model for a novel motif not biologically characterized before, one needs to

solve a completely unsupervised learning problem to identify the possible instances and fit the motif

parameters simultaneously. Under this unsupervised framework, there is little explicit connection

between the novel motif to be estimated from the unannotated sequences and the rich collection

of biologically identified motifs recorded in various databases. It is reasonable to expect that the

fruitful biological investigations of gene regulatory mechanisms and the resulting large number of

known motifs could contribute more information to the unraveling of novel motifs. MotifProto-

typer represents an initial foray into the development of a new framework that turnsde novomotif

detection into a semi-unsupervised learning problem. It provides more control during the search

for novel motif patterns by making use of prior knowledge implied in the known motifs, helps to

improve sensitivity to biologically plausible motifs, and potentially reduces spurious solutions often

occurred in a purely unsupervised setting.

It may be possible to build a stronger motif classifier using discriminative approaches such as

neural networks or support vector machines, and we are currently pursuing this direction. But since

the goal of this chapter is not merely to build a classifier, but to develop a model that can easily
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be integrated into a more general architecture forde novomotif detection, a generative framework,

especially via a Bayesian prior model, provides the desired generalizability and flexibility for such

tasks. As discussed in§2.2.4, a graphical model formalism of the motif detection problem allows

a modular combination of heterogeneous submodels each addressing a particular component of the

overall problem. The design of MotifPrototyper aligns with this principle, and serves as an advanced

“local” submodel under theLOGOS framework.

2.5 CisModuler: Modeling the Syntactic Rules of Motif Organization

As discussed in previous sections, the transcription regulatory sequences in higher eukaryotic genomes

often consist of multiple CRMs. Each CRM contains locally enriched occurrences of binding sites

for a certain array of regulatory proteins, capable of integrating, amplifying or attenuating multi-

ple regulatory signals via combinatorial interaction with these proteins. The architecture of CRM

organization is reminiscent of the grammatical rules underlying a natural language, and provides

the potential for implementing sophisticated regulatory circuits directing temporally/spatially co-

ordinated expression of genes during development and differentiation. It also presents a particular

challenge to computational motif and CRM identification in higher eukaryotes. In this section, we

present CisModuler, a Bayesian hidden Markov model that attempts to capture the stochastic syn-

tactic rules of CRM organization and integrates over (and thus draws influence from) all possible

values of the Markov transition probabilities weighted by their corresponding prior probabilities

that reflect general knowledge of the CRM structure. Under the CisModuler model, all candidate

sites are evaluated based on a posterior probability measure that takes into consideration their sim-

ilarity to known binding sites, their contrasts against local genomic context, and their first-order

dependencies on upstream sequence elements. We compare this approach to the standard window-

based likelihood scoring approach described previously, and demonstrate superior results on large

scale analysis ofDrosophilaearly developmental enhancers. This model provides a useful and ar-

guably superior alternative for CRM/motif detection given motif PWMs, and can be also used as a

submodel (i.e., the global model) forde novomotif/CRM detection in higher eukaryotic genomes.
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2.5.1 TheCisModulerHidden Markov Model

Hidden Markov models have been widely used in computational biology to capture simple sequence

structures (e.g., segmentations) inherent in bio-polymer sequences. Despite their limited expressive

power compared to more complex models such as stochastic context free grammars (SCFGs)[Lari

and Young, 1990] or hierarchical hidden Markov models (hHMMs)[Fine et al., 1998], they have

enjoyed remarkable success in problems such as gene-finding in DNAs[Burge and Karlin, 1997]

and domain modeling in proteins[Krogh et al., 1994], and in many cases appear to strike the right

balance between simplicity and expressiveness.

We propose to use an HMM to model the global distribution of motif instances in genomic

sequences, by encoding a set of stochastic syntactic rules presumably underlying the CRM organi-

zation and motif dependencies using a discrete first-order Markov process. We call this specialized

HMM a CisModuler. The CisModuler HMM defines a probability distribution over possible func-

tional states of each single position in a DNA sequence. The space of allowed functional states

is constructed in a way that captures detailed architectural features of genomic sequences bearing

CRMs.

More precisely, letX = (X1, . . . , XT ) be a chain of “hidden” state variables associated with

an “observed” DNA sequencey = (y1, . . . , yT ), specifying which functional state (e.g., a back-

ground, thel-th position of motifk, etc.) is responsible for generating the observed nucleotide at

each position. By definition,xt ∈ S, where the state spaceS includes all possible functional states

of a position in a CRM-bearing DNA sequence. Specifically,S = M ∪ M′ ∪ Bp ∪ Bd ∪ {bg, bc},

whereM = {1(1) . . . L(1)
1 , 1(2) . . . L(2)

2 , . . . , 1(k) . . . L(k)
k } is the set of all possible sites within a motif

on the forward DNA strand (i.e., states1(1) to L(1)
1 correspond to the sites in motif type 1 on the

forward strand, and so on);M′ is the set of all possible sites within a motif if it is on the reverse

complementary DNA strand;Bp = {b(1)p , . . . , b(k)
p } denotes the set ofproximal-bufferstates associ-

ated with each type of motif5; Bd = {b(1)d , . . . , b(k)
d } denotes the set ofdistal-bufferstates associated

5Here, proximal-buffer refers to the background sites immediately next to the proximal-end of the motif. For consis-
tency, orientations are defined with respect to the initial position of the input sequence. That is, the 1st position of the
input sequence corresponds to the proximal end, and the last position corresponds to the distal end.
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with each type of motif;bc represents the intra-cluster (local) background state; andbg represents

the inter-cluster (global) background state. Permissible transitions between these states are illus-

trated in Figure2.15. The distribution ofX follows a first-order Markov process according to this

transition scheme, with state-transition probabilities parameterized as shown in the state-transition

diagram. Note that we have not included functional states related to gene annotation and basal pro-

moters, but such extensions are straightforward if co-identification of CRMs and genes is desired.
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Figure 2.15: The CisModuler HMM. (a) The state-transition diagram. Labeled circular and diamond nodes represent the
functional states in DNA sequences; arrows between nodes represent permissible state-transitions; numbers and param-
eter symbols accompanied the arrows (with the parameter subscripts denoting the source and target of the transitions)
denote the corresponding transition probabilities. (b) A typical segmentation of a piece of DNA sequence induced by
CisModuler. Background sites are colored as in the state-transition diagram; the blue, magenta, yellow and red segments
represent motifs of 4 different kinds; segments with parallel stripes denote motifs in reverse-complementary orientation.

The motivation for this Markov model is that generally one expects to see occasional motif clus-

ters in a large ocean of global background sequences (represented by statebg). Each motif instance
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in a cluster is like an island in a sea of intra-cluster background sequences (bc’s), with surrounding

coastal water of motif-specific buffer sequences (i.e.,b(i)p ’s andb(i)d ’s for motif i) (Fig. 2.15). We

refer to a motif instance together with its surrounding buffers as amotif envelope. The CisModuler

model assumes that the distance between clusters is geometrically distributed with mean1/(1−βg,g),

and the span of the intra-cluster sea is also geometrically distributed with mean1/(1− βc,c). How-

ever, the distances between motifs admit a much richer distribution, because the widths of the motif

envelopes are modeled on a motif-specific basis, and the transitions between envelopes can occur ei-

ther by sailing through the intra-cluster sea or by bypassing it. These modeling choices are intended

not only to reflect uncertainty about the CRM structure, but also to offer substantial flexibility to

accommodate potential richness of CRM structures. As shown in Figure2.15a and2.15b, one can

begin with a global background state, then either loop over this state, or with some probabilityβg,i,

move into the proximal-buffer state of a motifi; with equal probabilityαi,m/2, a proximal-buffer

stateb(i)p reaches the start states1(i) (resp. L(i′)
i ) of motif i on the forward (resp. reverse) strand,

deterministically passes through all internal sites of motifi, and transitions to the distal-buffer state

b(i)d , thereby stochastically generating a non-empty motif envelope6; eachb(i)d has some probability

βi,j/2 of transitioning to the proximal-buffer state of another motifj (or of the same motif when

j = i) to concatenate another motif envelope, or with probabilityβi,c to pad with some intra-cluster

background before adding more envelopes; all distal-buffer states also have probabilityβi,g of re-

turning to the global background state, terminating a CRM stretch. It is not difficult to see that a

path in such a state space according to this HMM grammar bears a structure similar to a genomic

sequence containing motif modules (Figure2.15b). Note that the HMM model does not impose

rigid constraints on the number of motif instances or modules; the actual number of instances is

determined by the posterior distribution of the sequence of functional states,p(x|y).

The use of an HMM to model the CRM distribution has been previously described by Frithet

al. in the Cister program[Frith et al., 2001]. But the CisModuler model we present here uses a

6Note that the distinction between the proximal and distal buffers avoids generating empty envelopes (because other-
wise, a single buffer state would not be able to remember whether a motif has been generated beyondk positions prior to
the current position under akth order Markov model.)
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much more sophisticated design of the functional state space that allows couplings between motifs

within the CRMs to be captured, and models inter-motif distances with more flexible distributions

(rather than a simple geometric distribution). Furthermore, as will be detailed in the following

sections, we provide a Bayesian treatment for the state transition probabilities, which in previous

models are regarded as fixed parameters and rely on empirical default values or user specification.

We also combine the newly designed HMM with a more expressivekth-order Markov model for

the background, which turns out to contributes to significantly improving the specificity for CRM

detection.

2.5.2 Bayesian HMM

One caveat of the standard HMM approach for CRM modeling is the difficulty of fitting the model

parameters, such as the state-transition probabilities, due to the scarcity of fully annotated CRM-

bearing genomic sequences. In principle, one can learn the maximal likelihood estimates of the

model parameters in an unsupervised fashion, using the Baum-Welch algorithm, directly from the

unannotated sequences while analyzing them. But in practice, such a completely likelihood-driven

approach tends to result in spurious results, such as over-estimation of the motif and CRM frequen-

cies and poor stringency of the learned models of potential motif patterns. Previous methods tried to

overcome this by reducing as much as possible the number of parameters needed, and setting them

according to some best guesses of the motif/CRM frequencies or CRM sizes[Frith et al., 2001]. But

as a result, such remedies compromise the expressive power of the already simple HMM, and risk

misrepresenting the actual CRM structures. In the following, we propose a Bayesian approach that

introduces the desired “soft constraints” and smoothing effect for an HMM of rich parameteriza-

tion, using only a small number ofhyper-parameters. Essentially, this approach defines a posterior

probability distribution over all possible value-assignments for the HMM parameters, given the ob-

served unannotated sequences and empirical prior distributions of the parameters that reflect general

knowledge of CRM structures. The resulting model allows probabilistic queries (i.e., estimating the

probability of a functional state) to be answered based on the aforementioned posterior distribution
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rather than on fixed given values of the HMM parameters.

We assume that the self-transition probability of the global background stateβg,g, and the to-

tal probability mass of transitioning into a motif-buffer state
∑

k∈Bp
βg,k (note thatβg,g = 1 −∑

k∈Bp
βg,k), admit a beta distribution,Beta(ξg,1, ξg,2), where a small value was chosen forξg,2

ξg,1+ξg,2
,

corresponding to a prior expectation of a low CRM frequency. Similarly, a beta priorBeta(ξc,1, ξc,2)

is defined for the self- and total motif-buffer-going transition probabilities[βc,c,
∑

k∈Bp
βc,k] asso-

ciated with the intra-cluster background state; and another beta priorBeta(ξp,1, ξp,2) for the self-

and motif-going transition probabilities[αi,i, αi,m] associated with the proximal-buffer state of

a motif. Finally, it is assumed that, for the distal-buffer state, the self-transition probability, the

total mass of transition probabilities into a proximal-buffer state, the probability of transitioning

into the intra-cluster background, and the probability of transitioning into the global background,

[βi,i,
∑

k∈Bp
βi,k, βi,c, βi,g], admit a 4-dimensional gamma distribution,Gamma(ξd,1, ξd,2, ξd,3, ξd,4).

Note that due to conjugacy between the prior distributions described above and the corre-

sponding transition probabilities they model, the hyper-parameters of the above prior distribu-

tions can be understood aspseudo-countsof the corresponding transitioning events, which can

be roughly specified according to empirical guesses of the motif and CRM frequencies. But un-

like the standard HMM approach, in which the transition probabilities are fixed once specified,

the hyper-parameters only lead to a soft enforcement of the empirical syntactic rules of CRM

organization in terms of prior distributions, allowing controlled posterior updating of the HMM

transition probabilities during analysis of the unannotated sequences. For the CisModuler HMM,

we specify the hyperparameters (i.e., the pseudo-counts) using estimated frequencies of the cor-

responding state-transition events, multiplied by a “prior strength”N , which corresponds to an

imaginary “total number of events” from which the estimated frequencies are “derived”. That is,

for the beta priors, we let[ξ[·,1], ξ[·,2]] = [1 − ω[·], ω[·]] × N , where the “·” in the subscript denotes

either theg, c, or p state, andω[·] is the corresponding frequency. For the gamma prior, we let

[ξd,1, ξd,2, ξd,3, ξd,4] = [ωd,1, 1 −
∑

j ωd,j, ωd,2, ωd,3] × N . Overall, 7 hyper-parameters need to

be specified (of course one can use different “strengths” for different prior, with a few additional
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parameters), a modest increase compared to the three needed in Cister[Frith et al., 2001].

2.5.3 Markov Background Models

Several previous studies have stressed the importance of using a richer background model for the

non-motif sequences[Liu et al., 2001; Huanget al., 2004]. In accordance with these results, Cis-

Moduler uses a globalkth-order Markov model for the emission probabilities of the global back-

ground state. For the emission probabilities of the intra-cluster background state and the motif-

buffer states, we used twolocal Markov models of orderm andm′, respectively. Since the models

are defined to belocal, the conditional probability of a nucleotide at a positiont is now estimated

from all (m + 1)- (resp. (m′ + 1)-) tuples from a window of2d (resp. 2d′) centered att. These

probabilities can also be computed off-line and stored for subsequent use. With a careful bookkeep-

ing scheme (i.e., using a “sliding window” to compute the local Markov model of each successive

position, each with a constant “update cost” based on the previous one, except for the initial win-

dow that needs a cost quadratic in the window size), this computation takes onlyO(T ) time. For

the emission probabilities of the motif states, we directly use the appropriate columns of nucleotide

frequencies in the PWM of the corresponding motif.

2.5.4 Posterior Decoding Algorithms for Motif Scan

2.5.4.1 The baseline algorithm

Given the initial state distribution and transition probability matrix of the HMM, the background

probabilities of each nucleotide, and the PWMs of the motifs to be searched for, the posterior prob-

ability distribution of the functional states at each position of the sequences,p(xt|y),∀t, can be

computed using the forward-backward algorithm. One can read off the functional annotation (or

segmentation) of the input sequences fromp(xt|y) according to amaximal a posteriori(MAP)

scheme, that is, the predicted functional state of positiont is:

x∗t = arg max
s∈S

p(Xt = s|y) (2.23)

Note that by using such a posterior decoding scheme (rather than the Viterbi algorithm), one
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integrates the contributions of all possible functional state paths for the input sequence (rather than

a single “most probable” path), into the posterior probability for each position. Therefore, although

the HMM architecture does not explicitly model overlapping motifs, the inference procedure does

take into account possible contributions of DNA binding sites interacting with competing TFs.

2.5.4.2 Bayesian inference and learning

Under the Bayesian framework described in§ 2.5.2, the parameters in the HMM are treated as con-

tinuous random variables (collectively referred to asΩ) with a prior distribution. Now to compute

the posterior probability of functional states needed in Eq. (2.23), one needs to marginalize out

these parameter variables:

p(xt|y) =
∫
p(xt|y,Ω)p(Ω|y)dΩ (2.24)

This computation is intractable in closed form. One approach to obtaining an approximate so-

lution is to use Markov chain Monte Carlo methods (e.g., a Gibbs sampling scheme). Here we use a

more efficient, deterministic approximation scheme based ongeneralized mean field(GMF) infer-

ence, also referred to asvariational Bayesian learning[Ghahramani and Beal, 2001] in the special

scenario that is applicable to our problem setting. We will discuss the theoretical and algorithmic

details of GMF inference at length in Chapter 4. Operationally, a posterior decoding algorithm un-

der the Bayesian HMM setting can be understood as replacing the single-round posterior decoding

with an iterative procedure consisting of the following two steps:

• Compute the expected counts for all state-transition events (i.e., sufficient statistics) using the

forward-background algorithm, usingcurrent values of the HMM parameters.

• Compute the Bayesian estimate (to be detailed shortly) of the HMM parameters based on

their prior distribution and the expected sufficient statistics from the last step.Update the

HMM parameters with these estimations.

This procedure is different from the standard EM algorithm which alternates between inference

about the hidden variables (the E step) and maximal likelihood estimation of the model parameters
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(the M step). In a GMF algorithm, the “M” step is a Bayesian estimation step, in which one com-

putes the posterior expectation of the HMM parameters, which will lead to an optimal lower bound

on the true likelihood of the data (which is intractable to compute exactly for a Bayesian HMM)

(see Chapter 4).

Now we outline the formulas for Bayesian estimation of the HMM parameters. Note that be-

cause the state-transition probability distributions (which are multinomial) and the prior distribu-

tions of the transition parameters (which are either beta or gamma) are conjugate-exponential[Beal

et al., 2001], we have to compute the Bayesian estimate of the logarithms of the transition parame-

ters (referred to as thenatural parameters) rather than of the parameters themselves. For example,

for the state-transition parameterβg,g, we have:

E[ln(βg,g)] =
∫

βg,g

lnβg,gp(βg,g|ξg,1, ξg,2, E[ng,g])dβg,g

= Ψ(ξg,1 + E[ng,g])−Ψ(
∑

j

ξg,j +
∑
k∈Bp

E[ng,k]), (2.25)

whereΨ(x) = ∂ log Γ(x)
∂x = Γ̇(x)

Γ(x) is the digamma function;E[·] denotes the expectation with respect

to the posterior distribution of the argument; andng,g refers to the sufficient statistic of the parameter

βg,g (i.e., the counts of the transition eventg → g). The Bayesian estimate of the original parameter

is simplyβ∗g,g = exp(E[ln(βg,g)]). (In fact we keep using the natural parameterization in the actual

forward-background inference algorithm to avoid numerical underflow caused by a long product of

probability terms.) The individual “motif-buffer-going” probabilityβg,i can be estimated similarly.

The initial state probability of the the CisModuler HMM is not important for CRM prediction

as it only directly determines the functional state of the first position of the input sequences and its

influence diminishes quickly along the sequence. One can simply fix the initial state to be a global

background state with probability 1.

2.5.5 Experiments

Although the literature on transcription regulation mechanisms in higher eukaryotes is very rich,

there still exist great biological ambiguities in motif and CRM annotations in many metazoan
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genomes. To evaluate our model using relatively unambiguous criteria, we focus on 14 loci in the

Drosophilagenome that are well known to be involved in regulating the transcription ofDrosophila

early developmental genes (Table2.5). Papatsenkoet al. [2002] have carefully curated these loci

based on an extensive study of the literature. Their compilation delineates 19 best-known early

Drosophiladevelopmental enhancers from these loci, where reside binding sites for 3 maternal tran-

scription factors: Bicoid (Bcd), Caudal (Cad), Dorsal (DI), as well as the zygotic gap gene factors

Hunchback (Hb), Kruppel (Kr), Knirps (Kni), Tailless (Tll), and Gaint (Gt). To mimic the typical

motif/CRM search scenario in metazoan genomic analysis (i.e., using a single long sequence po-

tentially containing numerous motifs rather than multiple short promoter regions from co-regulated

genes of simple organisms such as yeast), for each locus we extract a 5000 to 20000 bp long ge-

nomic region surrounding the enhancers as input data. Note that it is possible that there may exist

additional unknown motifs/CRMs in these extended regions.

Table 2.5: Developmental regulatory loci inDrosophilagenome.
locus (target gene) regulators length # of CRMs

Abdominal-A Hb, Kr, Gt, 10000 1
Buttonhead Bcd, Hb 5000 1
Engrailed Cad, Ftz 10000 1
Even-skipped Hb, Kni, Bcd, Kr, Gt 20000 3
Fushi-Tarazu Ftz, Ttk, Cad 10000 2
Gooseberry Eve, Prd (HD) 10000 1
Hairy Kr, Hb, Kni, Cad, Gt 10000 3
Kruppel Bcd, Hb, Gt, Kni 10000 1
Orthodentcile Bcd 5000 1
Runt Kr, Gt, Hb, Kni 10000 1
Spalt Bcd, Hb, Kr, Cad 10000 1
Tailless Bcd, Cad 8227 1
Ultrabithorax BRE Hb, Ftz, Tll 10000 1
Ultrabithorax PBX Hb, Ftz, Tll 10000 1

As discussed above, the hyperparameters of the CisModuler model reflect prior beliefs about

the architectural features of the CRM structure, such as rough spans of the inter- or intra-module

background and distances between motif instances. We specify these hyperparameters as follows:

for the global background,ωg = 0.0002; for the intra-module background,ωc = 0.01; for the

proximal motif buffer,ωp = 0.1; for the distal buffer hyperparameters,ωd,1 = 0.1, ωd,2 = 0.4,

ωd,3 = 0.4; and for the strength of the hyperparameters,N = 500. The background probability

of the nucleotide at each position was computed locally using a 3rd-order Markov model from a
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sliding window of 600 bp centered at the corresponding position. Since we are scanning for known

motifs, the PWMs of the motifs to be found are taken from[Papatsenkoet al., 2002] and[Berman

et al., 2002].

2.5.5.1 MAP prediction of motifs/CRMs

The locations of individual motif instances and CRMs in a DNA sequence can be determined from

its associated state sequence that corresponds to the MAP states of all the DNA sites. Figure2.16a

shows the MAP states and the associated posterior probabilities of these states in a 5000 bp region

at theDrosophilabuttonhead locus. As shown in the graphical illustration below the MAP plot, this

region contains a CRM between positions 330 and 1504, and part of the coding sequence of the

buttonhead gene. Fine-grained annotations indicate that a core subregion at the proximal end of this

CRM (positions 447-660) harbors 5 Bcd motifs. Another 4 Bcd instances are clustered at the distal

end of this CRM (positions 1150-1354). Three additional motifs (2 Bcds and 1 Hb) are scattered in

the middle of this CRM, but they appear to be weaker matches to the motif consensus compared to

the ones in the core subregions[Papatsenkoet al., 2002]. Using MAP estimation under CisModuler,

7 of the 12 motifs, 3 in the proximal and 4 in distal subregions of the CRM, are identified and the

core regions of the buttonhead CRM are correctly identified. Overall, among the 335 motif instances

(of 11 different regulatory proteins) and 19 CRMs contained in the loci we analyzed, 80 motifs and

16 CRMs are correctly identified, out of a total prediction of 316 motifs and 51 CRMs.

Under the aforementioned parameterization of CisModuler, the sensitivity measure of our pre-

diction (i.e., correct predictions/total annotated motifs) is about25%. But it is worth pointing out

that this result is obtained at a very low noise-to-signal ratio (i.e., incorrect predictions/correct pre-

dictions) of less than 3. Most extant algorithms report a list of predictions ranked by the score and

provide no quantitative measure of prediction accuracy suitable for a comparison. A few extant

algorithms reported higher sensitivity, but at an extremely high N/S ratio. For example, the log-

odds-based MATCH program[Quandtet al., 1995] achieves a∼ 90% sensitivity with a N/S ratio of
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1379 and 784 for Ap-1 and NEAT sites, respectively; the more sophisticated comparative-genomics-

based rVista program[Lootset al., 2002] achieves a similar sensitivity with N/S ratios of about 69

and 38, respectively. Such a high N/S ratio can make experimental verification extremely hard or

even infeasible, significantly compromising the value of the predictions. Also worth mentioning is

that our CRM-prediction using CisModuler is even more reliable, with an84% sensitivity, and 2.18

N/S. Thus it is possible to first identify the CRMs using a coarser-grained model, and then zoom in

to find motifs within the CRMs using a finer-grained model.

Note that unlike many other scoring schemes for motif/CRM detection, such as the log odds

or likelihood score regularized by word frequencies, our MAP prediction does not require a cutoff

value for the scores, nor a window to measure the local concentration of motif instances, both of

which are difficult to set optimally. To show the potential advantage of the MAP approach, Fig2.16b

shows the log odds of all sites in the buttonhead locus. Simply from inspection, it is apparent that,

even though we compute the log odds based on a more discriminating Markovian background model

together with the motif PWMs, we end up with too many positive signals (i.e., peaks with log odds

> 0). Exponentiating the log odds of all sites and thus transforming them to likelihood ratios (the

lower small panel in the graph) can significantly improve the contrast, but compared to the MAP

plot and the sketch of the genomic structure of this region, pruning away noises via a good cutoff

value and scoring window is still a non-trivial task.

2.5.5.2 Motif/CRM prediction via thresholding posterior probability profile

The MAP prediction described in the previous section considers only a single (i.e. thea posteriori

most probable) functional state for each site in a DNA sequence, and to some degree underuses

the posterior probabilities of all possible functional states for each site. An alternative approach

is to use the full posterior probability distribution at each site as a score function, and analyze the

score profile of the whole sequence using strategies conventionally applied to log odds or likelihood

profiles, such as thresholding motif scores with a cutoff value (to qualify a motif instance) and

measuring local motif concentrations with a sliding window (to qualify a CRM).
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Figure 2.16: Motif- and CRM-scan using CisModuler. (a) MAP plot of the buttonhead locus under the CisModuler model.
They axis denotes posterior probability, and thex axis represents sites in the sequence. The black curve corresponds
to the global background state, the green curve corresponds to the intra-cluster background and buffer states, and other
color curves correspond to various motif states (red:Hb, blue:Bcd, and dotted curves correspond to the state of a reverse
oriented motif represented by the same color). For each site, only the posterior probability of the MAP state is plotted.
(b) Log odds of each site under the motif PWM versus a 3rd-order local Markov background model. Only positive scores
(i.e., higher motif prob. than background prob.) are shown in the large panel. Complete log odds profiles (including
the negative scores that indicate the background) are shown in the upper small panel for reference. The likelihood ratio
scores derived from the log odds are shown in the lower small panel. Between panels (a) and (b) is a graphical illustration
of the biological annotation of this region.
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Figure 2.17: Validation of the posterior score under CisModuler and the likelihood ratio score: trade-off between sensi-
tivity and noise. (a) Motif detection. (b) CRM detection. The performance curves record sensitivity and N/S achieved at
a wide range of score cutoff values.

Fig. 2.17a shows the trade-off between sensitivity and noise during motif detection, in terms of

the proportion of the known binding sites detected and the amount of concomitant noise generated.

Following[Huanget al., 2004], Fig.2.17a traces the balance of sensitivity versus N/S ratio achieved

at a wide range of score cutoffs. Two score profiles were analyzed, the posterior probability profile

computed using the CisModuler model for the 14Drosophila loci described before (red curve in

Fig. 2.17a), and a likelihood ratio profile for the same dataset computed using motif PWMs and

a 3rd-order local Markov model (black curve in Fig.2.17a). Overall, the CisModuler posterior

probability score outperforms the likelihood ratio score over the entire range of noise-to-signal

ratio. Although not directly comparable (since different datasets are used), the performance curve

is similar to that of[Huanget al., 2004] (or arguably better because of the longer input sequences

used and the presence of CRMs that complicate motif identifications.) It is interesting to note that

the MAP prediction seems to be trying to pick the best possible sensitivity in the low noise-to-signal

ratio region.

Fig. 2.17b shows the trade-off between sensitivity and N/S ratio for CRM (rather than motif)

detection. The following scheme were used to identify a CRM based on the score profile: under a

given cutoff value of motif score, if the motif density within a sliding window of lengthW is at least

c, the corresponding sequence stretch is regarded as covered by a CRM. A contiguous region swept
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by a sliding window that meets this criteria is regarded as a CRM. Following typical characteristics

of CRMs reported in the literature, we setW = 500 andc = 2%. The sensitivity of CRM detection

is defined to be the ratio of the number of correctly predicted CRMs to the total number of CRMs;

and the N/S ratio as the ratio of the total length of all predicted CRMs over the length of correctly

predicted CRMs. From Fig.2.17b, it appears that CisModuler slightly outperform the the likelihood

ratio scheme in the high N/S region, and is significantly better in the low N/S region. As mentioned

earlier, the MAP prediction finds a good trade-off between the sensitivity and N/S ratio.

From the experiments reported above, we are optimistic that CisModuler is superior in motif

and CRM detection in a complex genomic context. But to predict based on the full posterior prob-

ability profile, a cutoff value is needed to qualify the possible presence of motif instances, and a

window size will be used to infer CRMs based on within-window concentration. Usually, such val-

ues have to be carefully determined from a training dataset, or via a statistical significance criterion

as in[Huanget al., 2004]. As a reward, we can take advantage of both the motif dependencies and

syntactic architecture of motif distributions explicitly captured in the CisModuler, the flexibility of

the thresholding scheme, and the nice statistical guarantee provided by a significance test.

2.5.6 Summary and Discussion

In this section, we presented a model-based Bayesian approach for CRM and motif prediction,

which combines many of the desirable features provided by extant methods, and introduces several

important novel elements that overcome some of the shortcomings of extant methods. The exten-

sions and contributions includes: a more sophisticated HMM model that is intended to capture, to

a reasonable degree, the detailed syntactic structure of CRM andcis-regulatory regions containing

CRMs; Bayesian priors for various state-transition parameters of the HMM grammar, which in prin-

ciple alleviate user specification of model parameters7; and severalkth-order Markov models for

various types of background sequences.

We compared our approach to the standard likelihood-ratio (or log odds) scoring approach,

7Although sophisticated users could choose to decide the “strength” of the priors, or define their own priors.
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and demonstrated superior results on large scaleDrosophilaearly developmental enhancer analysis.

CisModuler provides a useful and arguably superior alternative approach to detect CRM and motif

occurrences based on a given PWM, and can be also used as a subroutine inde novomotif/CRM

detection from higher eukaryotic genomes.

2.6 LOGOS: for Semi-unsupervisedde novoMotif Detection

Recall that under theLOGOS framework, the local, global and background submodels jointly de-

fine the likelihood of an observed DNA sequence that contains unspecified motifs. Each submodel

can be designed separately to address different aspects of the biological characteristics of a transcrip-

tional regulatory sequence, and combination of submodels each from a wide spectrum of possible

designs is possible. Therefore,LOGOS facilitates a flexible trade-off between expressiveness and

complexity for motif modeling.

Most extant models forde novomotif detection fall into the most basic submodel combination,

namely, a PM local model plus a UI global model (denoted byLOGOSpu in the sequel). Exam-

ples ofLOGOSpu include the basic models underlying the MEME[Bailey and Elkan, 1995a] and

AlignACE [Hugheset al., 2000] programs (although both programs have more sophisticated and

efficient implementation, e.g., more careful initiation schemes for over-represented words, which in

practice improve their performance over a basicLOGOSpu model).

Having both the MotifPrototyper model for local motif structure and the CisModuler model for

global motif organization (which also includes thekth-order Markov model for the background),

one can envisage a novel generative model for transcriptional regulatory sequences that is signifi-

cantly more expressive than any extant motif detection models. A graphical representation of such

a model, which is referred to asLOGOShh (standing for HMDM + HMM), is depicted in Fig-

ure2.18. (For simplicity, in the sequel we abbreviateLOGOShh with the unsubscripted “LOGOS”

when no confusion arises in the context, e.g., no comparison with other variations ofLOGOS is

being made.) Specifically, in such aLOGOS model, the functional annotations of a DNA sequence

that determine the motif locations and modular structures are determined by a CisModuler HMM
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Figure 2.18: A modular construction of theLOGOShh model for motif-bearing sequences. For simplicity, only one
possible motif and one study sequence are included in this model.

model; but the emission probabilities of the motif states, or the PWMs of the motifs, are generated

from a MotifPrototyper model, whereby prior knowledge regarding both global motif organization

and local motif structure is incorporated forde novomotif detection, making it asemi-unsupervised

learningproblem. Note that the context-sensitive dependency induced by the latent motif indicator

x couples each sequence variable with all existing motif parameters. Thus the nucleotide identity of

any position in a sequence is determined by a complex dependency structure that captures intra and

inter motif dependencies reflecting both intrinsic structural properties and higher-level correlations

of the motifs (detailed in§4.7).

The expressiveness ofLOGOS comes at the cost of resulting in a very expensive computational

problem for probabilistic inference in this model. Specifically, the inference and learning problem

associated withLOGOS is that of computing the maximuma posterioriprediction of motif lo-

cations and the Bayesian estimate of motif PWMs. But unlike the situations we discussed when

dealing with only the MotifPrototyper or the CisModuler submodels ofLOGOS, which essentially

intend to solve only one of the two aforementioned queries assuming the solution to the other is

known, now one needs to solve the two queries jointly, and this turns out to be intractable due to the
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exploded state space of the joint model.

Since no off-the-shelf exact algorithm works forLOGOS, some approximation schemes have

to be used. One option is to pursue a stochastic approximation using MCMC techniques such as

Gibbs sampling. In Chapter 5, we describe a Gibbs sampler algorithm for posterior inference on

LOGOS. But as demonstrated in a preliminary experiment on modest-sized input sequences (see

§4.7.2), the Gibbs sampler converges very slowly and appears impractical for supporting a realistic

motif detection program. In Chapter 4, we develop a deterministic approximation method called

generalized mean field inference. Essentially, a GMF algorithm alternates between solving one of

the two sub-problems mentioned before in the respective submodel ofLOGOS, conditioning on

the approximate solution of the other sub-problem, and then updating the approximate solutions

using the newly obtained solutions, which yields a better approximation. It can be shown that this

algorithm is guaranteed to converge to a locally optimal solution, and defines a lower bound on the

likelihood of the study sequences. A full description of the theory and algorithm of GMF inference

in general graphical models, and specifically the fixed-point equations for theLOGOS model, is

deferred to Chapter 4. In the following, we present an extensive validation of theLOGOS model

on fully annotated semi-realistic datasets and real genomic sequences from yeast, and a preliminary

test on a small set of unannotatedDrosophilagenomic sequences.

2.6.1 Experiments

2.6.1.1 Performance on semi-realistic sequence data

Recall that in§2.5, we validated the utility of the MotifPrototyper model forde novomotif de-

tection in conjunction with a trivial global model — oops, which assume one motif per sequence.

Now we consider a more realistic scenario, in which each study sequence contains multiple mo-

tifs. We compare three variants of theLOGOS model for this setting, ordered by decreasing model

expressiveness, HMDM+HMM (LOGOShh), PM+HMM (LOGOSph) and PM+UI (LOGOSpu).

Specifically, a slightly simplifiedLOGOShh is used for the task herein, where the global submodel

is a simpler HMM containing only a single global background state in addition to the motif states
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(meaning that no CRM structure is modeled), rather than using the highly elaborated CisModuler

Bayesian HMM tailored for higher eukaryotic sequences.

Single motif, and multiple instances per sequence. Under a realistic motif detection condition,

the number of motif instances is unknown. Rather than trying all possible numbers of occurrences

suggested by the user or decided by the algorithm and reporting a heuristically determined plau-

sible number,LOGOS uses the global HMM model to describe a posterior distribution for motif

instances, which depends on both the prespecified indicator state transition probabilities and the ac-

tual sequencey to be analyzed. In this experiment, the transition probabilities are empirically set at a

default value to reflect our rough estimates of motif frequencies (i.e., 5%). But as more training data

of annotated regulatory sequences are collected, these parameters can be fit in a genome-specific

fashion.

Table 2.6: Performance ofLOGOS for single motif detection, with unknown number of instances per sequence.

motif LOGOShh LOGOSph LOGOSpu

name FP FN FP FN FP FN

abf1 0.3115 0.2116 0.6774 0.1957 0.7917 0.9123
gal4 0.1569 0.1569 0.1895 0.1534 0.2917 0.7939
gcn4 0.1820 0.2355 0.6142 0.2821 0 0.9594
gcr1 0.1962 0.2134 0.3371 0.2038 0.3333 0.9437
mat 0.0723 0.0337 0.3563 0 0.5000 0.9643
mcb 0.3734 0.0910 0.3628 0.0792 0.3333 0.9431
mig1 0.0774 0 0.0854 0 0.9764 0.1000
crp 0.3768 0.3398 0.2727 0.5294 0 0.9487

Table2.6summarizes the performance of three variants ofLOGOS for single motif detection,

with an unknown number of instances per sequence. We present the median false positive (FP)

and false negative (FN) rates (in terms of finding each instance of the motifs within an offset of

3 bp) of motif detection experiments over 20 test datasets. Each test dataset consists of 20 se-

quences, each generated by planting (uniformly at random) 0–7 instances of a motif (real sites from

SCPD), together with its permuted “decoy,” in a 300–400 bp random background sequence. As

Table2.6 shows,LOGOSpu yields the weakest results, losing in all 8 motif detections (in terms

of (FP+FN)/2), suggesting that the conventional PM+UI model, which is used in MEME, and with
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slight variation, in AlignACE and BioProspector, is not powerful enough to handle non-trivial de-

tection tasks as posed by our test set.LOGOSph improves significantly overLOGOSpu, even

yielding the best performance in one case (formcb), suggesting that the HMM global model we

introduced indeed strengthens the motif detector. Finally, as hoped,LOGOShh yields the strongest

results, performing best on 7 of the 8 motifs, convincingly showing that capturing the internal struc-

tures of motifs and making use of prior knowledge from known motifs, combined with the use of

the HMM global model, can yield substantially improved performance. Our results are reasonably

robust under different choices of the global HMM parameters.

Simultaneous detection of multiple motifs. Detecting multiple motifs simultaneously is ar-

guably a better strategy than detecting one at a time and then deleting or masking the detected

motifs, especially when motif concentrations are high, because the latter strategy mistakenly treats

the other motifs as background, causing potentially suboptimal estimation of both motif and back-

ground parameters. The global HMM model we propose readily handles simultaneous multiple

motif detection (say, findingK motifs at a time): we only need to encode all motif states into the

state spaceS of the motif indicatorX, and perform standard HMM inference. The locations of all

motifs can be directly read off from the state configuration ofx. Table2.7 summarizes the results

on 20 test sets each containing 20 sequences harboring motifsabf1, gal4 andmig1 (0–6 total in-

stances/seq). The upper panels show the predictive performance based on the optimal (in terms of

maximal log-likelihood ofy from 50 independent runs of the GMF algorithm) posterior expectation

of X. Note that with a MotifPrototyper local model,LOGOShh exhibits better performance. In the

lower panels, we show the best FP-FN results in the top three predictions (i.e., top 3 PWMs for each

of theK motifs we look for) made byLOGOS (note that ‘K-at-a-time’ prediction yields a total

of 3K possibly redundant motif patterns). This is close to the stochastic dictionary scenario where

the predicted motif is to be identified from the optimal dictionary of the patterns resulting from the

motif detection program[Gupta and Liu, 2003]. It is expected that a human observer could easily

pick out the biologically more plausible motifs when given a visual presentation of the most likely
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motifs suggested by a motif finder.

Table 2.7: Simultaneous multiple motif detection (median FP-FN rate over 20 test sets containing three motifs.)

LOGOShh LOGOSph

FP FN FP FN

abf1 0.3591 0.3274 0.7778 0.7434MAP pre-
diction gal4 0.1259 0.1714 0.3751 0.1491

mig1 0.3849 0.2243 0.3481 0

abf1 0.3841 0.2400 0.4721 0.3972best of top 3
prediction gal4 0.0926 0.0986 0.2609 0.1255

mig1 0.1250 0.0333 0.2318 0

Detecting motifs of uncertain lengths. A useful property of the MotifPrototyper submodel is

that it actually does not need to know the exact lengths of the motifs to be detected, since the Mo-

tifPrototyper allows a motif to start (and end) with consecutive heterogeneous sites. Thus, a blurred

motif boundary is permissible, especially when the resulting window is large enough to cover at

least the entire length of the motif. As a result, we do not have to know the exact length of the

motif, but just need to roughly guess it conservatively, duringde novomotif detection. This is

another appealing feature ofLOGOS, which extends its flexibility. As shown in Table2.8, even

in simultaneous multiple motif detection, with improperly specified motif lengths,LOGOShh per-

forms nearly as well as when motif lengths are precisely specified, whereasLOGOSph is not as

good.

Table 2.8: Simultaneous detection of three motifs, with lengths improperly specified (18, 22, and 20 bp, respectively,
instead of the actual 13, 17, and 11 bp).

LOGOShh LOGOSph

FP FN FP FN

abf1 0.7295 0.6667 0.8021 0.7680MAP pre-
diction gal4 0.1167 0.2042 0.2357 0.1325

mig1 0.4183 0.2128 0.8150 0.8381

abf1 0.3310 0.2804 0.5742 0.4821best of top 3
prediction gal4 0.0955 0.1222 0.1882 0.1250

mig1 0.2124 0.1327 0.3218 0.1623

2.6.1.2 Motif detection in yeast promoter regions

In this section we report a performance comparison ofLOGOS (HMM+HMDM) with two popular

motif detection programs, MEME and AlignACE, on 12 yeast genomic sequence sets gathered
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from the SCPD database (the selection is based on having at least a total of 5 motif instances in

all sequences and the motif being independent of our training set). Each sequence set consists of

multiple yeast promoter regions each about 500 bp long and containing on both strands an unknown

number of occurrences of a predominant motif (but also possibly other minor motifs) as specified

by the name of the dataset (Table2.9, where the rightmost column gives the number of sequences

in each dataset). Note that both the relatively large sizes of the input sequences and the possible

presence of motifs other than what has been annotated make the motif finding task significantly more

difficult than a semi-realistic test data or small, well curated real test data. We use the following

command to run MEME: “ meme $efile -p 2 -dna -mod tcm -revcomp -nmotifs 1. ” In practice, this

means that it searches for a DNA sequence on both strands for at most one motif, which can occur

zero or more times in any given sequence. AlignACE is run with default command-line arguments

nearly identical to those for MEME, with the only difference that AlignACE can return multiple

predicted motifs (of which we select the best match from the top five MAP predictions).LOGOS

is set in the multiple-detection mode and is used to make two motif predictions simultaneously. As

shown in Table2.9, for this non-trivialde novomotif detection task,LOGOS outperforms the other

two programs by a significant margin.

Table 2.9: Comparison of motif detectors on yeast promoter sequences.

set LOGOS MEME AlignACE seq
name FP FN FP FN FP FN no.

abf1 0.7949 0.6522 1.0000 1.0000 0.5294 0.6087 20
csre 0.4444 0.1667 0.7778 0.5000 0.8000 0.5000 4
gal4 0.1333 0.0714 0.1667 0.2857 0.3333 0.1429 6
gcn4 0.3529 0.1852 1.0000 1.0000 0.3333 0.5556 9
gcr1 0.2859 0.6154 1.0000 1.0000 0.4545 0.4615 6
hstf 0.8571 0.5556 0.6000 0.5556 0.8500 0.6667 6
mat 0.4194 0 0.3750 0.5625 0.2500 0.2500 7
mcb 0.4706 0.2500 0.2000 0.3333 0.2500 0.2500 6
mig1 0.8077 0.2857 1.0000 1.0000 0.8333 0.7857 22
pho2 0.9024 0.5000 1.0000 1.0000 1.0000 1.0000 3
swi5 0.7647 0.5000 1.0000 1.0000 0.9412 0.7500 2
uash 0.8250 0.6818 1.0000 1.0000 0.9231 0.9545 18

2.6.1.3 Motif detection inDrosophilaregulatory DNAs

In this section, we report on a preliminaryde novomotif discovery analysis of the regulatory re-

gions of the 9Drosophilagenes involved in body segmentation. The input data consists of 9 DNA
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sequences ranging from 512 to 5218 bp, as described in[Bermanet al., 2002]. Biologically iden-

tified motifs includebcd, cad, hb, kni andkr. For comparison, we provide the PWMs postulated

by Bermanet al. for these five motifs, which were used in their motif scan analysis (Figure2.19).

The sources of all PWMs are biologically identified sequence segments from the literature (which

are unaligned, ranging from 5 to 93 instances per motif, and about20 ∼ 40 bases in length). The

PWMs are derived from an alignment of all these identified motif sequences.
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Figure 2.19: Bermanet al.’s Drosophilamotif patterns derived from multi-alignments of biologically identified motif
instances.
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Figure 2.20: Motif patterns detected byLOGOS in the regulatory regions of 9Drosophilagenes.

We appliedLOGOS (which is set to identify 4 motifs at a time) to theDrosophiladataset;

Figure2.20gives a partial list of the top-scoring motif patterns (of the top three runs out of a total

of 50 runs, evaluated by the likelihood under theLOGOS model at convergence). Note that the

logosshown here are not the conventional sequence logos based on counts of aligned nucleotides;

instead we use the logo visualization software to graphically present theBayesian estimateof the

position-specific multinomial parametersθ of each motif, so they are not necessarily equal to the

usual nt frequencies of aligned sequences, but represent a more robust probabilistic model of the
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motif sequences. A visual inspection reveals that patterns 1 and 5 correspond to thehb andcad

binding sites, respectively (as confirmed by the matching locations of our results and the sequence

annotations). Part of pattern 2 agrees with the reverse complement of thekr motif (containing -

CCCxTT-), but this motif seems to be actually a “two-block” motif because the pattern we detected

under a longer estimated motif length contains an additional co-occurring conserved pattern a few

bases upstream. Part of pattern 7 is close to thebcdmotif (containing -AATCC-) but also contains

additional sites (i.e., the three highly conserved C’s upstream), which turned out to result from a

number of false positive substrings picked up together with the truebcdmotifs. A careful exami-

nation of pattern 6 suggests that it may be actually derived from putative motif subsequences that

correspond to thekni binding site. This is not obvious at first because it appears quite different from

thekni logo in Figure2.19. But after seeing an examplekni site in stripe 2/7: 5’agaaaactagatca3’,

starting at position 35, we realized that this answer might be plausible. The discrepancy is likely due

to artifacts in the original generation of the alignment data supporting thekni logo: only 5 biolog-

ically identified instances were used and they are quite diverse; the resulting multiple alignment is

visually sub-optimal in that homogeneous sites are severely interspersed with heterogeneous sites.

Patterns 3, 4, and 8 are putative motifs not annotated in the input sequences. We also ran the same

dataset through MEME (also 4 patterns to be found a time) and the output is in general weaker and

harder to interpret. Figure2.21shows the best three patterns, from which one could recognize ahb

(pattern 1) and acad (pattern 3). Note that the motif logos given in Figure2.19are based on the

nucleotide-frequency profiles of biologically identified instances from many sources. Thus it is not

surprising that some of the patterns we found are similar to but do not match the logos in Figure2.19

exactly since our logos are derived from Bayesian estimates of the motif parameters and our data

source consists of a small number of regulatory regions of theDrosophilagenome, which might be

smaller and less representative compared to the data source underlying Figure2.19(except forkni).
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Figure 2.21: Motif patterns detected by MEME in the regulatory regions of theDrosophilaeve-skipped gene.
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2.7 Conclusions

In this chapter, we presented a modular, parametric Bayesian model,LOGOS, to capture various

aspects of the characteristics of DNA motifs in the transcriptional regulatory sequences, including

canonical structures of motif families, syntax of motif organization, and the distribution of back-

ground sequences. Using a graphical model formalism,LOGOS manifests a modular architecture

for the motif model, which consists of a local submodel for the sequence composition of motif sites,

a global submodel for the locational distribution of motif sites in the genomic sequences, and a

background submodel for non-motif sequences — addressing different aspects of motif properties

in a divide-and-conquer fashion.

We developed a MotifPrototyper model for local motif alignment, which captures site depen-

dencies inside motifs and incorporates learnable prior knowledge from known motifs for Bayesian

estimation of the PWMs of novel motifs in unseen sequences. We also developed a CisModuler

HMM model for the global motif distribution, which introduces dependencies among motif in-

stances and allows efficient and consistent inference of motif locations. A deterministic algorithm

based on generalized mean field approximation will be described in Chapter 4 to solve the complex

missing value and Bayesian inference problems associated with theLOGOS model. As will be

explained shortly, GMF allows probabilistic inference in the local alignment and the global distribu-

tion submodels to be carried out virtually separately with a proper Bayesian interface connecting the

two processes. This divide and conquer strategy aligned with the modular architecture ofLOGOS

makes it much easier to develop more sophisticated models for various aspects of motif analysis

without being overburdened by the daunting complexity of the full motif problem.

Due to the functional diversity of the DNA motifs, it is expected that there could exist more

complex dependencies and regularities in the structures of motifs. Thus, further investigations into

these properties and more powerful local models for motifs are needed. Similarly, the HMM-based

global model we proposed is only a first step beyond the conventional UI model, and is only able to

capture dependencies between motifs and motif clusters at a very limited level (e.g., it cannot model
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2.7 Conclusions

higher-order dependencies such as hierarchical structures and long-distance influence between mo-

tifs). More expressive models are needed to achieve these goals. Nevertheless, under theLOGOS

architecture, extensions from baseline models are modular and the probabilistic computations in-

volved can also be handled in a divide-and-conquer fashion via generalized mean field inference.

We are optimistic thatLOGOS can serve as a flexible framework for motif analysis in biopolymer

sequences.
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Chapter 3

Modeling Single Nucleotide
Polymorphisms for Haplotype Inference
— A Nonparametric Bayesian Approach

In addition to unveiling the genetic code underlying the structure, localization, and regulation of

biopolymer macromolecules such as proteins and RNAs that are essential for biological activities,

and thereby facilitating mechanistic analysis of the function and evolution of various organisms, the

availability of nearly complete genome sequences for organisms such as humans also makes it possi-

ble to begin to explore individual differences between DNA sequences on a genome-wide scale, and

to search for associations of such genotypic variations with diseases and other phenotypes[Risch,

2000].

The largest class of individual differences in DNA are thesingle nucleotide polymorphisms, or

SNPs. Millions of SNPs have been detected thus far out of an estimated total of ten million common

SNPs[Sachidanandamet al., 2001; Venteret al., 2001]. SNPs are promising markers for population

genetic studies and for localizing genetic variations potentially responsible for complex diseases due

to their high density, low mutation rate, and amenability to automated genotyping[Patilet al., 2001].

However, each individual SNP only yields limited information regarding populational variation and

disease association[Akey et al., 2001]. It is known that studies using haplotype information of

multiple linked SNPs generally outperform those using single-marker analysis[Weiss and Clark,

2002; Clark, 2003]. Thus it is important to know the haplotype structure of the genome in the
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population under study. In this chapter, we present a novel nonparametric Bayesian approach for

haplotype inference from SNP genotype data. Some of the material in this thesis has appeared

before in[Xing et al., 2004c].

3.1 Biological Foundations and Motivation

Recall that a chromosome is a complete strand of DNA in the genome. For diploid organisms such

as humans, each individual has two physical copies of each chromosome in his/her somatic cells.

One copy is inherited from the mother, and the other from the father.

A SNP commonly has two variants, oralleles, at a single chromosomal locus in the popula-

tion, corresponding to two specific nucleotides chosen from{A,C,G, T}. 1 Essentially, SNPs

are genetic variations in the same chromosomal locus among different individuals in a population,

which are usually neutral nucleotide substitutions that are not necessarily functionally essential and

do not substantially affect the fitness of their bearers[Kruglyak and Nickerson, 2001]. Thus, they

are believed to result from ancient neutral mutations that took place in the ancestors of the modern

population, and may carry important information about tribal or ethnic group formation, evolution

and migration[Stoneking, 2001].

Figure 3.1: SNP haplotypes and possible phenotype associations.

A haplotypeis a list of alleles at consecutive sites in a local region of a single chromosome.

1An allele is a variant of a SNP, a gene, or some other entity associated with sites in DNA. In our case (SNPs), the sites
are single nucleotides, and the alleles can generally be assumed to be binary, reflecting the fact that lightning (mutation)
doesn’t tend to strike twice in the same place.
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It can be regarded as a state configuration of a particular chromosome (Fig.3.1). Although in

general the individual SNPs are themselves not related to functionality, the SNPs haplotypes may

co-occur with some disease-related phenotypes due to physical proximity of the haplotype to pos-

sible causal regions on the DNA genome, which could lead to co-inheritance[Akey et al., 2001;

Daly et al., 2001; Pritchard, 2001]. Therefore, haplotypes can be used for inferring the chromo-

somal locations of the genes underlying diseases. Assuming no recombination in a local region

containing multiple SNPs, a haplotype is inherited as a unit. Recall that for diploid organisms

(such as humans) the chromosomes come in pairs. Thus two haplotypes go together to make

up a genotype, which is the list ofunorderedpairs of alleles in a region. That is, a genotype

is obtained from a pair of haplotypes by omitting the specification of the association of each al-

lele with one of the two chromosomes—itsphase. Phase information can be critical to the map-

ping of a disease gene, by allowing a more precise and robust localization of it within a target

area via a linkage analysis which assesses the level and significance of statistical associations be-

tween disease phenotypes and genetic markers[Akey et al., 2001; Clark, 2003]. To date, hap-

lotype mapping has been successfully employed for a number of monogenic diseases, such as

cystic fibrosis and Huntington’s[Lazzeroni, 2001]; and has appeared valuable in locating sus-

ceptibility genes in complex multigenic disorders[Puffenbergeret al., 1994; Hugot et al., 2001;

Rioux et al., 2001]. In these cases, exploiting haplotype information can greatly reduce the num-

ber of assays necessary to genotype a subject’s genome and thus facilitate comprehensive whole-

genome association studies for mapping complex diseases.

Common biological methods for assaying genotypes typically do not provide phase information

for individuals with heterozygous genotypes at multiple autosomal loci (Fig.3.2); phase can be

obtained at a considerably higher cost via molecular haplotyping[Patil et al., 2001]. In addition to

being costly, these methods are subject to experimental error and are low-throughput. Alternatively,

phase can also be inferred from the genotypes of a subject’s close relatives[Hodgeet al., 1999].

But this approach is often hampered by the fact that typing family members increases the cost and

does not guarantee full informativeness. It is desirable to develop automatic and robust methods for
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Figure 3.2: Phase ambiguity. For a heterozygous individual, who has different SNP alleles on the pair of chromosomes at
multiple loci, a standard sequencing experiment only yields the joint identity of both alleles of each SNP locus (i.e., the
genotypes), whereas the exact chromosomal association of the alleles (i.e., the haplotype, or phase) of the SNP sequence
is lost. (This is because that it is technically difficult to sequence the paired chromosomes in a cell separately in a
standard sequencing experiment, which simply blends all cell extracts in the same test tube.) It is often the case that for
given genotypes of multiple SNPs, there exist multiple consistent haplotype reconstructions. For example, the genotypes
shown here can be consistently explained by either one of these two possible associations of alleles to chromosomes.

inferring haplotypes from genotypes and possibly other data sources (e.g., pedigrees). As pursued in

this chapter,in silico phasing programs based on explicit statistical models are a feasible approach

to meet these goals.

3.2 Problem Formulation and Overview of Related Work

From the point of view of population genetics, the basic model underlying the haplotype inference

problem is a finite mixture model. That is, lettingH denote the set of all possible haplotypes

associated with a given region (a set of cardinality2k in the case of binary polymorphisms, wherek

is the number of heterozygous SNPs), the probability of a genotype is given by:

p(g) =
∑

h1,h2∈H
p(h1, h2)p(g|h1, h2), (3.1)

where the likelihood model (i.e., 2nd term on the r.h.s.), which defines the probability of an (ob-

served) genotype pattern given a pair of (latent) haplotype patterns, is referred to as agenotype

model; the mixing proportion (i.e., 1st term on the r.h.s.), which defines the joint probability of a
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pair of haplotypes, is referred to as ahaplotype model; and the space of all possible haplotypes in

this region in a population is called thepopulation haplotype pool. In the standard setting (e.g.,[Ex-

coffier and Slatkin, 1995]), one usually assumes that:

• The genotype model is deterministic (i.e., typing is considered as noiseless),

p(h1, h2)p(g|h1, h2) = I(h1 ⊕ h2 = g)

whereI(h1 ⊕ h2 = g) is the indicator function of the event that haplotypesh1 andh2 are

consistent withg.

• The pair of haplotypes of an individual are subject to Hardy-Weinberg equilibrium (HWE)

(i.e., the pair of haplotypes are independently inherited)[Lange, 2002], an assumption that is

standard in the literature and will also be made here,

p(h1, h2) = p(h1)p(h2)

• The size of the the population haplotype pool is set fixed (to a manageable integer) to avoid

exhaustive enumeration,

H = K � 2k

Given this basic statistical structure, the haplotype inference problem can be viewed amissing

value inferenceandparameter estimationproblem. Numerous statistical models and statistical in-

ference approaches have been developed for this problem, which will be briefly reviewed shortly.

There is also a plethora of combinatorial algorithms based on various deterministic models of hap-

lotypes. While recognizing their effectiveness in a number of occasions and important insights they

provide to the problem, we choose to forego an extensive discussion of this literature (but see[Gus-

field, 2004] for an overview) and focus on statistical methods in this chapter. It is our view that

the statistical approaches provide more flexibility in handling missing values (e.g., occasional miss-

ing genotyping outcomes), typing errors, evolution modeling and more complex scenarios on the

horizon in haplotype modeling (e.g., recombinations, gene linkage, etc.).
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3.2.1 Baseline Finite Mixture Model and the EM Approach

Given the statistical structure illustrated in Eq. (3.1), the simplest methodology for haplotype in-

ference is maximum likelihood via the EM algorithm, treating the haplotype identities as latent

variables and estimating the parametersp(h), usually referred to aspopulation haplotype frequen-

ciesfh, assuming that the individual haplotypes areiid following a multinomial distribution pa-

rameterized by{fh : h ∈ H} [Excoffier and Slatkin, 1995]. This methodology has rather severe

computational requirements, in that a probability distribution must be maintained on the (large) set

of possible haplotypes, but even more fundamentally it fails to capture the notion that small sets of

haplotypes should be preferred. This notion derives from an underlying assumption that for rela-

tively short regions of the chromosome there is limited diversity due to population bottlenecks and

relatively low rates of recombination and mutation.

The key shortcoming of the aforementioned EM-based finite mixture model lies in its inability

to take into account uncertainty about the the number of haplotypes (i.e., the number of mixture

components), and to impose appropriate statistical bias. This problem is, up to a terminological

mapping, closely related to clustering problems that are commonly studied in machine learning and

data mining literature. In particular, collaborative filtering involves the clustering of sets of choices

made by sets of individuals, and this clustering problem is closely related to the clustering of sets

of alleles in sets of chromosomes. In these domains, the perennial problem of ”how many clus-

ters?” is well known, and is particularly salient in large data sets where the number of clusters needs

to be relatively large and open-ended. At one time, an EM algorithm can only handle a pre-fixed

integer number of mixture components (e.g.,2k or a smaller numberK of possible haplotypes).

In haplotype phasing, such an approach does not return any estimate of uncertainty about the spe-

cific number of haplotypes that it finds, and heuristics such as cross-validation needs to be used to

empirically pick a favorableK.
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3.2.2 Bayesian Methods via MCMC

One approach to dealing with the issue of the unknown number of mixture components, and the

desirable bias for more compact phase reconstruction, is to formulate a notion of “parsimony,” and

to develop algorithms that directly attempt to maximize parsimony. Several important papers have

taken this approach[Clark, 1990; Clark et al., 1998; Gusfield, 2002; Eskinet al., 2003] and have

yielded new insights and algorithms. Another approach is to elaborate the probabilistic model,

in particular by incorporating priors on the parameters. Different priors have been discussed by

different authors as outlined in the following. These models provide implicit notions of parsimony,

via the implicit “Ockham factor” of the Bayesian formalism[Bernardo and Smith, 1994].

3.2.2.1 Simple Dirichlet priors

The PL model proposed by Niuet al. [Niu et al., 2002], which was implemented in the software

HAPLOTYPER, incorporates simple Dirichlet priors to the haplotype frequencies,{fh}, to be esti-

mated (no prior for the haplotypes themselves are introduced):

p({fh}) =
Γ(
∑

h βh)∏
h Γ(βh)

∏
h

[
fh

]βh−1
(3.2)

As indicated by Stephenset al. [2003], the Dirichlet priors correspond to a simple, but highly

unrealistic assumption about the genetic processes underlying the evolution of the study population

— that the genetic sequence of a mutant offspring does not depend on the progenitor sequence.

As is standard in Bayesian inference, an MCMC algorithm, specifically, a novel Gibbs sam-

pling scheme, was used to compute the Monte Carlo estimates, i.e., the haplotype frequencies and

the individual haplotypes. In particular, two computational tricks —prior annealingandpartition-

ligation (from which comes the name of the model) — appeared to significantly reduce the com-

putational effort required to obtain a good approximation to the true posterior distribution of the

aforementioned estimators of interest.
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3.2.2.2 The coalescent prior

The model introduced by Stephenset al. [2001] (referred to as the SSD model after its authors) is

based on a more elaborate Bayesian framework, which assumes that the unobserved haplotypes are

subject to a prior that considers how randomly sampled individuals are related genealogically via a

neutral coalescent[Stephens and Donnelly, 2000]. For computational feasibility (i.e., not having to

marginalize over a space of all valid genealogical trees), they devised a Gibbs sampler that samples

individual haplotypes from a conditional distribution that approximates the coalescent:

π(h = β|H) =
∑
α∈H

∞∑
s=0

rα
r

( θ

r + θ

)s θ

r + θ
(T s)αβ , (3.3)

whererα is the number of haplotypes of typeα in the setH (the set of all haplotypes in the study

population excluding the next sampled haplotype,h), r is the cardinality ofH, θ is a scaled mutation

rate, andT is the substitution probability matrix between all pairs of haplotypes.

The coalescent prior is arguably more realistic than the “parent-independent” mutation model

underlying the simple Dirichlet prior in the PL model, and favors mutant offspring that differ only

slightly from the progenitor sequences, hence implicitly introducing a parsimonious bias. A recent

paper by Linet al.[2002] also described a number of modifications to the SSD model, which appears

to slightly compromise the approximation to the coalescent prior but on the other hand improves the

efficiency of the sampling algorithm in the original implementation of SSD. The latest version of

the software PHASE, where the coalescent prior is used, also assimilates the computational tricks

(i.e. prior annealing and ligation) contributed by Niuet al. [2002], and represents the state of the art

haplotype inference program, significantly and constantly beating other extant methods on real and

simulated data.

3.2.3 Bayesian Network Prior

Note that the coalescent model does not readily generalize to more complex scenarios such as pos-

sible recombinations within a stretch of SNPs. A recombination could reduce the linkage disequi-

librium, or in other words, decouple the subsets of SNPs on the two sides of the recombination spot
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on the chromosome. Exploiting this phenomenon, or finding SNP blocks with high internal linkage

(even though they do not necessarily arise from the presence of true recombinations hotspots that

define their boundaries), could help to optimally decompose the difficult problem of phasing long

stretches of SNPs into multiple subproblems of manageable sizes, i.e., phasing each block of SNPs

separately, and then trying to stitch together the sub-solutions. Greenspanet al. [2003] attempted to

model the events of recombination on a chromosome as a 1st-order hidden Markov process, defining

a segmentation of the whole sequence of SNPs. Associated with each block of consecutive SNPs

resulting from the segmentation is a block-specific distribution ofancestral haplotypes. For each

chromosome, the choice of ancestral haplotype at each block is determined by the latentrecombina-

tion variablesassociated with each block. The configuration of the recombination variable at each

block is 1st-order Markovian with respect to the recombination variables of the previous blocks.

Within each block, each individual haplotype is a possibly corrupted (via mutations) version of the

ancestral haplotype under a stochastic mutation model. This model readily handles missing values

and mis-typings in SNP data acquisition, and elegantly facilitates a divide-and-conquer strategy for

large phasing problem. Note that the number of ancestral haplotypes at each block and the bound-

aries of the blocks are unknown model parameters. A minimum description length (MDL) criterion

is used for model selection in conjunction with an EM algorithm.

Identifying and interpreting haplotype blocks is a standing-along problem that has received

much attention in recent years due to its relevance to understanding the linkage disequilibrium

structures of chromosomes and the evolution history of the genome. In addition to the work of

Greenspanet al. [2003], numerous methods outside the context of haplotype phasing (i.e., focusing

on empirically phased data), such as dynamic programming[Zhanget al., 2002], HMM [Daly et

al., 2001], and MDL [Anderson and Novembre, 2003], have been reported. We view these as a

complementary issue to the problem we are interested in here, and forego an extensive review.

119



3.2 Problem Formulation and Overview of Related Work

3.2.4 Summary and Prelude to Our Approach

Extant approaches for phasing rely on the plausible assumption that, locally, haplotype data has lim-

ited diversity. This constraint is modeled in different ways by the different methods, often leading to

“guessing” in advance a parameter that represents the size of the genetic pool in the population. No

current approach suggests an explicit probabilistic model for this quantity, but rather an empirical

estimate is used. Such an approach fails to take into account uncertainty in this important quantity.

Moreover, to ensure success, this quantity has to be set large so that no or few individual haplo-

type configurations will be missed. This heuristic causes a computational burden and may bias the

algorithm toward non-parsimonious solutions with a large number of rare haplotypes.

In the following we also take a Bayesian statistical approach, but we attempt to provide more ex-

plicit control over the number of inferred haplotypes than has been provided by the statistical meth-

ods proposed thus far. The resulting inference algorithm has commonalities with the parsimony-

based schemes.

The approach to be presented is based on a nonparametric prior known as theDirichlet pro-

cess[Ferguson, 1973]. In the setting of finite mixture models, the Dirichlet process — not to be

confused with the Dirichlet distribution — is able to capture uncertainty about the number of mix-

ture components[Escobar and West, 2002]. The basic setup can be explained in terms of an urn

model, and a process that proceeds through data sequentially. Consider an urn which at the out-

set contains a ball of a single color. At each step (i.e., for each data point) we either draw a ball

from the urn and replace it with two balls of the same color, or we are given a ball of a new color

which we place in the urn, with a parameter defining the probabilities of these two possibilities. The

association of data points to colors defines a “clustering” of the data.

To make the link with Bayesian mixture models, we associate with each color a draw from

the distribution defining the parameters of the mixture components. This process defines aprior

distribution for a mixture model with a random number of components. Multiplying this prior by

a likelihood yields aposterior distribution. Markov chain Monte Carlo algorithms have been de-

veloped to sample from the posterior distributions associated with Dirichlet process priors[Escobar
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and West, 2002; Neal, 2000].

The usefulness of this framework for the haplotype problem should be clear—using a Dirich-

let process prior we in essence maintain a pool of haplotype candidates that grows as observed

genotypes are processed. The growth is controlled via a parameter in the prior distribution that cor-

responds to the choice of a new color in the urn model, and via the likelihood, which assesses the

match of the new genotype to the available haplotypes.

To expand on this latter point, an advantage of this probabilistic formalism is its ability to

elaborate the observation model for the genotypes to include the possibility of errors. In particular,

the indicator functionI(h1 ⊕ h2 = g) in Eq. (3.1) is suspect—there are many reasons why an

individual genotype may not match with a current pool of haplotypes, such as the possibility of

mutation or recombination in the meiosis for that individual, and/or errors in the genotyping or data

recording process. Such sources of small differences should not lead to the inference procedure

spawning new haplotypes.

In the following we present a statistical model for haplotype inference based on a Dirichlet

process prior and a likelihood that includes error models for genotypes. A Markov chain Monte

Carlo procedure, in particular a procedure that makes use of both Gibbs and Metropolis-Hasting

updates, for posterior inference, will be described in Chapter 5.

3.3 Haplotype Inference via the Dirichlet Process

The input to a phasing algorithm can be represented as agenotype matrixG with columns cor-

responding to SNPs in their order along the chromosome and rows corresponding to genotyped

individuals.Gi,j represents the information on the two alleles of thei-th individual for SNPj. we

denote the two alleles of a SNP by 0 and 1, andGi,j can take on one of four values: 0 or 1, indicating

a homozygous site; 2, indicating a heterozygous site; and ’?’, indicating missing data.2

We will describe the model in terms of a pool of ancestral haplotypes, ortemplates, from which

2Although we focus on binary data here, it is worth noting that our methods generalize immediately to non-binary
data.
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each individual haplotype originates[Greenspan and Geiger, 2003]. The haplotype itself may un-

dergo point mutation with respect to its template. The size of the pool and its composition are both

unknown, and are treated as random variables under a Dirichlet process prior. We begin by pro-

viding a brief description of the Dirichlet process and subsequently show how this process can be

incorporated into a model for haplotype inference.

3.3.1 Dirichlet Process Mixture

Rather than present the Dirichlet process in full generality, we focus on the specific setting of mix-

ture models, and make use of an urn model to present the essential features of the process. For a

fuller presentation, see, e.g.,Ishwaran and James[2001]. Assume that datax arise from a mixture

distribution with mixture componentsp(x|φ). Also assume the existence of abase measureG(φ),

which is one of the two parameters of the Dirichlet process. (The other is the parameterτ , which

we present below). The parameterG(φ) is not the prior forφ, but is used to generate a prior forφ,

in the manner that we now discuss.

Consider the following process for generating samples{x1, x2, . . . , xn} from a mixture model

consisting of an unspecified number of mixture components, orequivalence classes:

• The first samplex1 is sampled from a distributionp(x|φ1), where the parameterφ1 is sampled

from the base measureG(φ).

• Theith sample,xi, is sampled from the distributionp(x|φci), where:

– The equivalence class of samplei, ci, is drawn from the following distribution:

p(ci = cj for somej < i|c1, . . . , ci−1) =
ncj

i− 1 + τ
(3.4)

p(ci 6= cj for all j < i|c1, . . . , ci−1) =
τ

i− 1 + τ
, (3.5)

wherenci is theoccupancy numberof classci—the number of previous samples be-

longing to classci.
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– The parameterφci associated with the mixture componentci is obtained as follows:

φci = φcj
if ci = cj for some j < i (i.e.,ci is a populated equivalence class)

φci ∼ G(φ) if ci 6= cj for all j < i (i.e.,ci is a new equivalence class)

Eqs. (3.4) and (3.5) define a conditional prior for the equivalence class indicatorci of each sam-

ple during a sequential sampling process. They imply a self-reinforcing property for the choice of

equivalence class for each new sample—previously populated classes are more likely to be chosen.

It is important to emphasize that the process that we have discussed will be used as aprior

distribution. We now embed this prior in a full model that includes a likelihood for the observed

data. In Section5.3we develop Markov chain Monte Carlo inference procedures for this model.

3.3.2 DP-Haplotyper: a Dirichlet Process Mixture Model for Haplotypes

Hi1

Gi

Hi0

C i1

C i0

γτ

A k,2 A k,JA k,1

...Hi  ,2 Hi  ,J0 0
Hi  ,10

...Hi  ,2 Hi  ,J1 1
Hi  ,11

Gi,2 Gi,J

I

...

...Gi,1

θk

Ak

G0

K

Figure 3.3: The graphical model representation of the haplotype model with a Dirichlet process prior. Circles represent
the state variables, ovals represent the parameter variables, and diamonds represent fixed parameters. The dashed boxes
denote sets of variables corresponding to the same ancestral template, haplotype, and genotype, respectively. The solid
boxes correspond to i.i.d. replicates of sets of variables, each associated with a particular individual, or ancestral template,
respectively.

Now we present a probabilistic model,DP-Haplotyper, for the generation of haplotypes in

a population and for the generation of genotypes from these haplotypes. We assume that each
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individual’s genotype is formed by drawing two randomtemplatesfrom an ancestral pool, and

that these templates are subject to random perturbation. To model such perturbations we assume

that each locus is mutated independently from its ancestral state with the same error rate. Finally,

assume that we are given noisy observations of the resulting genotypes. The model is displayed as

a graphical model in Figure3.3.

Let J be an ordered list of loci of interest. For each individuali, denote his/her paternal haplo-

type byHi0 := [Hi0,1, . . . ,Hi0,J ] and maternal haplotype byHi1 := [Hi1,1, . . . ,Hi1,J ]. We denote

a set of ancestral templates byA = {A1, A2, . . .}, whereAk := [Ak,1, . . . , Ak,J ] is a particular

member of this set. The setA is a random variable whose cardinality and composition are not fixed,

but rather vary with realizations of the Dirichlet process and vary with the observed data.

In our framework, the probability distribution of the haplotype variableHit , where the sub-

subscriptt ∈ {0, 1} indexes paternal or maternal origin, is modeled by a mixture model with an

unspecified number of mixture components, each corresponding to an equivalence class associated

with a particular ancestor. For each individuali, we define the equivalence class variablesCi0

andCi1 for the paternal and maternal haplotypes, respectively, to specify the ancestral origin of

the corresponding haplotype. TheCit are the random variables corresponding to the equivalence

classes of the Dirichlet process. The base measureG of the Dirichlet process is a joint measure on

ancestral haplotypesA and mutation parametersθ, where the latter captures the probability that an

allele at a locus is identical to the ancestor at this locus. We letG(A, θ) = p(A)p(θ), and we assume

thatp(A) is a uniform distribution over all possible haplotypes. We letp(θ) be a beta distribution,

Beta(αh, βh), and we choose a small value forβh/(αh + βh), corresponding to a prior expectation

of a low mutation rate.

GivenCit and a set of ancestral templates, we define the conditional probability of the corre-

sponding haplotype instanceh := [h1, . . . , hJ ] to be:

p(Hit = h|Cit = k,A = a,θ) = p(Hit = h|Ak = a, θk = θ)

=
∏
j

p(hj |aj , θ), (3.6)
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wherep(hj |aj , θ) is the probability of having allelehj at locusj given its ancestor. Eq. (3.6)

assumes that each locus is mutated independently with the same error rate. For haplotypes,Hit,j

takes values from a setB of alleles. We use the followingsingle-locus mutation model:

p(hj |aj , θ) = θI(hj=aj)
( 1− θ

|B| − 1

)I(hj 6=aj)
(3.7)

whereI(·) is the indicator function.

The joint conditional distribution of haplotype instancesh = {hit : t ∈ {0, 1}, i ∈ {1, 2, . . . , I}}

and parameter instancesθ = {θ1, . . . , θK}, given the ancestor indicatorc of haplotype instances

and the set of ancestorsa = {a1, . . . , aK}, can be written explicitly as:

p(h,θ|c,a) ∝
∏
k

θmk+αh−1
k

( 1− θk

|B| − 1

)m′
k[1− θk

]βh−1
(3.8)

wheremk =
∑

j

∑
i

∑
t I(hit,j = ak,j)I(cit = k) is the number of alleles that were not mutated

with respect to the ancestral allele, andm′
k =

∑
j

∑
i

∑
t I(hit,j 6= ak,j)I(cit = k) is the number

of mutated alleles. The countmk = {mk,m
′
k} is a sufficient statistic for the parameterθk and

the countm = {mk,m′
k} is a sufficient statistic for the parameterθ. The marginal conditional

distribution of haplotype instances can be obtained by integrating outθ in Eq. (3.8):

p(h|c,a) =
∏
k

R(αh, βh)
Γ(αh +mk)Γ(βh +m′

k)
Γ(αh + βh +mk +m′

k)

( 1
|B| − 1

)m′
k

(3.9)

whereΓ(·) is the gamma function, andR(αh, βh) = Γ(αh+βh)
Γ(αh)Γ(βh) is the normalization constant asso-

ciated withBeta(αh, βh). (For simplicity, we use the abbreviationRh for R(αh, βh) in the sequel).

We now introduce anoisy observation modelfor the genotypes. We letGi = [Gi,1, . . . , Gi,J ]

denote thejoint genotypeof individual i at loci [1, . . . , J ], where eachGi,j denotes the genotype at

locusj. We assume that the observed genotype at a locus is determined by the paternal and maternal

alleles of this locus as follows:

p(gi,j |hi0,j , hi1,j , γ) = γI(hi,j=gi,j)[µ1(1− γ)]I(hi,j

1
6=gi,j)[µ2(1− γ)]I(hi,j

2
6=gi,j)

wherehi,j , hi0,j ⊕ hi1,j denotes the unordered pair of two actual SNP allele instances at locus

j; “
1

6=” denotes set difference by exactly one element (i.e., the observed genotype is heterozygous,
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3.3 Haplotype Inference via the Dirichlet Process

while the true one is homozygous); “
2

6=” denotes set difference of both elements (i.e., the observed

and true genotypes are different and both are homozygous); andµ1 andµ2 are appropriately de-

fined normalizing constants3. We place a beta priorBeta(αg, βg) on γ. Assuming independent

and identical error models for each locus, the joint conditional probability of the entire genotype

observationg = {gi : i ∈ {1, 2, . . . , I}} and parameterγ, given all haplotype instances is:

p(g, γ|h) =
∏

i

p(gi, γ|hi0 , hi1)

=
[
γ
]u+αg−1[

µ1(1− γ)
]u′[

µ2(1− γ)
]u′′[1− γ

]βg−1

= γαg+u−1
[
1− γ

]βg+u′+u′′−1
µu′

1 µ
u′′
2 , (3.10)

where the sufficient statisticsu = {u, u′, u′′} are computed asu =
∑

i,j I(hi,j = gi,j), u′ =∑
i,j I(hi,j

1

6= gi,j), andu′′ =
∑

i,j I(hi,j

2

6= gi,j), respectively. Note thatu + u′ + u′′ = IJ . To

reflect an assumption that the observation error rate is low we setβg/(αg + βg) to a small constant

(0.001). Again, the marginal conditional distribution ofg is computed by integrating outγ.

Having described the Bayesian haplotype model, the problem of phasing individual haplotypes

and estimating the size and configuration of the latent ancestral pool can be solved via posterior

inference given the genotype data. In Chapter 5, we describe Markov chain Monte Carlo (MCMC)

algorithms for this purpose.

3.3.3 Haplotype Modeling Given Partial Pedigree

For diploid organisms such as humans, a subject has two physical copies of each chromosome in

his/her somatic cells, which carry the two haplotypes of the SNP sequence in a specific region.

When an offspring is to be produced, each of the parents donates a haploidgamete(i.e., a sperm for

the male and an egg for the female), which carries only one of the two copies of every chromosome

3 For simplicity, we may letµ1 = µ2 = 1/V , whereV is the total number of ways a single SNP haplotypehi,j and
a single SNP genotypegi,j can differ (i.e., 2 for binary SNPs). When differentµ1 andµ2 are desired to penalize single-
and double-disagreement differently, one must be careful to treat the case of homozygoushi,j and heterozygoushi,j

differently, because they are related to noisy genotype observations in different manners. For example, a heterozygous
hi,j (e.g., 01) cannot be related to any genotype with a double disagreement, whereas a homozygoushi,j (e.g., 00) can
(e.g., w.r.t.gi,j = 11).

126



3.3 Haplotype Inference via the Dirichlet Process

of a parent (i.e., one of the two haplotypes). The two gametes of opposite sex then fuse (after mating)

to produce a diploid fertilized egg and re-pair the paternal and maternal copies of the chromosome

(and therefore, their respective associated haplotypes). The fertilized egg eventually grow into an

adult offspring which can be typed.

When the parent-offspring triplet (or even other close biological relatives) are (geno)typed, the

ambiguity of haplotypes of an individual can sometimes be resolved by exploiting the dependen-

cies among the haplotypes of family members induced by genetic inheritance and segregation just

described. For example, if both parents are homozygous, i.e.,g1 = a ⊕ a, g0 = b ⊕ b, and the

offspring are heterogeneous, i.e.,gλ10 = a⊕ b, whereλ10 denotes the offspring of subjects “1” and

“0”, then we can infer that the haplotypes of the offspring arehλ10 = (a, b). This special case of

triplet genotypes is regarded asfully informative. Clearly, not all genotypes are fully informative,

and inheritance of haplotypes may be more than mere faithful copying. In particular, chromosomal

inheritance could be accompanied by single-generation mutations, which alter single or multiple

SNPs on the chromosomes; and recombinations, which disrupt and recombine some chromosome

pairs in gamete donors to generate novel (i.e., mosaic) haplotypes. Although genotypes of this na-

ture do not directly lead to full resolution of each individual’s haplotypes, undoubtedly the strong

dependencies that exist among the genotype data (in contrast to theiid genotypes we studied in the

last section) could be exploited to reduce the ambiguity of the phasing.

Given the genotypes from a population and partial pedigrees that relate members of various

subsets of a population, in order to apply the pedigree constraints in haplotype inference, we need

to introduce a few new ingredients into the basic DP-haplotyper model described in the last section

to model the distribution of individual haplotypes in a population consisting of now partially coupled

(rather than conditionally independent) individuals (Fig.3.4). We refer to this expanded model as

thePedi-haplotypermodel.

Formally, we introduce a segregation random variable,Sit,j , for each one of the two SNP alleles

of each locus of an individual, to indicate its meiotic origin (i.e., from which one of the two SNP

alleles of a parent it is inherited). For example,Sit,j = 1 indicates that alleleHit,j is inherited from
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Figure 3.4: The graphical model representation of the Pedi-haplotyper model.
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3.3 Haplotype Inference via the Dirichlet Process

the maternal allele of individuali’s t-parent (wheret = 0 means father andt = 1 means mother).

We denote thet-parent of individuali byπ(it), and his/her paternal (resp. maternal) allele byπ0(it)

(resp. π1(it)). We use the following conditional distribution to model possible mutation during

single generation inheritance.

p(hit,j |sit,j = r, hπ0(it),j , hπ1(it),j , εt) =
[
εt
]I(hit,j=hπr(it),j

)[ 1− εt
|B| − 1

]I(hit,j 6=hπr(it),j
)
,(3.11)

where1 − εt is the mutation rate during inheritance, andr ∈ {0, 1} represents the choice of the

paternal or maternal alleles of a parent subject by an offspring. Note that thissingle generation

inheritance modelallows different mutational rates for the parental and maternal alleles if desired

(e.g., to reflect the difference in gamete environment in a male or a female body), by lettingε0 and

ε1 take different values, or giving them different beta prior distributions in case we want to model

uncertainty ofεt in a Bayesian framework.

To model possible recombination events during single generation inheritance, we assume that

the list of segregation random variables,[Sit,1, . . . , Sit,J ], associated with individual haplotypeHit ,

forms a 1st-order Markov chain, with transition matrixξ:

p(Sit,j+1 = r′|Sit,j = r) = ξrr′

=
[
ξ
]I(r=r′)[1− ξ

]I(r 6=r′)
, (3.12)

where1− ξ is the probability of a recombination event (i.e., a swap of parental origin) at positionj.

This model is equivalent to assuming that the recombination events follow a Poisson point process

of rate ξ along the chromosome. If desired, a beta priorBeta(αs, βs) can be introduced forξ.

Again, the recombination rates in males and females can be different if desired.

Looking back to the overall graphical topology of the Pedi-haplotyper model, as illustrated

in Figure3.4, for founding members in the pedigree (i.e., those without parental information), or

half founding members (i.e., those with information from only one of the two parents), we assume

that their un-progenitored haplotype(s) are inherited from some ancestors, thus following the basic

haplotype model described in§3.3. For the haplotypes of the offspring in the pedigree, we couple
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3.4 Experimental Results

them to their parents using the single generation mutation and recombination model described in the

previous paragraphs. Thus, the Pedi-haplotyper model proposed in this section is fully generalizable

to any pedigree structure.

Solving the Pedi-haplotyper model is slightly more difficult than for the basic Dirichlet process

mixture model, DP-haplotyper, foriid populations. But as we show in Chapter 5, most of the

methods we developed for the DP-haplotyper can be directly used in this more elaborate framework,

with the addition of a few new sampling steps for the newly introduced random variables.

3.4 Experimental Results

We validated our algorithm by applying it to simulated and real data and compared its performance

to that of the state-of-the-art PHASE algorithm[Stephenset al., 2001] and other current algorithms.

We report on the results of both variants of our algorithm: the Gibbs sampler, denoted DP(Gibbs),

and the Metropolis-Hasting sampler, denoted DP(MH). Throughout the experiments, we set the

hyperparameterτ in the Dirichlet process to be roughly1% of the population size, i.e., for a data

set of 100 individuals,τ = 1. We used a burn-in of 2000 iterations (or 4000 for datasets with more

than 50 individuals), and used the next 6000 iterations for estimation.

3.4.1 Simulated Data

In our first set of experiments we applied our method to simulated data (“short sequence data”)

from Stephenset al. [2001]. This data contains sets of2n haplotypes, randomly paired to form

n genotypes, under an infinite-sites model with parametersη = 4 andR = 4 determining the

mutation and recombination rates, respectively. We used the first 40 datasets for each combination

of individuals and sites, where the number of individuals ranged between 10 and 50, and the number

of sites ranged between 5 and 30.

To evaluate the performance of the algorithms we used the following error measures:errs, the

ratio of incorrectly phased SNP sites over all non-trivial heterozygous SNPs (excluding individu-

als with a single heterozygous SNP);erri, the the ratio of incorrectly phased individuals over all

130



3.4 Experimental Results

DP(MH) PHASE EM
#individuals errs erri ds errs erri ds erri

10 0.060 0.216 0.051 0.046 0.182 0.054 0.424
20 0.039 0.152 0.039 0.029 0.136 0.046 0.296
30 0.036 0.121 0.038 0.024 0.101 0.027 0.231
40 0.030 0.094 0.029 0.019 0.071 0.026 0.195
50 0.028 0.082 0.024 0.019 0.072 0.025 0.167

Table 3.1: Performance on data fromStephenset al. [2001]. The results for the EM algorithm are adapted fromStephens
et al. [2001].

non-trivial heterogeneous individuals; andds, the switch distance, which is the number of phase

flips required to correct the predicted haplotypes over the total number of non-trivial heterogeneous

SNPs. The results are summarized in Table3.1. Overall, we perform slightly worse than PHASE

on the first two measures, and slightly better on the switch distance measure (which uses 100,000

sampling steps). Both algorithms provide a substantial improvement over EM.

DP(Gibbs) DP(MH) PHASE HAP HAPLOTYPER
block
id.

length errs erri ds errs erri ds errs erri ds errs errs

1 14 0.223 0.485 0.229 0 0 0 0.003 0.030 0.003 0.007 0.039
2 5 0 0 0 0.007 0.026 0.007 0.007 0.026 0.007 0.036 0.065
3 5 0 0 0 0 0 0 0 0 0 0 0.008
4 11 0.143 0.262 0.128 0 0 0 0 0 0 0.015 -
5 9 0.020 0.066 0.020 0.011 0.033 0.011 0.011 0.033 0.011 0.027 0.151
6 27 0.071 0.191 0.074 0.005 0.043 0.005 0 0 0 0.018 0.041
7 7 0.005 0.018 0.005 0.005 0.018 0.005 0.005 0.018 0.005 0.068 0.214
8 4 0 0 0 0 0 0 0 0 0 0 0.252
9 5 0.029 0.097 0.029 0.012 0.032 0.012 0.012 0.032 0.012 0.057 0.152
10 4 0.007 0.025 0.007 0.007 0.025 0.007 0.008 0.025 0.008 0.042 0.056
11 7 0.010 0.034 0.005 0.005 0.017 0.005 0.011 0.034 0.011 0.033 0.093
12 5 0.010 0.037 0.020 0 0 0 0 0 0 0 0.077

Table 3.2: Performance on the data ofDaly et al.[2001], using the block structure provided byHalperin and Eskin[2002].
The results of HAP and HAPLOTYPER are adapted fromHalperin and Eskin[2002]. Since the error rate inHalperin
and Eskin[2002] uses the number of both heterozygous and missing sites as the denominator, whereas we used only the
non-trivial heterozygous ones, we rescaled the error rates of the two latter methods to be comparable to ours.

3.4.2 Real Data

We applied our algorithm to two real datasets and compared its performance to that of PHASE

[Stephenset al., 2001] and other algorithms.

The first dataset contains the genotypes of 129 individuals over 103 polymorphic sites[Daly et

al., 2001]. In addition it contains the genotypes of the parents of each individual, which allows the
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Figure 3.5: The top ten ancestral templates during Metropolis-Hasting sampling for block 1 of the data of[Daly et al.,
2001]. (The numbers in the panels are the posterior means of the frequencies of each template). (a) Immediately after
burn-in (first 2000 samples). (b) 3000 samples after burn-in. (c) 6000 samples after burn-in.

inference of a large portion of the haplotypes as inEskinet al.[2003]. The results are summarized in

Table3.2. It is apparent that the Metropolis-Hasting sampling algorithm significantly outperforms

the Gibbs sampler, and is to be preferred given the relatively limited number of sampling steps (∼

6000). The overall performance is comparable to that of PHASE and better than both HAP[Halperin

and Eskin, 2002; Eskinet al., 2003] and HAPLOTYPER[Niu et al., 2002].

It is important to emphasize that our methods also providea posterioriestimates of the ancestral

pool of haplotype templates and their frequencies. We omit a listing of these haplotypes, but provide

an illustrative summary of the evolution of these estimates during sampling (Figure3.5).

The second dataset contains genotype data from four populations, 90 individuals each, across

several genomic regions[Gabrielet al., 2002]. We focused on the Yoruban population (D), which

contains 30 trios of genotypes (allowing us to infer most of the true haplotypes) and analyzed the

genotypes of 28 individuals over four medium-sized regions (see below). The results are summa-

rized in Table3.3. All methods yield higher error rates on these data, compared to the analysis of

the data ofDaly et al. [2001], presumably due to the low sample size. In this setting, over all but

one of the four regions, our algorithm outperformed PHASE for all three types of error measures. A

preliminary analysis suggests that our performance gain may be due to the bias toward parsimony

induced by the Dirichlet process prior. We found that the number of template haplotypes inferred in

our algorithm is typically small, whereas in PHASE, the hypothesized haplotype pool can be very

large (i.e., region 7b has 83 haplotypes, compared to 10 templates in our case and 28 individuals

overall).
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DP(MH) PHASE
region length errs erri ds errs erri ds

16a 13 0.185 0.480 0.141 0.174 0.440 0.130
1b 16 0.100 0.250 0.160 0.200 0.450 0.180
25a 14 0.135 0.353 0.115 0.212 0.588 0.212
7b 13 0.105 0.278 0.066 0.145 0.444 0.092

Table 3.3: Performance on the data ofGabrielet al. [2002].
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Figure 3.6: Sampling trace of the number of population haplotypes derived from the genotypes. As can be seen, the
Markov chain starts from a rather non-parsimonious estimation, and converges to a parsimonious solution after about two
thousand samples.

In terms of computational efficiency, we noticed that PHASE typically required 20,000 to

100,000 steps until convergence, while our DP-based method required around 2,000∼6,000 steps

to convergence (Fig.3.6).

3.5 Conclusions and Discussions

In this chapter, we have proposed a Bayesian approach to the modeling of genotypes based on a

Dirichlet process prior. We have shown that the Dirichlet process provides a natural representation

of uncertainty regarding the size and composition of the pool of haplotypes underlying a population.

We will present in Chapter 5 several Markov chain Monte Carlo algorithms for haplotype inference

under either a basic DP mixture haplotype model intended for aniid population, or, an extended

graphical DP mixture model — Pedi-haplotyper model — for a population containing bothiid sub-

jects and subjects coupled by partial pedigrees. The experiments on the basic DP mixture haplotype

model show that this model leads to effective inference procedures for inferring the ancestral pool
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and for haplotype phasing based on a set of genotypes. The model accommodates growing data col-

lections and noisy and/or incomplete observations. The approach also naturally imposes an implicit

bias toward small ancestral pools during inference, reminiscent of parsimony methods, doing so in

a well-founded statistical framework that permits errors.

Our focus here has been on adapting the technology of the Dirichlet process to the setting of

the standard haplotype phasing problem. But an important underlying motivation for our work, and

a general motivation for pursuing probabilistic approaches to genomic inference problems, is the

potential value of our model as a building block for more expressive models. In particular, as in

Greenspan and Geiger[2003] andLauritzen and Sheehan[2002], the graphical model formalism

naturally accommodates various extensions, such as segmentation of chromosomes into haplotype

blocks and the inclusion of pedigree relationships. In section§3.4, we have outlined a preliminary

extension of the basic Dirichlet process mixture model that incorporates pedigree relationships and

briefly discussed how to model realistic biological processes that might influence haplotype forma-

tion and diversification, such as recombination and mutation during single generation inheritance.

We recognize that many other important issues also deserve careful attention, for example, haplo-

type recombinations among the ancestral haplotype pools (so far, we assume that these ancestral

haplotypes relate to modern individual haplotypes only via mutations), aspects of evolutionary dy-

namics (e.g., coalescence, selection, etc.), and linkage analysis under joint modeling of complex

traits and haplotypes. We believe that the graphical model formalism we proposed can readily

accommodate such extensions. In particular, it appears reasonable to employ an ancestral recombi-

nation hypothesis (rather than single generation recombination) to account for common individual

haplotypes that are distant from any single ancestral haplotype template, but can be matched piece-

wise to multiple ancestral haplotypes. This may be an important aspect of chromosomal evolution

and can provide valuable insight into the dynamics of populational genetics in addition to point-

mutation-based coalescence theory, and can potentially improve efficiency and quality of haplotype

inference.

134



3.5 Conclusions and Discussions

The Dirichlet process parameterization also provides a natural upgrade path for the consider-

ation of richer models; in particular, it is possible to incorporate more elaborate base measuresG

into the Dirichlet process framework—the coalescence-based distribution ofStephenset al. [2001]

would be an interesting choice. In Chapter 5, while developing MCMC algorithms for haplotype in-

ference, we will also briefly discuss a heuristic for constructing an informative base measure for the

DP using low-quality but inexpensive haplotype information (e.g., that obtained from a conventional

EM algorithm). Note that the partition structure of the Dirichlet process is equivalent to that induced

by the Ewens sampling formula (ESF)[Tavare and Ewens, 1998] known to the population genetics

community. The ESF represents a non-Darwinian theory of evolution which claims that “the exten-

sive genetic variation observed in natural populations is, on the whole, not due to natural selection,

but arises rather as a result of purely stochastic changes in gene (allele) frequencies in a finite pop-

ulation” [Tavare and Ewens, 1998]. The fact that our DP mixture model performed adequately in

a number of problems suggests that such non-Darwinian evolution may apply to SNP distribution,

which is interesting, yet would appear paradoxical, if we proceed to use haplotypes to map clearly

non-neutral genes (say, those that relate to biological disorders) via linkage disequilibrium.
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Chapter 4

Probabilistic Inference I: Deterministic
Algorithms

The Bayesian graphical models presented in the last two chapters both define high-dimensional,

hybrid probability distributions for which important statistical queries may be difficult to compute.

For example, in theLOGOS model, the sequence variableYt at sitet of a study sequence depends on

all the motif parameters{θ(k)

l |∀l, k}, each of which in turn depends on one of the PSMD prototype

(i.e., Dirichlet component) indicators{S(k)

l |∀l, k} coupled by a first-order Markov chain. Thus, to

compute the posterior probability distributionsp(xt|y) andp(θ(k)

l |y) for MAP prediction of motif

locations and Bayesian estimation of motif PWMs, one has to integrate over the Cartesian product

of a continuous state space for the PWMs and the discrete spaces for the PSMD prototype (denoted

asD) and for the sequence annotation indicators (denoted asS). The complexity of such a state

space is on the order of

R4×
P

k Lk × |D|
P

k Lk × |S|T ,

which translates toO(R120 × 101000) for a 1000 bp sequence harboring only two possible motif

patterns each of length 15 bp. Clearly, this computation is in general intractable with any off-the-

shelf exact algorithm and some approximation scheme is necessary. In this chapter, we present a

general variational approach for computing deterministic approximations to such intractable dis-

tributions. In the next chapter, we briefly discuss stochastic approximation methods based on

sampling. Some of the materials covered in this chapter have appeared in[Xing et al., 2003b;

136



4.1 Background

Xing et al., 2004a].

4.1 Background

For a multivariate probability distributionp(xH ,xE), whereXH andXE denote the sets of all un-

observed (i.e., hidden) and observed (i.e., evidence) variables, respectively (and, following conven-

tion, their lower case counterparts denote states or values of the corresponding variables), the gen-

eral problem of probabilistic inference is that of computing the conditional probabilitiesp(xF |xE),

whereF ⊆ H is the index set of an arbitrary subset of hidden variables.

Probabilistic inference techniques play an important role in any probabilistic methodology for

prediction and learning. For example, probabilistic prediction of unobserved events or patterns

in real world tasks such as weather forecasting, text segmentation and tagging, robot localization,

image analysis, filtering and smoothing of sequential data streams, and various computational biol-

ogy problems such as motif, haplotype and pedigree inference considered in this thesis, all involve

performing probabilistic inference on a domain-specific, high-dimensional, and often hybrid (i.e.,

comprising both discrete and continuous variables) probability model. Probabilistic inference is

also indispensable for the acquisition of probability models from incomplete or partially observed

data using statistical learning methods, because many of these methods amount to parameter estima-

tion based on a maximum likelihood or an empirical Bayes principle[Efron, 1996], which employs

an inference subroutine to impute the unobserved variable(s) for computing the necessary sufficient

statistics.

Solving an inference query can be understood as amarginalizationcomputation. To see this,

observe that the conditional probabilityp(xF |xE) is equal to:

p(xF |xE) =
p(xF ,xE)
p(xE)

=

∑
xH\F

p(xH\F ,xF ,xE)∑
xF
p(xF ,xE)

, (4.1)

where the summation (or integration in case of continuous variables) over all possible values of

some (or all) hidden variables in the model is calledmarginalization. Typically, an inference query

involves computing the conditional probabilities for only small subsets of variables (e.g., that of

137



4.1 Background

singleton hidden variables such asxt in the LOGOS model), and sometimes a large number of

such queries need to be processed (e.g., allxt’s for motif detection underLOGOS). This is often

a computationally expensive operation, as the state space to be swept during marginalization grows

exponentially with the number of variables being marginalized. The graphical model formalism

provides a systematic and efficient approach to such computation. General exact inference algo-

rithms have been developed, which take advantage of the conditional independencies present in the

joint distributionp(xH ,xE), which can be inferred from the pattern of missing edges in the graph,

to distribute the high-dimensional combinatorial summation over all hidden variables in a standard

marginalization operation into a sequence of low-dimensional local summations each over a (small)

subset of hidden variables (Fig.4.1). We will briefly describe a representative of these algorithms,

the junction tree algorithm, in the next section.

X1

X2

X3

X6

X5X4

Figure 4.1: Inference on a graphical model. The dark shading indicates the node on which we condition, the unshaded
node is the one for which we wish to compute the conditional probability distribution, and the lightly shaded nodes are
those that need to be marginalized out in computing the posterior probabilityp(x1|x6). For this graphical model, the sum-
mations for computing the joint marginal can be distributed to subsets of variables in the following way (formally known
as anelimination algorithm): p(x1, x6) =

P
x2,x3,x4,x5

p(x1)p(x2|x1)p(x4|x1)p(x3|x2)p(x5|x4)p(x6|x2, x5) =
p(x1)

P
x2

p(x2|x1)
P

x3
p(x3|x2)

P
x4

p(x4|x1)
P

x5
p(x5|x4)p(x6|x2, x5)

.

Although there are many cases in which the exact algorithms provide a satisfactory solution

to the inference and learning problems, large-scale probability models arising from complex real

world domains have outgrown the ability of current (and probably future) exact inference algorithms

to compute marginals and learn parameters. This is particularly true for models we developed

in this dissertation, which concern complex gene regulation elements and genetic polymorphism

patterns in the genomic sequences. As illustrated at the beginning of this chapter, the time and
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space complexity of the exact algorithms is unacceptable and it is necessary to have recourse to

approximation procedures.

For this reason, the development of efficient and broadly applicable approximation algorithms

for probabilistic inference is critical to further progress. Two commonly used approximation tech-

niques areMonte Carlomethods (such as Markov chain Monte Carlo, or MCMC) andvariational

methods. MCMC techniques are asymptotically exact and easy to apply. The BUGS system uses

MCMC within a general-purpose statistical modeling language (see[Gilks et al., 1996]), and the

inference process can be set up automatically for a variety of models. Unfortunately, MCMC often

converges very slowly. Variational methods, on the other hand, are claimed to exhibit fast conver-

gence and (in some cases) give a deterministic lower bound on the true likelihood. The original

belief propagation (BP) method[Pearl, 1988] is now understood as a variational algorithm[Yedidia

et al., 2001b] that (if it converges) calculates an optimal approximation to the true posterior dis-

tribution among those approximate distributions that include onlypairwisedependencies among

variables. BP can be applied straightforwardly to a wide range of probability models and it has been

used for biological classification/clustering problems expressed as complex graphical models[Se-

gal et al., 2001]. A generalized BP (GBP) algorithm can be derived that operates with dependency

structures on larger clusters of variables and often gives more accurate results[Yedidiaet al., 2001a]

1. Like BP, GBP sometimes fails to converge. It may also fail to give a lower bound on the true

likelihood due to the use of anad hocapproximation to the intractable entropy term in the objective

functional it optimizes (to be detailed in§4.3.4.3). Other variational approximation methods based

on structured mean field approximation have been developed that are guaranteed to converge to

lower bounds on the true likelihood (see, e.g.,[Jordanet al., 1999]), but these methods often require

model-specific derivation of iteration equations.

In this chapter, we develop a generalized mean field (GMF) theory which leads to a generic

variational inference algorithm that is straightforwardly applicable to a wide range of models and is

guaranteed to converge to a lower bound on the true likelihood. Given an arbitrary decomposition of

1Similar techniques called cluster variational methods (CVMs) have also been developed in the statistical physics
community[Kappen and Wiegerinck, 2002].

139



4.1 Background

the original model into disjoint clusters of variables, the algorithm computes the posterior marginal

for each cluster given its own evidence and theexpected sufficient statistics, obtained from its neigh-

boring clusters, of the variables in the cluster’s Markov blanket. Optimal clustering of the variables

can be obtained in a principled fashion via a graph partition algorithm. The algorithm operates in

an iterative, message-passing style until a fixed point is reached. We show that the cluster marginals

retain exactly the intra-cluster dependencies of the original model, which means that the inference

problem within each cluster can be solved independently of the other clusters (given the Markov

blanket messages) by any inference method. This GMF algorithm is applied to the Bayesian motif

prediction and learning problem under theLOGOS model and shows significant improvement over

a sampling-based approach (discussed in the next chapter).

4.1.1 Notation

Before starting the technical sections, here is a summary of some necessary notations and definitions

needed in our exposition.

We consider a graph (directed or undirected)G(V, E), whereV denotes the set of nodes (ver-

tices) andE the set of edges (links) of the graph. LetXn denote the random variable associated

with noden, for n ∈ V; let XC denote the subset of variables associated with a subset of nodesC,

for C ⊆ V, and letX = XV denote the collection of all variables associated with the nodes of the

graph. We use upper-caseX (resp.X) to denote a random variable (resp. variable set), and lower-

casex (resp.x) to denote a certain state (or value, configuration, etc.) taken by the corresponding

variable (resp. variable set). We refer to a graphH = (V, E ′), whereE ′ ⊆ E , as asubgraphof G.

We useC = {C1, C2, . . . , CI} to denote a disjoint partition (or, aclustering) of all nodes in graph

G, whereCi refers to the set of indices of nodes in clusteri; likewise,D = {D1, D2, . . . , DK}

denotes a set ofcliques(i.e., completely connected subsets of nodes) ofG. For a given clustering,

we define theborder clique setBi as the set of cliques that intersect with but are not contained in

clusteri; and theneighbor cluster setNi as the set of clusters that contain nodes connected to nodes

in clusteri. For undirected graphs, theMarkov blanketof a clusteri (MBi) is the set of all nodes
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outsideCi that connect to some node inCi, and, for directed graphs, the Markov blanket is the set

of all nodes outsideCi that are parents, children, or co-parents (other than those already inCi) 2 of

some node inCi (Fig. 4.2). Clusters that intersect withMBi are called theMarkov blanket clusters

(MBCi) of Ci.
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Figure 4.2: The Markov blanketMB1 (blue-shaded nodes) of cluster1 in a directed graph. Shaded blobs constitute
MBC1.

4.2 Exact Inference Algorithms

In this section, we give a brief overview of the junction tree algorithm[S. Lauritzen, 1988]. It is a

general purpose algorithm which subsumes many other exact inference inference algorithms (e.g.,

belief propagation for tree models[Pearl, 1988], the forward-backward algorithms for HMMs[Ra-

biner and Juang, 1986], the peeling algorithm for pedigree models[Thompson, 1981], etc.) as

special cases.

4.2.1 The Junction Tree Algorithm

As described in Chapter 1, for a directed graphical modelG(V, E), the joint probability distribution

for all the |V| nodes in the graph can be written as the product of alllocal conditional distributions

defined on each node and its parent(s):

p(x) =
|V|∏
i=1

p(xi|xπi). (4.2)

2A co-parent of a node, say,Xv, is defined as the parent (other thanXv) of a child nodeXu of Xv.
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4.2 Exact Inference Algorithms

For an undirected graphical model, the joint probability distribution is equal to the product of the

potential functionsassociated with each clique of the graph, up to a normalization constant:

p(x) =
∏|D|

α=1 φα(xDα)
Z

, (4.3)

whereZ =
∑

x

∏|D|
α=1 φα(xDα) is referred to as a “partition function”.

X1

X2

X3

X6

X5X4

⇒
X1

X2

X3

X6

X5X4

Figure 4.3: Moralization of a directed graph.

A directed graphical model can be converted into an equivalent undirected graphical model via

an operation called “moralization,” which connects all parents of a common child node pairwise

with undirected edges, and then drops the directionality of all other edges in the graph (Fig.4.3).

The resulting graph is called a “moral graph,” in which all the nodes originally involved in a local

conditional distribution in the directed graph now appear together in a common clique. Thus, local

conditional distributions in a directed graph can be thought of as normalized potential functions

in the corresponding moral graph, and the product rule (i.e., Eq. (4.2) and Eq. (4.3)) of the joint

distribution gives the same outcome for the directed model and its undirected counterpart. Due to

the equivalence of the undirected moral graph to the original directed graph in representing a joint

probability distribution, the junction tree algorithm concerns only undirected graphs.

The junction tree algorithm starts with the moralized graph. It first chooses anelimination order

for all nodes in the graph, and applies an operation calledtriangulation to this order as follows: 1)

choose the next node in the elimination order, 2) add edges to link all remaining pairs of nodes

that are neighbors of this node and, 3) remove the node (and all its incident edges) from the graph.

Taking the new edges added in this process and adding them to the original moralized graph yield a

triangulated graph(Fig. 4.4a).
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4.2 Exact Inference Algorithms

A triangulated graph allows the creation of a data structure known as ajunction tree(Fig. 4.4b),

on which a generalized message-passing algorithm can be defined. A full discussion of the con-

struction of a junction tree is beyond the scope of this thesis; in short, it is a maximal spanning

tree of cliques in the triangulated graph, with weights defined by the cardinality of the intersections

between cliques. A key property of the junction tree is the so calledrunning intersection property,

which says that if a node appears in any two cliques in the tree, it appears in all cliques that lie on

the path between the two cliques. As a consequence of this property, in a junction tree, local con-

sistency (i.e., potentials ofadjacent cliques in the tree agree on marginals of any shared variables)

implies global consistency (i.e., potentials ofall cliques in the tree agree on marginals of common

variables).

X1

X2

X6

X5X4

X3

X1 X2 X4, , X2 X4 X5, , X2 X5 X6, ,X2 X5,

X2 X3,

X2 X4,

X2

(a) (b)

Figure 4.4: Construction of the junction tree. (a) The triangulated graph of the graphical model in Fig.4.3. (b) The
junction tree. Squares represent original cliques in the triangulated graph, ellipsoids represent separators of adjacent
cliques.

With the junction tree, the joint probability distribution can now be expressed in the following

factored form:

p(x) =

∏
Ci∈CT

ψi(xCi)∏
Sj∈ST

φj(xSj )
, (4.4)

whereCT is the set of all cliques in the triangulated graph andST is the set of separators (i.e., clique

intersections) spanned by the junction tree.
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The clique potentialsψ(·) and separator potentialsφ(·) can be updated by running a message-

passing protocol on the junction tree, with the following update rule:

φ∗j (xSj ) =
∑

xCi\Sj

ψi(xCi), ψ∗k(xCk
) =

φ∗j (xSj )
φj(xSj )

ψk(xCk
),

whereXSj denotes the set of variables that separates cliquesXCi andXCj , and the “message”

is now passed from cliquei to cliquek via separatorj (Fig. 4.5). The protocol typically starts

by picking a root of the tree, and then first passing messages from root to all leaves along tree

branches, and then collecting messages from all leaves to the root, which leads toψi = p(xCi) and

φj = p(xSj ) for all i, j, when the message passing terminates. Note that a single run of the junction

tree algorithm yields all clique marginals, not merely that corresponding to a single clique.

X1 X2 X4, , X2 X4 X5, , X2 X5 X6, ,X2 X5,

X2 X3,

X2 X4,

X2

iX kXjX

Figure 4.5: Message passing in a junction tree.

It is easy to see that the computational bottleneck of the junction tree algorithm is determined

by the size of the maximal clique in the triangulated graph, which is affected by the choice of the

elimination order that induces the triangulated graph. The minimum of the maximal clique size

among all possible triangulations is know as thetree widthof the graph. Choosing an elimination

order that minimizes the maximal clique size is non-trivial (indeed, it is an NP-hard problem for

arbitrary graphs, but can often be effectively approached on special graphs). There are many special-

purpose exact inference algorithms for specific families of graphical models (e.g., the forward-

backward algorithm for HMMs, Pearl’s belief propagation algorithm for trees, etc.), almost all of

which are essentially special cases of the the junction tree algorithm applied to special graphs, using

a special and often optimal choice of the elimination order for triangulation.
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4.3 Approximate Inference Algorithms

As mentioned, for a complex distribution, computing the marginal (or conditional) distributions,

as well as the maximuma posterioriconfigurations, of an arbitrary subset of the random variables

is intractable. The variational approach to these inference problems involves converting them into

an optimization problem, then approximating the feasible set of the solution or the function to

be optimized (or both), and solving the relaxed optimization problem. Thus, given a probability

distributionp(x|θ) that factors according to a graph, the variational methods yield approximations

to marginal probabilities via the solution to an optimization problem that generally exploits some

of the graphical structure. In the sequel, we describe a general variational principle for inference

in probabilistic graphical models, on which a variety of extant deterministic approximate inference

techniques are based, and from which we draw the mathematical foundations for the subsequent

development of a more general approach for approximate inference called generalized mean field

(GMF) inference. We begin with some necessary definitions and algebraic preliminaries.

4.3.1 Cluster-factorizable Potentials

Given a clusteringC of all nodes inG(V, E), some cliques inD may intersect with multiple

clusters (Fig.4.6). Cluster-factorizable potentialsare potential functions which take the form

φβ(xDβ
) = Fβ(φβi

(xDβ∩Ci
), . . . , φβj

(xDβ∩Cj
)), whereF (·) is a (multiplicatively, or additively)

factorizable function over its arguments; i.e., in the case of two clusters,F (a, b) = a × b or a + b.

Factorizable potentials are common in many model classes. For example, the classical Ising model

is based on singleton and pairwise potentials of the following factorizable form (under the expo-

nential representation, as described shortly):φ(xi) = θixi, φ(xi, xj) = θijxixj ; higher-order Ising

models and many more general discrete models also admit factorizable potentials; conjugate expo-

nential pairs, such as the Dirichlet-multinomial, linear-Gaussian, etc., are also factorizable; finally,

for logistic functions and other generalized linear models (GLIMs) that are not directly factorizable,

it is often possible to obtain a factorizable variational transformation in the exponential family that
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4.3 Approximate Inference Algorithms

lower bounds the original function[Jaakkola and Jordan, 2000]. In other cases (e.g., tabular poten-

tials over a clustering of variables), a more general treatment based on peripheral marginal potentials

can be used (see§4.4.3). We will see that cluster-factorizable potentials allow the decoupling of the

computation of expected potentials.

Ci

Ck

Cl

Dβ

Figure 4.6: A cliqueDβ intersecting with three clusters{Ci, Cj , Ck} in an undirected graph.

4.3.2 Exponential Representations

In order to formulate variational inference as a generic optimization problem, it is convenient to use

the following exponential representation for a graphical model.

Similar to the general parameterization of graphical models introduced in Chapter 1, under

exponential representations, for undirected graphical models, the family of joint probability distri-

butions associated with a given graph can be parameterized in terms of a set ofpotential functions

associated with a set of cliques in the graphs3. For a set of cliquesD = {Dα|α ∈ A} associated

with an undirected graph, indexed by a setA, let φ = {φα|α ∈ A} denote the set of potential

functions defined on the cliques, andθ = {θα|α ∈ A} the set of parameters associated with these

potential functions (for simplicity, we labelφ andθ with the correspondingclique index, e.g.,α,

rather than with the cliqueDα itself). The family of joint distributions determined byφ can be

3More precisely, these potential functions are nowexponential potential functionsthat are semantically different from
what we meant by “potential functions” in our early exposition of graphical models. Technically, however, little difference
exists in their definitions, except that the range of the exponential potential functions is all real numbers whereas the
original potential functions have positive values. For fixed potential weights, there exists a one-to-one correspondence
between the two types of potential functions. For simplicity, in the sequel we still use the term “potential functions” in
our exposition under the exponential representations.
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expressed as follows:

p(x|θ) = exp{
∑
α∈A

θαφα(xDα)−A(θ)} (4.5)

whereA(θ) is thelog partition function. We also define theenergy,E(x) = −
∑

α θαφα(xDα), for

statex.

For directed graphical models, in which the joint probability is defined asp(x) =
∏

i p(xi|xπi),

we transform the underlying directed graph into amoral graph, and set the potential functions

φi(xi,xπi) equal to the logarithms of the local conditional probabilitiesp(xi|xπi). In the sequel, we

will focus on models based onconditional exponential families. That is, the conditional distributions

p(xi|xπi) can be expressed as:

p(xi|xπi) = u(xi) exp{θT
i φi(xi,xπi)−A(θi,xπi)}, (4.6)

whereφi(xi,xπi) is a vector of potentials associated with the variable set{xi,xπi}.

The exponential representation applies to a wide range of models of practical interest, including

discrete models, Gaussian, Poisson, exponential, and many others.

4.3.3 Lower Bounds of General Exponential Functions

Now we review some basic results from standard calculus that provide a principled way of con-

structing higher-order bounds for regular functions. Start from a simple bound for a functionf0(x):

f0(x) ≥ b0(x),∀x ∈ X .

Lemma 1 For anti-derivativesf1(x) off0 andb1(x) of b0 such thatf1(a) = b1(a) for somea ∈ X :

f1(x) ≤ b1(x) for x ≤ a

f1(x) ≥ b1(x) for x ≥ a

Proof. Due to the simple bound assumption, forx ≥ a:∫ x

a
dzf0(z) ≥

∫ x

a
dzb0(z)

⇒ f1(x)− f1(a) ≥ b1(x)− b1(a)

⇒ f1(x)− b1(x) ≥ f1(a)− b1(a) = 0.
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The other direction (i.e., whenx ≤ a) follows similarly.

Lemma 2 For anti-derivativesf2(x) of f1 andb2(x) of b1 such thatf2(a) = b2(a), f1(a) = b1(a):

f2(x) ≥ b2(x) for x ∈ X

Proof. Due to Lemma1, for x ≤ a:∫ a

x

dzf1(z) ≤
∫ a

x

dzb1(z)

⇒ f2(x)− b2(x) ≥ f2(a)− b2(a) = 0

Forx ≥ a, the same inequality follows similarly.

Thus we have the following theorem:

Theorem 1 Let fk(x) denote thekth-order anti-derivative of the functionf(x). Given a lower

boundb(x) of the functionf(x), the 2nd-order anti-derivativeb2(x) of the original bound, parame-

terized by a variational parameterµ such thatb1(µ) = f1(µ) andb2(µ) = f2(µ), is a lower bound

of f2(x). Likewise (by induction), bounds for higher-order anti-derivatives off can be successively

constructed.

Since the anti-derivative of the exponential function is just itself, we can easily use Theorem1

to obtain linear and higher-degree polynomial bounds from bounds of lower order. For example,

the well known linear bound of the exponential function, its tangent atx = µ (see Fig4.7), can be

readily derived from the trivial boundexp(x) > 0 using Theorem1:

f(x) = exp(x) ≥ exp(µ)(1 + x− µ) = b2(x),∀x, µ (4.7)

Integrating over both sides twice, and denoting the variational parameters in the new bound

asν (which means that new bound “touches” the original function atν), we have the following

third-order bound:

f(x) = exp(x)

≥ exp(ν)
{
1 + x− ν + exp(ξ)

(1− ξ

2
(x− ν)2 +

1
6
(x− ν)3

)}
,

= b4(x). (4.8)
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whereξ = µ − ν. Whenξ = 0, that is, restricting the higher order bound to “touch” the original

function at the same point as the lower order bound, we haveb4(x) = 1
6 exp(µ)((x−µ)3 +3(x−µ)2 +

6(x− µ+ 1)). From Figure4.7, we can see that this bound is much tighter than the linear bound.

Figure 4.7: The tangent (blue curve) and polynomial (red curve) bounds for an exponential function (black curve).

4.3.3.1 Lower bounding probabilistic invariants

The tangent and polynomial bounds of exponential functions can be used to define objective func-

tionals underlying the variational principle for probabilistic inference by introducing bounds for the

probabilistic invariants associated with a distribution and/or data, such as the likelihood and the par-

tition function. Letq(xH) = exp{−E′(xH)} represent an arbitrary probability distribution (written

in an exponential representation) over the hidden variables of a model to be approximated. A bound

for the likelihood can be characterized by the following lemma.

Lemma 3 Every marginal distributionq(xH) = exp{−E′(xH)} defines a lower bound of likeli-

hood:

p(xE) ≥
∫
dxH exp

{
− E′(xH)

}(
1−A(xE)−

(
E(xH ,xE)− E′(xH)

))
, (4.9)

wherexE denotes observed variables (evidence).
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Proof. Using the tangent bound of the exponential function (Eq.4.7), for a joint distribution

p(xH ,xE) = exp{−E(xH ,xE)−A(xE)} (whereA(xE) is the original log-partition function plus

the constant evidence potentials), we replacex in Eq. (4.7) with−(E(xH ,xE)+A(xE)) and lower

bound the joint distributionp(xH ,xE) as follows:

p(xH ,xE) ≥ q(x)(1−A(xE)− (E(xH ,xE)− E′(xH))), (4.10)

whereE′(xH) defines avariational marginal distribution. Integrating overxH on both sides, we

obtain the first-order lower bound in Eq. (4.9).

This bound is similar to the well-known Jensen bound on thelog-likelihood: log p(xE) ≥∫
dxHq(xH) log q(xH)

p(xH ,xE) , and has the same maximizer, but it is more general in that it can be

further upgraded to higher order bounds for tighter approximation using Eq. (4.8).

Rearranging terms on the right hand side of inequality (4.9), we have the following compact

form of the lower bound on the likelihood:

p(xE) ≥ C −
〈
E(xH ,xE)

〉
q(xH)

+
〈
log q(xH)

〉
q(xH)

= C −
〈
E
〉
q
−Hq, (4.11)

where the first termC is a constant related to the log-partition function of the original distribution,

the second term
〈
E
〉
q

is theexpected energyunder distributionq, and the third termHq is theen-

tropy of distributionq. Note that when no variable in a model is observed, the foregoing exposition

can lead to a lower bound on the log-partition function:

A ≥ 1−
〈
E
〉
q
−Hq. (4.12)

For simplicity, we focus on the likelihood in the sequel, but the exposition applies readily to the

bound on the log-partition function.

4.3.4 A General Variational Principle for Probabilistic Inference

The likelihood bound derived in the previous section plays a pivotal role in formulating a proba-

bilistic inference problem variationally, because it makes explicit an objective functional that can be
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optimized over the space of all distributions, and leads to a variational representation of a probability

distribution.

4.3.4.1 Variational representation

Let Q denote the set of all distributions onX n. Given any distributionp represented in the form

(4.5), from Eq. (4.9), it is apparent from our discussion so far that the associated likelihood function

p(xE) can be recovered as a solution of the following optimization problem:

p(xE) = max
q∈Q

{
−
〈
E
〉
q
−Hq

}
= min

q∈Q

{〈
E
〉
q
+Hq

}
. (4.13)

Moreover, the optimum is uniquely attained whenq = p. Note that here the optimization prob-

lem is defined on a first-order lower bound of the likelihood, and an equivalent result can also be

obtained from the well-known minimal KL problem:minq∈Q KL(q‖p) = 0, attained atq = p,

where KL(q‖p) ≡
∫
x log q(x) log q(x)

p(x) is the Kullback-Leibler divergence fromq to p. But for

higher-order bounds ofp(xE), although the solution (i.e., the optimizer) remains the same, a differ-

ent optimization problem needs to be solved, whose relaxation may lead to better approximation.

Consider exponential family graphical models. In this case, the optimization problem described

above takes place over a space that includes all choices of potential functionsφ and all valid weight

parametersθ associated with these potential functions. It should be clear that depending on the

choice of canonical parameterization for the density functionsq(·), the formal definition of the opti-

mization space varies significantly. For example, under theexponentialparameterization as we used

here for exponential families,θ belongs to the setΘ ≡ {θ ∈ R|D| |A(θ) < inf}; under themean

parameterizationfor discrete distributions, one needs to optimize over amarginal polytope[Wain-

wright and Jordan, 2003], M ≡ {µ ∈ R|D| | ∃p(·) s.t.
∫

φ(x)p(x)dx = µ}, whereφ(x) denotes

the vector of all potential functions associated with the graphical model. Wainwrightet al. [2003]

pointed out that if and only if the exponential representation is minimal (i.e., no affine combination

of φ(x) is equal to a constant), there is a one-to-one mapping fromΘ toM.
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In general, computing the entropy for an arbitrary distributionq, and hence the objective func-

tion in Eq. (4.13) is intractable. Furthermore, in many cases of interest, characterizing the op-

timization space (e.g., the marginal polytope) is not possible. Thus usually one cannot solve the

variational representation defined by Eq. (4.13) analytically. Variational inference amounts to seek-

ing an optimalq∗ under arelaxedvariational representation, which is entailed by approximating the

entropyHq; or redefining (e.g., relaxing or tightening) the optimization spaceQ, so that within the

redefined space, referred to as afeasible space, the entropy ofq is tractable; or doing both. We refer

to the resultingq∗ as avariational approximationto the true distributionp:

Definition 1 Variational approximation

(VP) q = arg max
q∈Qv

{
−
〈
E
〉
q
− Fv(q)

}
(4.14)

whereQv is the feasible space of realizable distributions, andFv(q) is an approximate entropy term

defined onq.

4.3.4.2 Mean field methods

One class of variational inference methods attempts to approximate a distributionp using a family

of tractable distributions,q(x|γ), which are defined on subgraphs of the original graphG(p), for

which exact computation of the entropyHq is feasible. Theγ are a set of free “variational pa-

rameters.” This class of methods is referred to as “mean field methods”[Jordanet al., 1999], a

terminology that reflects the classical setting in whichq(x|γ) is taken to be a completely factorized

distribution. From an optimization theoretic point of view, a mean field method solves a reduced

version of problem (4.14), in whichQv = T , whereT denotes the space of all distributions that

factor according totractable subgraphsof G(p). This is aninner approximationof the space of all

possible distributions (i.e.,T ⊂ Q) [Wainwright and Jordan, 2003]. In these methods,Fv(q) = Hq,

is the exact entropy forq. It is easy to see that such a reduction defines a lower bound on the

likelihood p(xE) (because we are optimizing over a subspace of the original optimization space),

and hence mean field methods are essentially maximizing a lower bound of the true likelihood, a

152



4.3 Approximate Inference Algorithms

nice property useful in justifying their application, especially in likelihood-based model learning

(i.e., parameter estimation), although in practice the tightness of the bound heavily depends on the

choice of feasible space.

Recall thatQ consists of two components: the space of potential functionsφ and the space

of parametersθ. For a general multivariate probability distribution, the potential space spans the

choices of both thecoupling topology(i.e., which subsets of variablesxD come under a single poten-

tial) and thecoupling kernel(i.e., the functional form ofφ(·)). The coupling topology is encoded in

the graphical representation of a multivariate distribution, and the coupling kernels reflect choices

of mappings from the joint state configurations of variable subsets to values related to their joint

probabilities. In principle, optimization could take place in the space of, 1) all tractable subgraphs,

2) all valid potential functions (kernels) on such subgraphs, and 3) all valid parameters associated

with the given set of potentials. In practice, nearly all extant mean field algorithms focus on param-

eter optimization (i.e., the 3rd aspect) but rarely explore the other two aspects, or only do so in an

ad hocway. For example, the classical mean field method makes use of the simplest subgraph of

G(p)—the fully disjoint graph (i.e., with all edges removed), and chooses the potential function of

each singleton to be the variable itself (i.e.,φ(x) = x). More recentstructured variational inference

methods[Jordanet al., 1999] use more complex subgraphs ofG(p), in particular, some specific dis-

joint partitions ofG(p) motivated by both domain knowledge and computational tractability, and

a set of model-specific choices of potential functions associated with the subgraph. To explore the

third aspect of the optimization space, these methods seek an optimal value of the variational pa-

rameters via an iterative procedure using fixed-point equations derived in a problem-specific manner

(e.g., depending on the choice of the coupling topology and the potential functions for the approx-

imate distribution). Since substantial mathematical skills are usually involved, sophisticated mean

field methods have not gained much popularity among practitioners of approximate inference.
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4.3.4.3 Belief propagation

Recently,Yedidiaet al. [2001b] realized that Pearl’s belief propagation (BP) algorithm—when ap-

plied to general loopy graphs—is also a variational algorithm. The inference problem is trans-

formed to an optimization functional—the “Bethe free energy”—that imposes local consistency

on the approximate marginals. Specifically, BP, and related algorithms (e.g., GBP, CVM, etc.),

seek to directly estimate a set of marginals of interest associated with the study distributionp,

for example, all marginals of variable pairs that are adjacent in the graphG(V, E), i.e., {µij ≡〈
XiXj

〉
p
|∀i, j, s.t., (ij) ∈ E} , and all the singleton marginals, i.e.,{µi ≡

〈
Xi

〉
p
|∀i, s.t., i ∈ V},

by optimizing a so-calledBethe free energy. As pointed out byWainwright and Jordan[2003], this

problem can be understood as seeking a particular mean parameterization for an approximate dis-

tribution.

Under the general framework of variational approximation described by Eq. (4.14), the Bethe

free energy is equal to the sum of the expected energy
〈
E
〉
q

as in Eq. (4.14), and another term

called theBethe entropy,HBethe, which is an approximation to the true entropyHq. Recall thatHq

is intractable for general distributions;HBethe makes use of all single node entropiesHi(µi) and

edgewise mutual information termsIij(µij) to form an approximation toHq:

HBethe(µ) , −
∑
i∈V

Hi(µi) +
∑

(i,j)∈E

Iij(µij). (4.15)

An exact characterization of the marginal polytope given all the potential functions of the distribu-

tion p is intractable. To overcome this, BP optimizes over the space oflocally consistent pairwise

marginals (i.e., tree-consistent marginals):MB ≡ {τ ≥ 0|
∑

xi
τi(xi) = 1,

∑
xi
τij(xi, xj) =

τj(xj)}, which is anouter approximationto the original marginal polytope. The recently devel-

oped GBP algorithm optimizes over marginals of larger clusters of nodes to capture more complex

couplings (than the pairwise couplings in baseline loopy BP) in the distributionp, which leads to a

more complex optimization problem over the space of locally-consistent cluster marginals (a tighter

outer approximation of the marginal polytope ofp than that from the pairwise marginals), and on

an objective function known as theKikuchi free energy[Kikuchi, 1951] (a better approximation to
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the true free energy than the Bethe free energy). Similar to the mean field methods, essentially BP

algorithms also begin with anad hocchoice of coupling topology (that determines variables to be

included in cluster marginals), followed by an iterative procedure to search for fixed-points in the

relaxed feasible space of marginals associated with each cluster.

An advantage of the Bethe (or Kikuchi) variational approach is the simplicity of the BP algo-

rithms. Generic fixed-point equations can be derived based on the variational principle[Yedidiaet

al., 2001b], which alleviates the need for model specific derivations in applications to a variety of

specific problems. The flexibility provided by the ability to choose clusters of varying sizes in the

GBP and CVM algorithms is a significant important step forward. However, due to thead hocre-

laxation of the original optimization functional and the feasible space for tractability, the marginals

resulting from GBP are not necessarily globally consistent (i.e., not necessarily in the marginal

polytope), so the inequality in Eq. (4.11) may no longer apply. Thus, the GBP approximation does

not necessarily yield a lower bound on the likelihood and a GBP algorithm may not converge. Also

note that since, in general, finding the mapping function from mean parameterization to the usual

exponential parameterization is as difficult as performing inference, obtaining an explicit form of

the approximate distribution via BP is non-trivial, which makes certain probabilistic queries, e.g.,

arbitrary marginals ofp, difficult to handle. By contrast, in the mean field method, the solution is

an explicit approximate distribution in exponential parameterization, on which general inference is

tractable.

4.4 Generalized Mean Field Inference

Mean field methods can provide flexibility similar to that by the GBP methods via the choice of

approximating distributionq(x|γ), and so-called “structured mean field methods” have been based

on choosingq(x|γ) to be a tree or some other sparse subgraph of the original graph to which an exact

inference algorithm such as the junction tree algorithm can be feasibly applied[Saul and Jordan,

1996]. Recently, Wiegerinck presented a general framework for structured mean field methods

involving arbitrary clusterings[Wiegerinck, 2000]. In particular, his approach allows the use of
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overlapping clusters, which leads to a set of mean field equations reminiscent of a junction tree

algorithm. Although there continue to be developments in this area (e.g.,[El-Hay and Friedman,

2001; Bishop et al., 2003; Bishop and Winn, 2003]), it is fair to say that in practice the use of

mean-field-based variational methods requires substantial mathematical skill and that a systematic

approach with the generality, flexibility and ease of implementation of GBP has yet to emerge. In

this section we describe a generalized mean field method that aims to fill this gap. The approach

yields a simple general methodology that applies to a wide range of models. To obtain the desired

simplicity our approach makes use ofnonoverlappingclusters, specializing Wiegerinck’s general

approach, and yielding a method that is somewhat reminiscent of block methods in MCMC such as

Swendsen-Wang[Swendsen and Wang, 1987].

Note that the choice of clusters is generally done manually both within the GBP tradition and

the mean field tradition. Another reason for our interest in nonoverlapping clusters is that it suggests

algorithms for automatically choosing clusters based on graph partitioning ideas. We will discuss a

preliminary exploration of these ideas in§ 4.5.

4.4.1 GMF Theory and Algorithm

As stated, the mean field approximation refers to a class of variational approximation methods

that approximate the true distributionp(x|θ) on a graphG with a simpler distribution,q(x|γ), for

which it is feasible to do exact inference. Such distributions are referred to astractable families. A

tractable family usually corresponds to a subgraph of a graphical model.

4.4.1.1 Naive mean field approximation

The naive mean field approximation makes use of a subgraph that is completely disconnected. Thus,

the approximating distribution is fully factorized:

q(x) =
∏
i∈V

qi(xi). (4.16)

For example, to use this family of distributions to approximate the joint probability of the Boltzmann

machine: p(x) = 1
Z exp{

∑
i<j θijxixj +

∑
i θi0xi} wherexi ∈ {0, 1}, one definesqi(xi) =
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µxi
i (1 − µi)1−xi , where theµi are the variational parameters. Minimizing the Kullback-Leibler

(KL) divergence betweenq andp, which is equivalent to solving Eq. (4.14) over the space ofµi,

one obtains the classical “mean field equations”:

µi = σ
( ∑

j∈Ni

θijµj + θi0

)
, (4.17)

whereσ(z) = 1/(1 + e−z) is the logistic function, andNi is the set of nodes neighboringi. A little

algebra shows that indeed each singleton marginal can be expressed as a conditional distribution of

the relevant node given the expectation of all its neighbors, and this distribution reuses the set of

coupling weights of the original distributionp:

qi(xi) = exp
{
θi0xi +

∑
j∈Ni

θijxi

〈
Xj

〉
qj

+Ai

}
= p(xi|{

〈
Xj

〉
qj
| j ∈ Ni}). (4.18)

As the second line of Eq. (4.18) suggests, the mean field approximation to the singleton marginal is

isomorphic to the corresponding singleton conditional under the original distributionp, with all the

neighboring nodes of the singleton being conditioned on replaced by their expectations under their

own singleton marginals. Conceptually,
〈
Xj

〉
qj

resembles a ’message” sent from nodej to i, and

{
〈
Xj

〉
qj
| j ∈ Ni} forms a “mean field” applied toXi from its neighborhood (Fig.4.8).

iX

Figure 4.8: Mean field messages. The red node (Xi) denotes the variable whose marginal is being approximated; the
blue nodes are neighbors that send the messages (assuming that these are the nodes whose couplings to nodei, i.e.,θij ,
are non-zero).
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Naive mean field approximation can be efficiently solved by fixed-point iteration. Procedu-

rally, this is similar to a Gibbs sampling scheme (see Chapter 5) in which one iteratively samples

each variable using a predictive distribution that conditions on the previously sampled values of

the neighboring variables. However, due to the deterministic replacement of the true value with an

expectation taken under an approximate marginal, the quality of the naive mean field approximation

for arbitrary graphical models could break down in cases where the original graphs are sparse (so

that the distribution of influences from the neighborhood may not be highly concentrated over an

expectation) and the pairwise couplings are not uniform over all edges (i.e., the magnitudes ofθi,j

vary significantly over different node pairs, so that presence of strongly coupled pairs can bias the

approximation).

4.4.1.2 Generalized mean field theory

The completely disconnected subgraph underlying the naive mean field approximation differs sig-

nificantly from the original graph, implying that many of the dependencies present in the original

model are left uncaptured. Intuitively, a subgraph with fewer edges removed would capture more

such dependencies and would define a family of distributions better at approximating the origi-

nal distribution. The basic idea ofgeneralized mean fieldapproximation is to employ a richer set of

tractable approximate distributions which correspond to a subgraphs made up of tractable connected

components of clusters of nodes.

Given a (disjoint) variable clusteringC, we define acluster-factorized distributionas a distri-

bution of the formq(x) =
∏

Ci∈C
qi(xCi

), whereqi(xCi
) = exp{−E′i(xCi

)},∀Ci ∈ C, are free

distributions to be optimized. As discussed in§4.3.4, this optimization problem can be cast as that

of maximizing a lower bound on the likelihood over the space of all valid cluster marginals respect-

ing a given clusteringC. The solution to this problem leads ageneralized mean field approximation

to the original distributionp(x). In the following, we present the generalized mean field theorem

that states this result.

To make the exposition of the theorem and the resulting algorithm simple, we introduce some
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4.4 Generalized Mean Field Inference

definitions.

Definition 2 (Mean field factor): For a factorizable potentialφβ(xDβ
), let Iβ denote the set of

indices of those clusters that have nonempty intersection withDβ. Thus,φβ(xDβ
) has as factors the

potentialsφβi
(xCi∩Dβ

),∀i ∈ Iβ . Then, themean field factorfiβ is defined as:

fiβ , 〈φβi
(XCi∩Dβ

)〉
qi
, for i ∈ Iβ (4.19)

where〈·〉qi
denotes the expectation with respect toqi.

Definition 3 (Generalized mean fields): For any clusterCj in a given variable partition, the set of

mean field factors associated with the nodes in itsMarkov blanketis referred as the set ofgeneralized

mean fieldsof clusterCj :

Fj , {fiβ : Dβ ∈ Bj , i ∈ Iβ, i 6= j}. (4.20)

From Eq. (4.9), replacingE′(xH) with
∑

Ci∈C E
′
i(xCi

) and omittingA(xE) (which is a constant

determined byp, the distribution to be approximated) the optimal generalized mean field approxi-

mation top is specified as the solution of the following constrained optimization problem:

{E′GMF
i (xCi

)}
Ci∈C = arg max

E′i∈E(xCi
)

∫
dx exp

{
−
∑
Ci∈C

E′i(xCi
)
}(

1−
(
E(x)−

∑
Ci∈C

E′i(xCi
)
))
,

(4.21)

whereE(xCi
) denotes the set of all valid energy functions of variable setxCi

. (Because evidence

variables are fixed constants in inference, for simplicity, we omit explicit mention of the evidence

xE, and the subscriptH in the energy termE(·) above and in other relevant terms in the following

derivation. In should be clear that, in situations where such subscripts are omitted,x and related

symbols denote only the hidden variables.) The solution to this problem leads to the follow Gener-

alized Mean Field Theorem (the proof is provided in AppendixB.1),
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4.4 Generalized Mean Field Inference

Theorem 2 (GMF approximation): For a general undirected probability modelp(xH ,xE) where

xH denotes hidden nodes andxE denotes evidence nodes, and for a clusteringC : {xH,Ci
,xE,Ci

}I
i=1

of both hidden and evidence nodes, if all the potential functions that cross cluster borders are

cluster-factorizable, then the generalized mean field approximation to the joint posteriorp(xH |xE)

with respect to clusteringC is a product of cluster marginalsqGMF (xH) =
∏

Ci∈C q
GMF
i (xH,Ci

)

satisfying the followinggeneralized mean field equations:

qGMF
i (xH,Ci

) = p(xH,Ci
|xE,Ci

,Fi), ∀i. (4.22)

Remark 1 Note that each variational cluster marginal is isomorphic to the isolated model fragment

corresponding to original cluster posterior given the intra-cluster evidence and thegeneralized mean

fieldsfrom outside the cluster. Thus, each variational cluster marginal inherits all local dependency

structures inside the cluster from the original model.

The mean field equations in Theorem2 are analogous to naive mean field approximation by

Eq. (4.18). Thegeneralized mean fieldsappearing in Eq. (4.22) play a role that is similar to the

conventional mean field, now applying to the entire cluster rather than a single node, and conducting

probabilistic influence from the remaining part of the model to the cluster. It is easy to verify that

when the clusters reduce to singletons, Eq. (4.22) is equivalent to the classical mean field equation

Eq. (4.17) (Fig. 4.9). From a conditional independence point of view, the generalized mean fields

can be also understood as anexpected Markov blanketof the corresponding cluster, rendering its

interior nodes conditionally independent of the remainder of the model and hence localizing the

inference within each cluster given its generalized mean fields.

Mean field approximation for directed models is also covered by Theorem2. This is true be-

cause any directed network can be converted into an undirected network via moralization, and des-

ignation of the potentials as local conditional probabilities. The following corollary makes this

generalization explicit:
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Figure 4.9: The generalized mean fields in: (a) a naive mean field approximation and, (b) a GMF approximation. Red ar-
rows denote GMFs received by the center cluster (or node) from its neighborhood, green arrows denote GMFs contributed
by the center cluster (or node) to its neighborhood.

Corollary 3 For a directed probability modelp(xH ,xE) =
∏

i p(xi|xπi) and a given disjoint vari-

able partition, if all the local conditional modelsp(xi|xπi) across the cluster borders admit cluster-

factorizable potentials, then the generalized mean field approximation to the original distribution

has the following form:qGMF (xH) =
∏

Ci∈C
qGMF
i (xH,Ci

), and

qGMF
i (xH,Ci

) = p(xH,Ci
|xE,Ci

,Fi), ∀i, (4.23)

whereFi refers to the generalized mean fields of the exterior parents, children and co-parents of the

variables in clusteri.

These theorems make it straightforward to obtain generalized mean field equations. All that

is needed is to decide on a subgraph and a variable clustering, to identify the Markov blanket of

each cluster, and to plug in the mean fields of the Markov blanket variables according to Eqs. (4.22)

or (4.23). We illustrate the application of the generalized mean field theorem to several typical

cases—undirected models, directed models, and models that combine continuous and discrete ran-

dom variables.

Example 1 (2-d nearest-neighbor Ising model):For a 2-d nearest neighbor Ising model, we can

pick a subgraph whose connected components are square blocks of nodes in the original graph

161



4.4 Generalized Mean Field Inference

(Fig. 4.10). The cluster marginal of a square blockGk is simplyq(xGk
) = exp{

∑
(ij)∈E(Gk) θijxixj +∑

i∈V(Gk) θi0xi +
∑

(ij)∈E(G),j∈MB(Gk) θij〈xj〉xi}, an Ising model of smaller size, with singleton poten-

tials for the peripheral nodes adjusted by the mean fields of the adjacent nodes outside the block

(which are theMB of xGk
). �

Example 2 (factorial hidden Markov models):For the fHMM, whose underlying graph consists

of multiple chains of discrete hidden Markov variables coupled by a sequence of output nodes,

taken to be linear-Gaussian for concreteness, a possible subgraph that defines a tractable family is

shown in Figure4.12, in which we retain only the edges within each chain of the original graph.

Given a clusteringC, in which each clusterk contains a subset of HMM chainsck (the dashed

boxes in Fig.4.12), the MB of each cluster consists of all nodes outside the cluster. Hence the

cluster marginal ofck is: q({x(mi)}i∈ck
) ∝

∏
i∈ck

p(x(mi))p(y|{x(mi)}i∈ck
, {f(x(mj))}j∈cl,l 6=k),

wherex(mi) denotes variables of chainmi, p(x(mi)) is the usual HMM of a single chain, andp(y|·)

is linear-Gaussian. When eachck contains only a single chain, we recover the structured variational

inference equations inGhahramani and Jordan[1997]. �

Example 3 (Variational Bayesian learning):Following the standard setup inGhahramani and

Beal[2001], we have acomplete data likelihoodP (x,y|θ), wherex is hidden, and aprior p(θ|η, ν),

whereη, ν arehyperparameters. Partitioning all domain variables into two clusters,{x,y} and{θ},

if the potential function at the cluster border,φ(x, θ), is factorizable (which is equivalent to the con-

dition of conjugate exponentialityin Ghahramani and Beal[2001]), we obtain the following cluster

marginals using Corollary3:

q(θ) = p(θ|η, ν, f(x),y) ∝ p(f(x),y|θ)p(θ|η, ν)

q(x) = p(x|y, f(θ)).

These coupled updates are identical to the variational Bayesian learning updates ofGhahramani and

Beal[2001] and Attias[2000]. �
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4.4.2 A more general version of GMF theory

Recall that the GMF theory developed in the last section assumes the potential functions of the

cliques in the graphical models arecluster-factorizable, which is not always true for general distri-

butions, for example, in case of a distribution defined by tabular potential functions. Now we briefly

sketch a moregeneralversion the GMF theory, which subsumes the previous version.

Given a disjoint variable partitioning,C, the truecluster conditionalof each variable clusterCi

given its Markov blanketMBi is:

p(xCi
|XMBi

= xMBi
) ∝ exp

{ ∑
Dα⊆Ci

θαφα(xDα) +
∑

Dβ⊆Bi

θβφβ(xDβ∩Ci
,xDβ∩MBi

)
}
,

(4.24)

whereBi denotes the set of cliques that intersect with but are not contained in clusterCi. Note that

in Eq. (4.24), we distinguish two types of variables in each clique:xDβ∩Ci
represents the variables

in the intersection of cliqueDβ and clusterCi, andxDβ∩MBi
represents the variables in cliqueDβ

but outside clusterCi. Without loss of generality, we assume that all the potentials are positively

weighted (i.e.,θ > 0) and the signs are subsumed in the potential functions.

Given a cliqueDβ, recall that we useIβ to denote the set of indices of clusters that have non-

empty intersection withDβ. Let Iβi denotesIβ \ i, which indexes the set of clusters other thanCi

that intersect with cliqueDβ; let q
Iβi

(·) =
∏

j∈Iβi
q
j
(xCj

) denote the marginal distribution (defined

by a product of mean field cluster marginals) over the variables in these clusters (note thatxDβ∩MBi

is a subset of the set of all variables in these clusters:{xCj
|j ∈ Iβi}). Finally, let us refer to the

(marginal) expectation of the potentialφβ(XDβ
) under the mean field cluster marginals indexed by

Iβi as aperipheral marginal potentialof clusterCi:

φ′β(xDβ∩Ci
, q

Iβi
) ,

〈
φβ(xDβ

)
〉
q
Iβi

=
∫
φβ(xDβ∩Ci

,xDβ∩MBi
)q

Iβi
(xDβ∩MBi

)dxDβ∩MBi
, (4.25)

which is only a functions of the variables in the intersection of cliqueDβ clusterCi, andq
Iβi

(·).
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Given the peripheral marginal potentials of all the cliques intersecting with clusterCi, we can

easily show (similar to the proof of Theorem2 in AppendixB.1, and hence omitted) that the GMF

approximation to the cluster marginal of this cluster is:

qi(xCi
) ∝ exp

{ ∑
Dα⊆Ci

θαφα(xDα) +
∑

Dβ⊆Bi

θβφ
′
β(xDβ∩Ci

, qIβi
)
}
,

(4.26)

from which the isomorphism of the GMF approximation of the cluster marginal to the true cluster

conditional (i.e., Eq. (4.24)) is apparent.

The definition of peripheral marginal potentials is more general than themean field messages

defined in the last section, which can be viewed as a special case that applies tocluster-factorizable

potentials. For other non-factorizable potentials, such as tabular potentials, peripheral marginal

potentials are still well defined.

4.4.3 A Generalized Mean Field Algorithm

Eqs. (4.22) and (4.23) are a coupled set of nonlinear equations, which are solved numerically via

asynchronous iteration until a fixed point is reached. This iteration constitutes a simple, message-

passing style, generalized mean field algorithm.

GMF ( model:p(xH ,xE), partition:{xH,Ci
,xE,Ci

}I
i=1 )

Initialization
– Randomly initialize the hidden nodes at the border of clusteri, ∀i.
– Initialize f 0

iβ by evaluating the potentials using the current values of the associ-
ated nodes.

– InitializeF 0
i with the currentf 0

iβ .

While not converged
For i = 1 : I
– Updateqt+1

i
(xH,Ci

) = p(xH,Ci
|xE,Ci

,F t
i ).

– Compute the mean field factorsf t+1
iβ of all potential factors at the border ofCi

via local inference usingqt+1
i

as in Eq. (4.19).

– Send thef t+1
iβ messages to all Markov blanket clusters ofi by updating the

appropriate elements in their GMFs:F t
j → F t+1

j ,∀j ∈MBCi.
End

Return q(xH) =
∏

i qi(xH,Ci
), the GMF approximation

164



4.4 Generalized Mean Field Inference

Remark 2 Note that the right-hand side of the mean field equation of cluster marginalqi (Eqs. (4.22)

and (4.23)) depends only on a set of cluster marginals that are functions on the Markov blanket vari-

ables of clusterCi; this set of marginals does not includeqi. Thus, the iterative update is a form of

coordinate ascent in the factored model space (i.e., we fix allqj(xH,Cj
), j 6= i and maximize with

respect toqi(xH,Ci
) at each step), which will lead to a fixed point. Therefore we have the following

convergence theorem.

Theorem 4 The GMF algorithm is guaranteed to converge to a local optimum, which is a lower

bound for the likelihood of the model (see Remark2 for a proof sketch).

Theorem4 is an important consequence of the use of adisjointvariable partition underlying the

variational approximate distribution. It distinguishes GMF from other variational methods such as

GBP [Yedidia et al., 2001b], or the general case in Wiegerinck’s framework[Wiegerinck, 2000],

in which overlapping variable partitions are used, and which optimize an approximate free energy

function with respect to marginals which must satisfy local constraints.

The complexity of each iteration of GMF is exponential in the tree width of thelocalnetworks of

each cluster of variables, since inference is reduced to local operations within each cluster. However,

this also means that a computational advantage can only be obtained if the maximum clique size

of qi is much smaller than that ofp, suggesting that an appropriate variable partition which breaks

large cliques is important for the success of GMF, an issue we explore in the next section.

Since GMF is guaranteed to converge to a local optimum, in practice it can be performed in a

stochastic multiple-initialization setting similar to the usual practice in EM, to increase the chance

of finding a better local optimum.

4.4.4 Experimental Results

Although GMF supports several types of applications, such as finding bounds on the likelihood or

log-partition function, computation of approximate marginal probabilities, and parameter estima-

tion, in this section we focus solely on the quality of approximate marginals. We have performed

experiments on three canonical models: a nearest neighbor Ising model (IM), a sigmoid network
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(SN), and a factorial HMM (fHMM); and we have compared the performance of GMF using differ-

ent tractable families (specifically, using variable clusterings of different granularity) with regard to

the accuracy on single-node marginals. To assess the error, we use anL1-based measure

1∑N
i=1Mi

N∑
i=1

Mi∑
k=1

|p(Xi = k)− q(Xi = k)|,

whereN is the total number of variables, andMi is the number of (discrete) states of the variable

xi. The exact marginals were obtained via the junction tree algorithm. We also compared the

performance with that of the belief propagation (BP) algorithm, especially in cases where BP is

expensive, and examined whether GMF provides a reasonably efficient alternative.

We used randomly generated problems for the IM and SN and real data for the fHMM. For the

first two cases, in any given trial we specified the distributionp(x|θ) by a random choice of the

model parameterθ from a uniform distribution. For models with observable output (i.e., evidence),

observations were sampled from the random model. Details of the sampling are specified in the

tables presenting the results. For each problem, 50 trials were performed. The fHMM experiment

was performed on models learned from a training data set.

Figure 4.10: Ising model and GMF approximations.

Ising models: We used an8 × 8 grid with binary nodes. Two different tractable models were

used for the GMF approximation, one based on a clustering of2 × 2 blocks, the other on4 × 4

blocks (Fig.4.10). Results on strongly attractive and repulsive Ising models (which are known to be

difficult for naive MF) are reported in Table4.1. The rightmost column also shows the mean CPU

time (in seconds).
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Table 4.1:L1 errors on nearest neighbor Ising models.Upper panel: attractive IM (θi0 ∈ (−0.25, 0.25), θij ∈ (0, 2)); Lower
panel: repulsive IM (θi0 ∈ (−0.25, 0.25), θij ∈ (−2, 0)).

Algorithm Mean± std Median Range time

2× 2 GMF 0.366±0.054 0.382 [0.276,0.463] 2.0
4× 4 GMF 0.193±0.103 0.226 [0.004,0.400] 29.4
BP 0.618±0.304 0.663 [0.054,0.995] 17.9
GBP 0.003±0.002 0.002 [0.000,0.005] 166.3

2× 2 GMF 0.367±0.052 0.383 [0.279,0.449] 1.2
4× 4 GMF 0.185±0.102 0.161 [0.009,0.418] 22.1
BP 0.351±0.286 0.258 [0.009,0.954] 14.3
GBP 0.003±0.003 0.003 [0.000,0.014] 117.5

As expected, GMF using a clustering with fewer nodes decoupled yields more accurate esti-

mates than a clustering in which more nodes are decoupled, albeit with increased computational

complexity. Overall, the performance of GMF is better than that of BP, especially for the attractive

Ising model. For this particular problem, we also compared to the GBP algorithm, which also de-

fines beliefs on larger subsets of nodes, with a more elaborate message-passing scheme. We found

that for Ising models, GBP performs significantly better than the other methods, but at a cost of

significantly longer time to convergence.

Figure 4.11: Sigmoid network and GMF approximations.

Sigmoid belief networks:The two sigmoid networks we studied are composed of three hidden

layers (18 nodes), with and without a fourth observed layer (10 nodes), respectively. We used a row

clustering and a block clustering of nodes as depicted in Figure4.11for GMF. Table4.2summarizes

the results.
Table 4.2:L1 errors on sigmoid networks (θij ∈ (0, 1)). Upper: hidden layers only; Lower: with observation layer.

Algorithm Mean± std Median Range time

block GMF 0.013±0.004 0.013 [0.006,0.032] 6.8
row GMF 0.172±0.036 0.175 [0.100,0.244] 0.5
BP 0.273±0.025 0.271 [0.227,0.346] 9.2

block GMF 0.018±0.009 0.014 [0.009,0.038] 8.4
row GMF 0.061±0.021 0.059 [0.023,0.145] 0.7
BP 0.187±0.044 0.189 [0.096,0.312] 139.2

For the network without observations, the block GMF, which retains a significant number of
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4.4 Generalized Mean Field Inference

edges from the original graph, is more accurate by an order of magnitude than the row GMF, which

decouples the original network completely. Interestingly, when a bottom layer of observed nodes is

included in the network, a significant improvement in approximation accuracy is seen for the row

GMF, but it still does not surpass the block GMF. The performance of BP is poor on both problems,

and the time complexity scales up significantly for the network with the observation layer, because

of the large fan-in associated with the nodes in the bottom layer.

... ...

Figure 4.12: An fHMM and a GMF approximation (illustrative graph; the actual model contains 6 chains and 40 steps).

Factorial HMM: We studied a 6-chain fHMM, with (6-dimensional) linear-Gaussian emis-

sions, ternary hidden state and 40 time steps. The model was trained using the EM algorithm (with

exact inference) on 40 Bach chorales from the UCI Repository[Blake and Merz, 1998]. Inference

was performed with the trained model on another 18 test chorales. GMF approximations were based

on clusterings in which each cluster contains either singletons (i.e., naive mean field), one hidden

Markov chain, two chains, or three chains, respectively. The statistics of theL1 errors are presented

in Table4.3.

Table 4.3:L1 errors on factorial HMM

Algorithm Mean± std Median Range time

naive MF 0.254±0.095 0.269 [0.083,0.397] 9.8
1-chain GMF 0.237±0.107 0.233 [0.029,0.392] 14.3
2-chain GMF 0.092±0.081 0.064 [0.019,0.314] 5.6
3-chain GMF 0.118±0.092 0.089 [0.035,0.357] 15.6
BP 0 0 - 106.2

Since the moral graph of an fHMM is a clique tree, BP is exact in this case, but the compu-

tational complexity grows exponentially with the number of chains and the cardinality of the vari-

ables; hence BP cannot scale to large models. Using GMF, we obtain reasonable accuracy, which

in general increases with the granularity of the variable clustering. The 2-chain GMF appears to be
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4.5 Graph Partition Strategies for GMF Inference

a particularly good granularity of clustering in this case, leading to both better estimation and faster

convergence.

In summary, GMF shows reasonable performance in all three of the canonical models we tested,

and provides a flexible way to trade off accuracy for computation time. It is guaranteed to converge,

and the computational complexity is determined by the treewidth of the subgraph. BP, on the other

hand, may fail to converge. Furthermore, the complexity of computing BP messages is exponential

in the size of the maximal clique in the moralized graph, which makes it very expensive in directed

models with dense local dependencies. However, note that there are multiple ways of decomposing a

graphical model (Fig.4.13); in all three examples just studied, the clusterings of variables are chosen

manually by examining the graph topology and studying the model semantics, and the choice affects

the approximation quality significantly. Can we do this in a more principled way, especially for less

structured graphs? In the following section, we address this problem.
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Figure 4.13: Two possible schemes for partitioning a graph to construct the GMF approximation. Which one is better?

4.5 Graph Partition Strategies for GMF Inference

What are the prospects for fully autonomous algorithms for variational inference in graphical mod-

els? Recent years have seen an increasingly systematic treatment of an increasingly flexible range
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4.5 Graph Partition Strategies for GMF Inference

of algorithms for variational inference. In particular, the cluster variational framework has provided

a range of algorithms that extend the basic “belief propagation” framework[Yedidiaet al., 2001a].

Similarly, general clusters of variables are also allowed in recent treatments of structured mean field

algorithms[Wiegerinck, 2000]. Empirical results have shown that both kinds of generalization can

yield more effective algorithms.

While these developments provide much-needed flexibility for the design of effective algo-

rithms, they also raise a new question—how are the clusters to be chosen? Until now, this issue has

generally been left in the hands of the algorithm designer; moreover, the designer has been provided

with little beyond intuition for making these choices. For some graphical model architectures, there

are only a few natural choices, and these can be explored manually. In general, however, we wish

to envisage a general piece of software for variational inference which can be asked to perform in-

ference for an arbitrary graph. In this setting, it is essential to begin to explore automatic methods

for choosing clusters.

In the previous section, we presented a generalized mean field algorithm for inference based on

adisjointclustering of random variables in a graphical model, noting that the assumption of disjoint

clusters leads to a simple and generic set of inference equations that can be easily implemented.

Disjoint clusters have another virtue as well, which is the subject of this section—they open the

door to a role for graph partitioning algorithms in choosing clusters for inference.

There are several intuitions that support a possible role for graph partitioning algorithms in the

autonomous choice of clusters for graphical model inference. The first is that minimum cuts are to

be preferred, so that as much as possible of the probabilistic dependence is captured within clus-

ters. It also seems likely that the values of parameters should matter because they often reflect the

“coupling strength” of the probabilistic dependences among random variables. Another intuition is

that maximum cuts should be preferred, because in this case the mean field acting across a large cut

may have an expectation that is highly concentrated, a situation which corresponds to the basic as-

sumption underlying mean field methods[Jordanet al., 1999]. Again, specific values of parameters

should matter.
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4.5 Graph Partition Strategies for GMF Inference

In this section we provide a preliminary formal analysis and a thoroughgoing empirical explo-

ration of these issues. We present a theorem that relates the weight of the graph cut to the quality of

the bound of GMF approximation, and study random graphs and a variety of settings of parameter

values. We compare several different kinds of partitioning algorithms empirically. As we will show,

our results turn out to provide rather clear support for a clustering algorithm based on minimal cut,

which is consistent with implications drawn from the formal analysis. These promising results open

up the possibility for a fully autonomous variational inference algorithm for complex models based

on automatic node partitioning of a graphical model and GMF fixed point iterations as illustrated in

the following flowchart in Figure4.14.

GP GMF
q(x  )posterior:

approximate jointgraphical model: node clustering
p(x  , x  )H p(x  , x  )H EE H

Figure 4.14: Flowchart of a autonomous variational inference algorithm.

4.5.1 Bounds on GMF Approximation

The quality of the GMF approximation depends critically on the choice of variable clustering of the

graphical model. The following is a theorem that formally characterizes this relationship.

Theorem 5 (GMF bound on KL divergence): The Kullback-Leibler divergence from the GMF

approximate joint posterior to the true joint posterior is bounded by the sum of the weights of

potential functions associated with the cross-border cliques, up to some constants intrinsic to the

graphical model:

aW ≤ KL(q‖p) ≤ bW, (4.27)

whereW =
∑

Dβ⊆∪Bi
θβ and,a andb are constants determined by the potential functions of the

cross-border cliques (but independent of the potentials internal to the clusters.)

A proof of this theorem is provided in AppendixB.2. Theorem5 provides a clear guideline

for choosing a desirable partitioning of a general graphical model: heuristically, it is desirable
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to break cliques associated with small weights while clustering the variables in the graph; more

systematically, we can use a graph partitioning algorithm to seek an optimal decomposition of the

graph underlying the model. In the following, we explore several graph partitioning strategies on

random graphs with pairwise potentials (each clique contains only two variables) to confirm and

exploit Theorem5 experimentally.

4.5.2 Variable Clustering via Graph Partitioning

A wide variety of graph partitioning algorithms have been explored in recent years in a number of

fields (e.g.,[Goemans and Williamson, 1995; Rendl and Wolkowicz, 1995]). Given our focus on

disjoint clusters in the GMF approach, these algorithms have immediate relevance to the problem

of choosing clusters for inference. In this section, we describe the methods that we have explored.

4.5.2.1 Graph partitioning

Let G(V, E , A) be a weighted undirected graph with node setV = {1, . . . , n}, edge setE and

nonnegative weightsaij , for (i, j) ∈ E (aij = 0 if there is no edge between nodei andj; alsoaii =

0,∀i). We refer to the symmetric matrixA = {aij} as theaffinity matrix. We equip the space ofn×

n matrices with the trace inner productA •B = tr AB; letA � 0 denote positive semidefiniteness

(A � B denotesA − B � 0); and letA ≥ 0 denote elementwise non-negativity ofA. The linear

operator Diag(a) forms a diagonal matrix from the vectora, and its adjoint operator diag(A) yields

a vector containing the diagonal elements ofA. We denote byek the vector containingk ones.

Equi-MinCut. We first consider graph partitioning (GP) problems based on minimum cuts. Given

a graphG(V, E , A) as described above, a classical formulation[Rendl and Wolkowicz, 1995] asks

to partition the node set intok disjoint subsets,(C1, . . . , Ck), of specified sizesm1 ≥ m2 ≥ . . . ≥

mk,
∑k

j=1mj = n, so as to minimize the total weight of the edges connecting nodes in distinct

subsets of the partition. This is known as the minimumk-cut of G. In this section, we concern

ourselves with the special case of this problem in which all subsets have equal cardinalitym, a
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4.5 Graph Partition Strategies for GMF Inference

problem that we refer to ask equi-MinCut(k-MinC). 4 Equi-MinCut avoids potentially skewed

cuts on highly imbalanced graphs, and leads to a balanced distribution of computational complexity

among clusters.

A k-way node partition can be represented by anindicator matrixX ∈ Rn×k with the j-th

column,xj = (x1j x2j . . . xnj)t, being theindicator vectorfor the setCj , ∀j:

xij =
{

1 : if i ∈ Cj

0 : if i /∈ Cj
.

Thus,k-equipartitionsof a graph are in one-to-one correspondence with the set

Fk = {X : Xek = en, X
ten = mek, xij ∈ {0, 1}}.

For each partitionX, the total weight of the edges connecting nodes within clusterCi to nodes in

its complement̄Ci is equal to1
2x

t
i(D − A)xi, whereD = Diag(Aen). As a result, the total weight

of thek-cut is

Ck =
∑

i

1
2
xt

i(D −A)xi =
1
2

trXtLX, (4.28)

whereL , D −A is theLaplacian matrixassociated withG.

Thus,k equi-MinCut can be modeled as the following integer programming problem

(k-MinC) MinC∗k := min{tr XtLX : X ∈ Fk}.

Equi-MaxCut. We may also wish to find ak-partition thatmaximizesthe total weight of the cut.

This problem is known as the Maxk-Cut in combinatorial optimization. Even without any size

constraint this problem is NP-hard. In this paper, we again concern ourselves with a constrained

version of the problem, in which all subsets have equal cardinalitym. Thus we have the following

k equi-MaxCut(k-MaxC) problem

(k-MaxC) MaxC∗k := max{tr XtLX : X ∈ Fk}

=
∑

i

dii −min{tr XtAX : X ∈ Fk}.

4In combinatorial optimization, this problem is traditionally referred to as thek-partition problem. It is NP-hard, and
to be distinguished fromunconstrainedminimum cut, which isnot NP-hard.
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We see that bothk-MaxC andk-MinC are quadratic programs, and the relaxations that we con-

sider will treat them identically. Note that due to the equality in the second line of the above equa-

tion, k-MaxC can be solved in a similar manner tok-MinC, which amounts to using a different

“cost” matrix in the objection function.

Weight matrices. The design of the affinity matrix has a fundamental impact on the results that

are produced by graph partition algorithms. The naive choice in our case is to simply letaij = 1

when nodei andj are connected in a graphical model, and letaij = 0 otherwise. Intuitively, an

equi-MinCut using such an affinity matrix will capture more of the local dependency structure in the

model, while an equi-MaxCut will lead to lower computational cost for inference in each cluster.

One can also partition the graphical model based oncoupling strength, i.e., lettingaij = θij ,

the weight of the pairwise potential, so that an equi-MinCut results in clusters with strong intra-

cluster coupling, whereas an equi-MaxCut produces a clustering with only weak couplings left in

each cluster.

It also seems sensible to consider weighting schemes that favor large cuts with small coupling

strength, or small cuts and large coupling strengths. We explore such a scheme by choosing weights

that are inversely related to coupling strength.

The following table summarizes the various partition strategies explored in this paper, and the

corresponding design of the affinity matrix.
Table 4.4: Graph partition schemes

GP
scheme

k-
MinCa

k-
MinCb

k-
MinCc

k-
MaxCa

k-
MaxCb

k-
MaxCc

aij

value
{1, 0} {θij , 0} { 1

θij
, 0} {1, 0} {θij , 0} { 1

θij
, 0}

4.5.2.2 Semi-definite relaxation of GP

Both k equi-MinCutandk equi-MaxCutare NP-hard. But there exist a variety of heuristics for

finding approximate solutions to these problems[Frieze and Jerrum, 1995; Karisch and Rendl,

1998]. some applicable to quite large graphs[Falkneret al., 1994]. In the sequel, we describe
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an algorithm that finds an approximate solution tok-MinC andk-MaxC using a semidefinite

programming (SDP) relaxation[Karisch and Rendl, 1998].

Semidefinite programming. Semidefinite programming (SDP) refers to the problem of optimiz-

ing a convex function over the convex cone of symmetric and positive semidefinite matrices, subject

to linear equality constraints[Vandenberghe and Boyd, 1996]. A canonical (primal) SDP takes the

form:

(SDP)


min C •X

s.t. Ai •X = bi for i = 1, . . . ,m
X � 0

Because of the convexity of the objective function and the feasible space, every SDP problem has

a single global optimum. With the development of efficient, general-purpose SDP solvers based

on interior-point methods (e.g., SeDuMi[Sturm, 1999]), SDP has become a powerful tool in solv-

ing difficult combinatorial optimization problems. Here, we describe a simple SDP relaxation for

solving graph partitioning problems.

SDP relaxation of GP. We now derive a semidefinite relaxation for GP. For simplicity, we illus-

trate it only fork-MinC; k-MaxC follows similarly with the appropriate change to the objective.

The first step in SDP relaxation involves replacingXtLX with tr LY , whereY is equal to

XXt; this linearizesthe objective. Let us define the setTk:

Tk := {Y : ∃X ∈ Fk such thatY = XXt}.

Thusk-MinC reads: MinC∗k := min{tr LY : Y ∈ conv(Tk)}.

Note that due to linearization of the objective, our feasible set can be rewritten as the convex hull

of the original setTk. The next step is to approximate the convex hull ofTk by outer approximations

that can be handled efficiently.Karisch and Rendl[1998] describe a nested sequence of outer

approximations for GP that leads from the well-known eigenvalue bound of Donath and Hoffman

to increasingly accurate bounds. Omitting details, one of their relaxation schemes results in the

following SDP relaxation fork-MinC:
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(P )



max 1
2 tr LY

s.t. diag(Y ) = en
Y en = men
Y ≥ 0 elementwise
Y � 0, Y = Y t

(P) is an SDP and can be solved by an interior-point solver such as SeDuMi.

4.5.2.3 Finding a closest feasible solution

While in some cases a bound is the major goal of a relaxation, in our case we require that the

relaxation give us a (feasible) solution. In particular, the optimal solution of problem(P ) is in

general not feasible for the original GP problem, and we need to recover from the approximate

solution a closest feasible solution,X, to the original GP problem. We use the following scheme in

this section.

• From the relaxed solutionY , find a decompositionY = X ′X ′t via SVD (note thatX ′ is usually full
rank rather than of rankk as in the feasible case).

• Treat each row inX ′ as a point inRn; cluster these points using a variant of the standardK-means
algorithm that finds equi-size clusters. (We use multiple restarts and pick the result with the best cut
value).

• Complete the feasible index matrixX: xij = 1 iff row i of X ′ gets assigned to clusterj.

This rounding scheme is related to the randomized projection heuristic studied byGoemans and

Williamson[1995] in their work on Max-Cut. In this approach, the label (-1 or +1) of each vector

is chosen according to whether the vector is above or below a randomly chosen hyperplane passing

through the origin.Frieze and Jerrum[1995] generalized this scheme to maxk-cut. Rendl and

Wolkowicz [1995] proposed another alternative involving a first-order Taylor expansion of the cost

function around the relaxedX ′. However, these schemes make it difficult to enforce size constraints

on the clusters, and occasionally produce artifacts such as having an empty cluster. Empirically, we

have found that aK-means heuristic usually leads to superior and often near-optimal results.
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4.5.3 Experimental Results

In this section, we combine graph partitioning with the GMF algorithm to perform inference on

randomly generated undirected graphical models with singleton and pairwise potentials. We an-

alyze three aspects of the overall procedure—the quality of the graph partition, the accuracy of

the approximate marginal probabilities, and the tightness of the lower bounds on the log partition

function.

For each trial, we use a random graph of 24 nodes5 and specify the distributionp(x|θ) by

making a random choice of the model parameterθ from a uniform distributionU(a, b). For single

node weightsθi, we seta = −wobs andb = −wobs. For pairwise weightsθij , we seta = −wcoup,

b = 0 for repulsivecoupling;a = −wcoup, b = wcoup for mixedcoupling; anda = 0, b = wcoup for

attractivecoupling, respectively.

Table 4.5: GP performance. (default:K-means rounding; rp: random projection rounding)
Equi-MinCut Equi-MaxCut

k lower-b feas.X f/b upper-b feas.X f/b feas.X (rp) f/b (rp)
3 34 38 1.10±0.03 78 75 0.96±0.02 71 0.91±0.04
4 41 45 1.09±0.02 82 80 0.97±0.02 74 0.90±0.04
6 52 55 1.06±0.03 83 81 0.97±0.01 77 0.93±0.02
8 59 61 1.03±0.02 83 82 0.99±0.01 79 0.95±0.02

3 73 77 1.05±0.02 122 119 0.97±0.01 113 0.92±0.03
4 86 90 1.05±0.02 135 130 0.97±0.01 122 0.91±0.03
6 104 207 1.03±0.01 140 137 0.98±0.01 128 0.91±0.02
8 116 118 1.02±0.01 140 138 0.99±0.01 131 0.93±0.01

4.5.3.1 Partitioning random graphs

Our graphs are generated by sampling an edge with probabilityp for each pair of nodes. Table4.5

summarizes the performance (over 100 trials) of various graph partition schemes on random graphs.

To assess performance, we compute the ratiof/b between the feasible cut that was found and the

bound on the optimal cut provided by the SDP relaxation (the optimal solution must fall between

f andb). In the top panel, we show results for partitioning unweighted graphs withp = 0.3 into

5In fact, a standard SDP solver can readily handle larger graphs (e.g., with more than 100 nodes). But the exact
solutions of the singleton marginals for larger graphs are very expensive to compute, which makes it difficult to obtain
good estimates of the inference error.
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k = 3, 4, 6, and8 clusters. The bottom panel shows results for partitioning denser unweighted

graphs withp = 0.5. Partitioning on weighted graphs show similar performance.
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Figure 4.15:L1 errors of singleton marginals on random graphs, with different coupling types and strengths. Each
experiment is based on 20 trials. The sampling ranges of the model parameters for each set of trials are specified on
top of each graph as (wobs, wcoup). (x-axis: the number of clusters;y-axis: the`1 error; solid lines: cut based on
θij-weightedA; dashed lines: cut based on unweightedA; dashed-dot lines: cut based on1/θij-weightedA; lines with
diamond symbols: equi-MaxCut (black); lines with round-dot symbols: equi-MinCut (blue); dotted line with square
symbols: random cut (red). For reference, the dotted (red) line with no symbol marks the baseline error of naive mean
field.)

We see that the SDP-based GP provides very good and stable partitioning results, usually no

worse than 10% off the optimal cut values, and often within 5%. Note also that theK-means

rounding scheme outperforms the random projection rounding (rp).

4.5.3.2 Single-node marginals

We compared the performance of GMF using different graph partition schemes with regard to the

accuracy on single-node marginals. We used all six GP strategies summarized in Table4.4, as well

as a random clustering scheme. To assess the error, we use anL1-based measure as described in the
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last section. The exact marginals are obtained via exhaustive enumeration. We used graphs of two

different densities in our experiments:moderately connectedgraphs, with treewidth12 ± 1, more

than an order of magnitude greater than the largest cluster to be formed; anddensely connected

graphs, with treewidth16 ± 1. For simplicity, we show only results for the moderately connected

graphs.

Figure4.15shows that for all variable clusterings, GMF almost always improves over the naive

mean field. As expected, equi-MinCut always provides better results than other partition strate-

gies. In particular, equi-MinCut based on coupling strength yields the best results (consistent with

Theorem 5), followed by equi-MinCut based on node degree, then equi-MinCut that cuts the least

number of heavy edges. This suggests that, to better approximate the true marginals, it is important

to capture strong couplings within clusters. Equi-MaxCut fares less well; indeed, it is worse than

a random cut in most cases. It is worth noting, however, that cutting lightweight edges (i.e., max-

imizing the sum of 1
θij

across clusters) leads to better performance than degree- or coupling-based

cuts.

Not surprisingly, the performance of GMF improves as the size of the clusters increase, which

allows more dependencies to be captured within each cluster.

For denser graphs (results not shown), the performance gap between different clustering schemes

becomes smaller, but the trend and the relative order remain the same.

4.5.3.3 Bounds on the log partition function

Figure4.16shows the lower bounds on the log partition functions given by the GMF approxima-

tions. Comparing to Figure4.15, we see that there is a good correspondence between the perfor-

mance on approximating marginals and the tightness of the lower bound, a reassuring result in the

context of mean-field algorithms.

In summary, our empirical results provide rather clear support for a weighted version of MinCut

as a useful clustering algorithm for GMF inference, which is consistent with the implications from
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Figure 4.16: Accuracy of the lower bound on the log partition function. The ordering of the panels and the legends are the
same as in Fig4.15, except that they-axis now corresponds to the ratio of the lower bound of the log partition function
due to GMF versus the true log partition function.
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the formal analysis. This combination of graph partitioning algorithms with the generalized mean

field inference algorithm manifests a promising prototype for an autonomous variational inference

algorithm for arbitrary graphical models, optimizing variational approximations over the space of

model parameters as well as over the choice of tractable families used for the variational approxi-

mation, and making it possible to perform distributed approximate inference on large-scale network

models arising from challenging problems in fields such as systems biology and sensor networks.

4.6 Extensions of GMF

In light of the foregoing exposition, there are a number of extensions of the research reported here

that potentially lead to further improved GMF approximation.

4.6.1 Higher Order Mean Field Approximation

One possible extension involves the use of higher-order expansions in the basic variational bounds.

Leisink and Kappen[2001] have shown how to upgrade first-order variational bounds such as that

shown in Eq. (4.7) to yield higher-order bounds. In particular, the following third-order lower bound

can be obtained for the likelihood:

p(xE) ≥
∫
dx exp

{
− E′(xH)

}[
1−∆ +

1
2

exp(ξ)∆2
]
,

whereξ = 1
3〈∆

3〉/〈∆2〉, ∆ = E(xH ,xE)− E′(xH), and〈·〉 denotes expectation over the approx-

imate distributionq(xH) = exp{−E′(xH)}. The optimizer of this lower bound cannot be found

analytically. However, we can compute the gradient of the lower bound with respect toE′i (assuming

a cluster-factorized approximate distribution), which requires computation of up to third-order cu-

mulants of the nodes in the bordering cliques in the subgraph.Leisink and Kappen[2001] reported

an application of such a strategy to the 2-D lattice model and sigmoid belief network, approximated

by a completely disconnected subgraph, and reported significantly improved bounds. In the GMF

setting, which uses an approximating subgraph with more structure, the computation of the gradient

is even simpler because fewer nodes are involved in the cumulant calculation.
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4.6.2 Alternative Tractable Subgraphs

Another possible extension is to replace the disjoint clustering with atree-connected clustering.

The termW in the GMF bound can be also viewed as the total weight of the disrupted cliques (with

respect to the original graph) in the subgraph underlying a GMF approximation. Thus, we may

further reduceW by departing from the completely disjoint clustering to tree-connected clusters,

in which we connect all the disjoint clusters resulting from a graph partition using a tree whose

nodes are clusters. The link between every pair of connected clusters is chosen to be the maxi-

mally weighted clique shared by the clusters. Such a tree can be easily obtained by constructing a

maximal spanning tree of variable clusters. The motivation of using tree-connected clusters rather

than arbitrary subgraphs to approximate the true joint distribution is that under such a subgraph, the

message-passing-based GMF algorithm described earlier is still guaranteed to converge and yield a

set of globally consistent approximate cluster marginals.

4.6.3 Alternative Graph Partitioning Schemes

Eq. (B.5) in the appendix suggests that it may be advantageous to use other weighting schemes,

such as the entropy-like clique weights (expected potentials)〈φβ〉q, and seek a partition that min-

imizes the sum of expected cross-border potentials. Obviously, exact computation of the entropy-

like weights requires the true joint distribution, and is thus infeasible. We may approximate the

expected potential of each clique by replacing the true marginal distribution of the variables in

the corresponding clique with a naive mean-field-like approximation to the marginal:q(xDβ
) ∝

exp{θβφβ(xDβ
)|Fβ} whereF denotes mean field messages from neighboring cliques; this turns

the computation of the expectation into a local computation. It is possible to use an algorithm that

iterates between GMF (to update the marginalq(·)) and GP (to update the partition). It would be

also interesting to look at unequal partitions in MinCut, which allows modularities of the graph

structure to be explored in a more flexible way (e.g., as we do in the following for theLOGOS

model).
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4.7 Application to the LOGOS Model

The generalized mean field theorem makes it straightforward to obtain the fixed-point equations

of the variational approximation to a variety of probability distributions of practical interest. All

that is needed is to decide on a subgraph and a variable clustering, to identify the Markov blanket

of each cluster, and to plug in the mean fields of the Markov blanket variables according to Eqs.

(4.23) (or more generally, the marginal potentials of the peripheral cliques of each cluster). As

pointed out in Remark 1, since all the original intra-cluster dependencies are preserved in the mean

field cluster marginal, probabilistic inference in the GMF approximate distribution is reduced to

local and modular operations within each cluster. Hence, the overall inference problem is fully

decomposed based on the variable clustering.

Figure 4.17: The modular structure of theLOGOS motif model.

For theLOGOS model developed in Chapter 2 forN sequences containingK types of mo-

tifs, the modularity of the model structure naturally suggests a bipartite variable clustering: amo-

tif cluster {S(k)

l , θ(k)

l | k = 1, . . . ,K, l = 1, . . . , Lk}, and asequence cluster{Y (n)

t , X (n)

t | n =

1, . . . , N, t = 1, . . . , Tn} (Fig. 4.17). Applying Corollary3, we obtain the following GMF cluster

marginals:

qs(x) ∝
N∏

n=1

p(x(n)|υ,Υ)p(y(n)|x(n), {〈ln θ(k)〉
qm
}K

k=1, θbg), (4.29)

qm(θ, s) =
K∏

k=1

p(s(k)|ν,Ω)p(θ(k)|s(k), α, {〈h(k)(x,y)〉
qs
}K

k=1) (4.30)
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where〈h(k)(x,y)〉
qs

is the expectation of the sufficient statistics for motifk determined from DNA

sequence sety by state sequencesx (i.e., the count matrix of nucleotides of all sequence sites that are

of motif k as specified byx); and〈ln θ(k)〉
qm

is the posterior means of the logarithms of the position-

specific multinomial parameters of the motifk (often referred to as the natural parameters of the

multinomial distribution). Note thatqs(x) is now just a re-parameterized HMM, andqm(θ, s) is a

re-parameterized HMDM model. Inference in both submodels is straightforward and inexpensive.

For simplicity, again we omit the super(sub)scriptsk andn in the following expositions, and give

equations for a generic motif type or a generic sequence.

4.7.1 A GMF Algorithm for Bayesian Inference in LOGOS

Due to the isomorphism of GMF approximations of the cluster marginals to the original local and

global submodels ofLOGOS (Eqs. (4.29∼4.30)), variational Bayesian inference onLOGOS can

be “divided and conquered” into coupled local inferences on: 1) the isolated local alignment model,

i.e., an HMDM, as if we had “observations”,̄h = 〈h(x,y)〉
qs

, to obtain the posterior distribu-

tion of the PWM of each motif; and 2) the isolated global distribution model, i.e., an HMM,

as if the position-specific multinomial parameters of the motifs, in the natural parameter form

φ̄(θ) = 〈ln θ〉
qm

were given, to compute the posterior probabilities of motif locations. This gives

rise to the following EM-like fixed-point iteration procedure (referred to as a “variational EM” al-

gorithm in[Ghahramani and Beal, 2001], although strictly speaking the analogy is only procedural

but not mathematical, because GMF is not doing maximal likelihood parameter estimation as in an

EM algorithm but Bayesian estimation.), which is a special case of the GMF algorithm in§4.4.3:

Variational “E” step : Compute the expected sufficient statistics, the count matrixh̄, via inference

in the global motif distribution model given̄φ(θ) and sequencey:

h̄ =
T−L+1∑

t=1

h(yt:t+L−1)p(Xt = 1|y, φ̄), (4.31)

wherep(Xt = 1|y) is the posterior probability of the indicator at positiont being the motif-

start state, which can be computed using the forward-backward algorithm. (See AppendixA.3
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4.7 Application to the LOGOS Model

for details.)

Variational “M” step : Compute the posterior mean of the natural parameter,φ̄(θ), via inference

in the local motif alignment model given̄h:

φ̄(θl,j) =
∫

θ

∑
sl

ln θl,jp(θl|sl, α, h̄)p(sl|h̄)dθl

=
I∑

i=1

p(Sl = i|h̄)
(
Ψ(αi,j + h̄l,j)−Ψ(|αi|+ |h̄l|)

)
, (4.32)

whereΨ(x) is the digamma function, andp(Sl = i|h̄) is the posterior probability of hidden

stateq given ’observation’̄h, which can be computed using the standard forward-backward

algorithm of HMM. (See AppendixA.4 for details.)

According to Theorem4, this message-passing procedure will converge. Once it converges, we

can compute the MAP estimate of motif locations in the global HMM submodel and the Bayesian

estimate of the motif PWMs from the local HMDM submodels.

The generalized mean field theory provides adivide-and-conquercomputational tool to work

with complex models, especially for those coming from a modular design using the graphical model

formalism. It provides computational support for an upgrade path toward more sophisticated mod-

els, which may be needed for improving motif detection. For example, the global distribution model

is completely open to user design and can be made highly sophisticated to model complex properties

of multiple motifs without complicating the inference in the local alignment model. Similarly, the

local motif alignment model can also be more expressive without interfering with the motif distri-

bution model. In the literature, Bayesian inference in large scale models are usually approached via

a Monte Carlo sampling algorithm. In Chapter 5 we describe acollapsedGibbs sampling procedure

for Bayesian inference onLOGOS. Following is an illustration of the convergence behavior of the

GMF algorithm onLOGOS and an empirical comparison of the GMF algorithm and the Gibbs

sampling algorithm onLOGOS for motif detection tasks of modest difficulty.
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4.7 Application to the LOGOS Model

4.7.2 Experimental Results

We use semi-realistic test datasets described before, each containing 20 artificially generated DNA

sequences (500-600 bp long) harboring one real motif or three different real motifs (of length 18,

22, and 26 bases, respectively). The performance of inference is evaluated based on the error rate

((false positive + false negative)/2) of predicted motif occurrences.

4.7.2.1 Convergence behavior of GMF

Since the GMF algorithm is only guaranteed to convergence to a local minimum, we run GMF

with 50 random restarts, each followed by fixed-point (FP) iterations until convergence. To obtain

a “convergence curve” of a full run of multiply restarted GMF, we sequentialize the output of all

rounds of FP iterations. After each single cross-update step in each single round of FP-iteration, we

record the lowest value of the free energy,〈E〉q + Hq, achieved so far (since the first round of FP

iteration), and compute the empirical error rates of motif prediction made from the GMF posterior

q corresponding to the current lowest free energy, which gives a performance trace.
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Figure 4.18: (a) Convergence of a single round of FP-iteration of GMF (Each point represents one step of iteration.) (b)
The “convergence curve” of GMF with 50 random re-starts. (The solid line is the mean value over 10 independent runs,
and the dashed line represents the std.)

Figure4.18illustrates the convergence behavior of GMF on a motif detection task. Typically,

a single round of GMF takes about30 ∼ 60 iterations to converge (Fig4.18a). GMF with multiple

random restarts in general plateaus within less then 50 restarts (Fig4.18b), suggesting a possibility
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4.7 Application to the LOGOS Model

of reaching global (or near global) optimality. Thus, in the following experiments, we perform GMF

with 50 random restarts and pick the one resulting in the lowest free energy for the given sequences

as the final result.

4.7.2.2 A comparison of GMF and the Gibbs sampler for motif inference

We compared the performance of motif inference on theLOGOS model using GMF and a Gibbs

sampler (see§5.2). Convergence of the Gibbs sampler is diagnosed based on the standard Gelman-

Rubin (GR) statistics[Gelman, 1998]. We infer motif locations using the sample means ofX during

Gibbs sampling, which yield an on-line measure of the performance.

Table 4.6: Median hit-rate of motif detection in test set containing one genuine and one decoy motif.
abf1 gal4 gcn4 gcr1 mat mcb mig1 crp

GMF 0.81 0.82 0.71 0.65 0 0. 0.73 0.58
Gibbs 0.71 0.79 0.65 0.53 0.75 0 0.91 0.63

Table4.6summarizes the results obtained via GMF and Gibbs sampling for motif detection in

a simple one-per-sequence setting using HMDM as the local model (see§2.4.4). The performances

of the two algorithms are largely comparable, with the Gibbs sampler slightly better. However, the

convergence time for the Gibbs sampler is significantly longer, typically 5 to 10 times that of GMF.
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Figure 4.19: Comparison of GMF and Gibbs sampler on performance (in terms of predictive error rate vs. time). Note
the difference in the scale of the x-axis in the two plots.

For more difficult problems, such as simultaneous detection of multiple motifs in a large dataset,

the mixing time of the Gibbs sampler becomes prohibitively long, and the results obtained within

187



4.8 Conclusions and Discussions

a tolerable time span from a Gibbs sampler are not comparable to those of the GMF, which uses

far less time. Figure4.19illustrates the convergence curve, in terms of predictive error rate versus

time, for GMF and the Gibbs sampler (obtained from the same experiment from which we plotted

the convergence curve in Fig.4.18). As evident in Fig4.19a, the error rate of motif detection using

GMF generally follows an improving trend consistent with that of the free energy in Fig.4.18b,

although not exactly monotonically decreasing, which is not surprising since the generative model

described byLOGOS does not necessarily model the motif sequences exactly (thus some local

optima may yield slightly better predictions than others). The error curve of the Gibbs sampler,

on the other hand, is less stable (Fig4.19b), showing that the sampling process explores the state

space in a non-deterministic fashion, therefore providing less reliable performance in finite time.

The choice of random seeds seems to affect convergence quality for both GMF and Gibbs.

Table 4.7: Performance (mean error rate) of GMF and Gibbs over 5 test datasets.
dataset 1 2 3 4 5
GMF 0.27±0.17 0.26±0.13 0.38±0.18 0.35±0.18 0.39±0.17
Gibbs 0.49±0.19 0.41±0.23 0.56±0.20 0.41±0.23 0.49±0.21

Table4.7summarizes the the performances of GMF and the Gibbs sampler over 5 different test

datasets for simultaneous detection of three motifs (as described in§2.6.1). GMF outperforms the

Gibbs sampler (run with finite allowable time, i.e.10× the time for GMF) in all cases. We reason

that for a complex motif model such asLOGOS, the state space is likely to be highly multi-modal

and poorly connected, and thus tends to trap the Gibbs sampler at sub-optimality; whereas GMF can

explore such a space much more efficiently by doing more random restarts than a Gibbs sampler

can afford, and is guaranteed to reach a local minimum from each restart.

4.8 Conclusions and Discussions

We have presented a generalized mean field approach to probabilistic inference in graphical models,

in which a complex probability distribution is approximated via a distribution that factorizes over

a disjoint partition of the graph. Locally optimal variational approximations are obtained via an

algorithm that performs coordinate ascent on a lower bound of the log-likelihood, with guaranteed
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convergence. For a broad family of models in practical use, we showed that the GMF approxima-

tions of the cluster marginals are isomorphic to the original model in the sense that they inherit all

of its intra-cluster independence structure. Moreover, these marginals are independent of the rest of

the model given the expected potential factors (mean fields) of the Markov blanket of the cluster.

The explicit and generic formulation of the “mean fields” in terms of the Markov blanket of vari-

able clusters also leads to a simple, generic message-passing algorithm for complex models. This

result is somewhat surprising as it shows that we can do approximate inference for arbitrary subsets

of hidden variables locally and tractably by capturing all the dependences external to the variable

subset with an expected Markov blanket, and applying existing inference algorithms locally (i.e., on

the cluster marginal) as a subroutine.

Disjoint clusterings have also been used in sampling algorithms to improve mixing rates for

large problems. For example, the Swendsen-Wang algorithm[1987] samples the Ising (or Potts)

model at critical temperatures by grouping neighboring nodes with the same spin value, thereby

forming random clusters (of coupled spins) that are effectively independent of each other, allowing

an MCMC process to collectively sample the spin of each cluster independently and at random. This

method often dramatically speeds up the mixing of the MCMC chain.[Gilks et al., 1996] also noted

that when variables are highly correlated in the stationary distribution, blocking highly correlated

components into higher-dimensional components may improve mixing. However, in the sampling

framework, clusterings are usually obtained dynamically, based on the coupling strength rather than

the topology of the network.

We have also investigated combinations of graph partitioning algorithms with the generalized

mean field algorithm, which allows mean field approximations to be optimized over both parameter

space and variable partition space in an autonomous fashion. We proved that the quality of the GMF

approximation is bounded by the total absolute weight of the potentials of the disrupted cliques due

to the disjoint variable clustering. Empirically, we confirmed that although all graphs partitions

lead to improvement over a naive mean field approximation, a minimal cut equipartition clearly

yields the best GMF approximation, measured both by singleton marginals and lower bounds of

189



4.8 Conclusions and Discussions

the true log partition function. Moreover, there is a good association between the qualities of the

approximate marginals and lower bounds.

Our work represents an initial foray into the problem of choosing clusters for cluster-based

variational methods. There is clearly much more to explore. First, we should note that we are

far from the ideal approach, where we base the clustering criterion on the ultimate goal—that of

obtaining accurate estimates of marginal probabilities. This is of course an ambitious goal to aim for,

and in the near term it seems advisable to attempt to find effective surrogates. In particular, we do not

want the problem of choosing clusters to be as computationally complex as the inference problem

that we wish to solve! (Fortunately, many efficient solvers are available to solve the GP problem

nearly optimally via SDP or spectral relaxation.) We should consider surrogates that involve more

general combinations of parameter values along cuts. In particular, we found little support for the

use of maximum cuts in our experiments, but perhaps if we search for large cuts along which the

parameter values are uniformly small we will have more success in this regard. In general, we might

ask for a surrogate that aims to capture both the setting under which mean field approximations are

effective, and the setting under which important local dependencies can be treated tractably.

Note also that we have focused on partitioning methods that decompose a large graphical model

into clusters of equal size. With no prior knowledge of the local connectivity within the clusters,

this equal-size heuristic seems reasonable; we wish to distribute resources roughly equally to each

cluster (e.g., to balance the load in a parallel computing setting). Again, however, it would be useful

to explore surrogates that attempt to capture local connectivity in the clustering criterion.

In an exemplary biological motif detection problem involving Bayesian inference in a hybrid,

large-scale graphical model, GMF outperforms conventional Gibbs sampling methods in both con-

vergence speed and error rate. We believe that due to its flexibility and efficiency, GMF simplifies

the application of variational methods to general probabilistic inference, and can significantly in-

crease the expressive power of languages that can be considered “practical” for knowledge repre-

sentation and reasoning under uncertainty.
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Chapter 5

Probabilistic Inference II: Monte Carlo
Algorithms

Monte Carlo algorithms are based on the fact that while it may not be feasible to perform statis-

tical computations on a complex joint or posterior distribution, say,p(x), it may be possible to

obtain samples fromp(x), or from a closely related distribution, such that marginals and other

expectations can be approximated using sample-based averages. In contrast to the variational in-

ference approaches discussion in the previous chapter, which seek deterministic approximations to

p(x), Monte Carlo algorithms yield a stochastic representation ofp(x) that is asymptotically ex-

act and easy to apply. General-purpose Monte Carlo inference software such as the BUGS system

has been developed for use with a general-purpose statistical modeling language (see[Gilks et al.,

1996]). For some statistical models, such as the Dirichlet process mixture model for haplotypes and

non-parametric Bayesian models in general, although the variational approach has been vigorously

pursued[Blei and Jordan, 2004], so far Monte Carlo algorithms are still the only practical approach

to yield reliable performance.

5.1 A Brief Overview of Monte Carlo Methods

We discuss two examples of Monte Carlo algorithms—Gibbs sampling and the Metropolis-Hastings

algorithm—that are commonly used in the graphical model setting and in particular within the

Bayesian paradigm.
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Gibbs sampling is an example of a Markov chain Monte Carlo (MCMC) algorithm. In an

MCMC algorithm, samples are obtained via a Markov chain whose stationary distribution is the

desiredp(x) (typically a complex multivariate distribution). The state of the Markov chain is an

assignment of a value to each of the variables. After a suitable “burn-in” period so that the chain

approaches its stationary distribution, these states are used as samples.

The Markov chain for the Gibbs sampler is constructed in the following way: 1) at each step

one of the variablesXi is selected (at random or according to some fixed sequence); 2) the condi-

tional distributionp(xi|xV\i) is computed (recall thatV is the set of indices of all the variables in

a graphical modelG(V, E)); 3), a valuexi is sampled from this distribution; and 4) the sampledxi

replaces the previous value of theith variable.

The Markov properties of graphical models are particularly useful for a Gibbs sampler: condi-

tioning on the so-called Markov blanket of a given node renders the node independent of all other

variables. Therefore,p(xi|xV\i) = p(xi|xMBi). Thus, the implementation of Gibbs sampling re-

duces to the computation of the conditional distributions of individual variables given their Markov

blankets. For graphical models, these conditionals take the following form:

p(xi|xV\i) = p(xi|xMBi)

=

∏
α∈MBKi

φα(xDα)∑
xi

∏
α∈MBKi

φα(xDα)
(5.1)

whereMBKi denotes the set of cliques containingXi and its Markov blanket nodes (note the

difference ofMBKi andMBCi defined in Chapter 4). The setMBKi is often much smaller than

the setD of all cliques ofG, and in such cases each step of the Gibbs sampler can be implemented

efficiently. Indeed the computation of the conditionals often takes the form of a simple message-

passing algorithm that is reminiscent of the junction tree algorithm or the GMF algorithm.

When the computation in Eq. (5.1) is overly complex, the Metropolis-Hastings algorithm can

provide an effective alternative. Metropolis-Hastings is an MCMC algorithm that is not based on

conditional probabilities, and thus does not require normalization as in Eq. (5.1). Given the current

statex of the algorithm, Metropolis-Hastings chooses a new statex∗ from a “proposal distribution”
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q(x∗|x), which often simply involves picking a variableXi at random and choosing a new value for

that variable, again at random. The algorithm then computes the “acceptance probability”:

ξ = min
(

1,
q(x|x∗)
q(x∗|x)

∏
α∈A φα(x∗Dα

)∏
α∈A φα(xDα)

)
. (5.2)

With probabilityξ the algorithm accepts the proposal and moves tox∗, and with probability1 − ξ

the algorithm remains in statex. For graphical models, if only one of the variables (sayXi) is

resampled, this computation also turns out to often take the form of a simple message-passing

algorithm, of which samples of the Markov blanket ofXi can be regarded as themessage.

The principal advantages of Monte Carlo algorithms are their simplicity of implementation and

their generality. Under weak conditions, the algorithms are guaranteed to converge. A problem with

the Monte Carlo approach, however, is that convergence times can be long (e.g., see§4.7.2), and it

can be difficult to diagnose convergence.

5.2 A Gibbs Sampling Algorithm for LOGOS

In the last chapter, we described a GMF algorithm for variational Bayesian inference forde novo

motif detection under theLOGOS model, which deterministically approximates the posterior distri-

bution of motif locations and the Bayesian estimates (resulted from an integration over the posterior

distribution) of PWMs. Here we present a Gibbs sampling algorithm for the same tasks. A compar-

ison of its performance to that of the GMF algorithm was given in§4.7.2.

5.2.1 TheCollapsedGibbs Sampler

Given a set of DNA sequences denoted byy = {y(n)}N
n=1, wherey(n) = (y(n)

1 , . . . , y(n)
Tn

), a

Gibbs sampler periodically samples the state configurations of latent variables from variable sets

X = {X(n)}N
n=1, Θ = {θ(k)}K

k=1 andS = {S(k)}K
k=1, one at a time, conditioning on the state

configurations of the rest of the variables sampled during the previous iterations. Again, for sim-

plicity we drop in the sequel the superscriptn associated with variablesX,Y , and the superscript

k associated with variablesθ, S. The predictive distributions to be derived for sampling apply to

every sequence and motif.
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In principal, a standard data augmentation (DA)[Tanner and Wong, 1987] approach can be

used to solve the Bayesian missing data problem for motif detection underLOGOS. But the fact

thatθ is a high-dimensional continuous variable implies that it is very expensive to approximate its

posterior distribution by samples and also, the Markov chain that generates these samples can mix

very slowly. As pointed out inLiu [1994], the conjugacy betweenp(θ, s) andp(x,y|θ) suggests

that we can integrate outθ and derive acollapsedGibbs sampling scheme. Essentially, we sample

iteratively from only two sets of discrete variables in the Markov chain: the Dirichlet component

indicator sequenceS = (S1, . . . , SL) in the local HMDM model, and the motif location indicator

sequenceX = (X1, . . . , XT ) in the global HMM model.

Let l denote an arbitrary state taken byXt (i.e, columnl of a motif whose index is omitted)

and, andh denote the sufficient statistics of the PWMθ (i.e., the nucleotide count matrix of the

aligned instances of each motif). For convenience, we use the subscript[−t] to denote an index set

excluding thetth element for variables, or an indication of the source (i.e., all but thetth element)

from which a sufficient statistic is collected. To keep the exposition simple, in the sequel we focus

on a Bayesian treatment of the PWMs only, and let the transition probability matrices{Ωi,j} and

{Υi,j} in the global and local model, respectively, be constant. A Bayesian treatment of these

parameters (e.g.,Ω) was discussed in§3.2, and can be similarly implemented in the collapsed Gibbs

sampler. Given the current states of all (discrete) variables in theLOGOS model exceptXt, the

Bayesian conditional predictive distribution forXt is:

p(Xt = l|x[−t], s,y)

= p(Xt = l|xt−1, xt+1, yt, h[−t], s)

=
1
Z
p(Xt = l|xt−1, xt+1)p(yt|Xt = l, h[−t], sl)

=
1
Z

Υxt−1→lΥl→xt+1

Γ(|αsl
|)∏

j∈N Γ(αsl,j)

∫ ∏
j∈N

θ
αsl,j

+h[−t],l,j+δ(yt,j)−1

j dθj

=
1
Z

Υxt−1→lΥl→xt+1

Γ(|αsl
|)∏

j∈N Γ(αsl,j)
·
∏

j∈N Γ(αsl,j + h[−t],l,j + δ(yt, j))
Γ(|αsl

+ h[−t],l + 1|)

=
1
Z

Υxt−1→lΥl→xt+1

Γ(|αsl
|)∏

j∈N Γ(αsl,j)
·
∏

j∈N Γ(αsl,j + hl,j)
Γ(|αsl

+ hl|)
, (5.3)
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wherehl represents the count vector of columnl of a motif (whose index is omitted) resulting

from the current assignment ofx[−t] plus the count induced byxt, andΥα→β denotes the transition

probability from stateα to β.

Given the current states of all variables exceptSl, the Bayesian conditional predictive distribu-

tion of variableSl is:

p(Sl = i|s[−l],x,y) = p(Sl = i|sl−1, sl+1, hl)

=
1
Z
p(Sl = i|sl−1, sl+1)p(hl|sl = i)

=
1
Z

Ωsl−1→iΩi→sl+1

Γ(|αi|)∏
j∈N Γ(αi,j)

∫ ∏
j∈N

θ
αi,j+hl,j−1
j dθj

=
1
Z

Ωsl−1→iΩi→sl+1

Γ(|αi|)∏
j∈N Γ(αi,j)

·
∏

j∈N Γ(αi,j + hl,j)
Γ(|αi + hl|)

(5.4)

A full sweep of variablesXn results in a new set of labellings of motif/background in a DNA se-

quence and requiresO(TKL) operations. The maximala posterioriestimates of the motif locations

are obtained by summarizing the empirical sample statistics.

5.2.2 Convergence Diagnosis

Since motifs are short stochastic substring patterns in a large “sea” of background sequences, the

posterior distribution defined byLOGOS is not only very high-dimensional, but also likely to be

multi-modal due to the possible presence of many genuine or pseudo motif patterns in the sequences.

Such a distribution can cause very slow mixing for the Markov chain, as well difficulties in detecting

when the stationary distribution is reached.
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Figure 5.1: Multiple runs of Gibbs sampling, as traced by the column-average entropy of~̄.
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5.3 Markov Chain Monte Carlo for Haplotype Inference

To increase the chance of proper mixing,M independent runs of sampling, with different

random seeds, are simultaneously performed (Fig.5.1). Convergence can be monitored at run-

time using an on-line minimal pairwise Gelman-Rubin (GR) statistics[Gelman, 1998] of some

scalar summaries of the model parameters obtained in each Markov chain. ForLOGOS, two

scalar summaries of the model parameters are used: 1) the posterior means of all the count ma-

tricesh̄ 1; 2) the column-average entropy of the column-normalizedh (denoted bȳ~): Ent(~̄) =

(
∑K

k=1

∑Lk
l=1H(~̄(k)

l ))/
∑K

k=1 Lk, as suggested in[Lawrenceet al., 1993]. In the first case,4 ×∑K
k=1 Lk values (i.e., elements of̄h) need to be monitored, and the minimal GR statistic (which

is a matrix{GR(h̄ij)}, containing the GR statistics of all the elements of~̄’s of a pair of chains)

is computed as the GR statistic that has the minimal Frobenius norm (among all pairs of MCMC

chains). To diagnosis convergence, we act conservatively by monitoring the maximum element in

this minimal GR statistic matrix. For the second strategy, we just compute the GR statistics of the

scalar summaryEnt(~̄) for all possible pairs of MCMC chains. For both cases, we stop when the

minimum among all pairwise GR statistics reaches1 + ε, whereε is set to be a small scaler (e.g.

0.05). The rationale underlying this approach is that it is unlikely for identical suboptimal conver-

gence to be reached by several independent MCMC chains before the optimum solution is found

once.

A comparison of this Gibbs sampler with the GMF algorithm on motif detection was presented

in §4.7.

5.3 Markov Chain Monte Carlo for Haplotype Inference

In this section, we describe a Gibbs sampling algorithm for exploring the posterior distribution

under the Dirichlet process mixture model for haplotypes, including the latent ancestral pool. We

also present a Metropolis-Hastings variant of this algorithm that appears to mix better in practice.

We follow the notations used in Chapter 3 and hereby omit an reiteration of notational details.

1A simple matching heuristic is used to match the count matrices from different chains when different chains number
the motifs differently (e.g., the same set of motifs(1, 2, 3) found in chain 1 may be numbered(3, 1, 2) in another chain).
We use minimum discrepancy amount all permutations to find the best matching.
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5.3 Markov Chain Monte Carlo for Haplotype Inference

5.3.1 A Gibbs Sampling Algorithm

Recall that the Gibbs sampler draws samples of each random variable from a conditional distribution

of that variable given (previously sampled) values of all the remaining variables. The variables

needed in our algorithm are:Cit , the index of the ancestral template of a haplotype instancet of

individuali;A(k)

j , the allele pattern at thejth locus of thekth ancestral template;Hit,j , thet-th allele

of the SNP at thejth locus of individuali; andGi,j , the genotype at locusj of individual i (the only

observed variables in the model). All other variables in the model—θ andγ—are integrated out.

The Gibbs sampler thus samples the values ofCit ,A
(k)

j andHit,j .

Conceptually, the Gibbs sampler alternates between two coupled stages. First, given the current

values of the hidden haplotypes, it samples thecit and subsequentlya(k)

j , which are associated with

the Dirichlet process prior. Second, given the current state of the ancestral pool and the ancestral

template assignment for each individual, it samples thehit,j variables in the basic haplotype model.

In the first stage, the conditional distribution ofcit is:

p(cit = k |c[−it],h,a)

∝ p(cit = k |c[−it])
∫
p(hit |cit = k, θk, a

(k))p(θ(k)|{hi′
t′

: i′t′ 6= it, ci′
t′

= k}, a(k))dθ(k)

= p(cit = k |c[−it])p(hit |a(k), c,h[−it])

=

{ n[−it],k

n−1+τ p(hit |a(k),m[−it],k) if k = ci′
t′

for somei′t′ 6= it

τ
n−1+τ

∑
a′ p(hit |a′)p(a′) if k 6= ci′

t′
for all i′t′ 6= it

(5.5)

where[−it] denotes the set of indices excludingit; n[−it],k
represents the number ofci′

t′
for i′t′ 6= it

that are equal tok; n represents the total number of instances sampled so far; andm[−it],k denotes

the sufficient statisticsm associated with all haplotype instances originating from ancestork, except

hit . This expression is simply Bayes theorem withp(hit |a(k), c,h[−it],) playing the role of the

likelihood andp(cit = k |c[−it]) playing the role of the prior.

The likelihoodp(hit |a(k),m[−it],k) is obtained by integrating over the parameterθ(k), as in

Eq. (3.9), up to a normalization constant:

p(hit |a(k),m[−it],k) ∝ R(αh, βh)
Γ(αh +mit,k)Γ(βh +m′

it,k
)

Γ(αh + βh +mit,k +m′
it,k

)

( 1
|B| − 1

)m′
it,k

, (5.6)
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wheremit,k = m[−it],k +
∑

j I(hit,j = a(k)

j ) andm′
it,k

= m′
[−it],k

+
∑

j I(hit,j 6= a(k)

j ), both

functions ofhit (note thatmit,k +m′
it,k

= nJ) 2. It is easy to see that the normalization constant

is the marginal likelihoodp(m[−it],k | a(k)), which leads to:

p(hit |a(k),m[−it],k) =
Γ(αh +mit,k)Γ(βh +m′

it,k
)

Γ(αh +m[−it],k)Γ(βh +m′
[−it],k

)
· Γ(αh + βh + (nk − 1)J)

Γ(αh + βh + nkJ)

( 1
|B| − 1

)J

.

(5.7)

Forp(hit |a), the computation is similar, except that the sufficient statisticsm[−it],k are now null

(i.e., no previous matches with a newly instantiated ancestor):

p(hit |a) = R(αh, βh)
Γ(αh +mit)Γ(βh +m′

it
)

Γ(αh + βh + J)

( 1
|B| − 1

)m′
it
, (5.8)

wheremit =
∑

j I(hj,it = aj) andm′
it

= J −mit,k are the relevant sufficient statistics associated

only with haplotype instancehit .

The conditional probability for a newly proposed equivalence classk that is not populated by

any previous samples requires a summation over all possible ancestors:p(hit) =
∑

a′ p(hit |a′)p(a′).

Since the gamma function does not factorize over loci, computing this summation takes time that is

exponential in the number of loci. To skirt this problem we endow each locus with its own mutation

parameterθ(k)

j , with all parameters admitting the same priorBeta(αh, βh) 3. This gives rise to a

closed-form formula for the summation and also for the normalization constant in Eq. (5.5). It is

also, arguably, a more accurate reflection of reality. Specifically,

p(hit |a) =
∏
j

R(αh, βh)
Γ(αh +mit,j)Γ(βh +m′

it,j
)

Γ(αh + βh + 1)

(
1

|B| − 1

)m′
it,j

=
∏
j

(
αh

αh + βh

)I(hit,j=aj)( βh

(|B| − 1)(αh + βh)

)I(hit,j 6=aj)

. (5.9)

2Recall that in§3.3.2 we use the symbolmk to denote the count of matching SNP alleles in those individual haplotypes
associated with ancestora(k) (andm′

k for those inconsistent with the ancestora(k)). Here, we use a variant of these
symbols to denote the pair of random counts (as indicated by the additional subscriptit) resulting from the originalmk

(or m′
k) for individual haplotypes known to associate witha(k) plus a randomly assigned haplotypehit (whose actual

associated ancestor is unknown).
3Note that now we also need to split countsm[−it],k, mit,k andmit into site-specific counts,m[−it],k,j , mit,k,j and

mit,j , respectively, wherej denotes a single SNPs site.
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Assuming that loci are also independent in the base measurep(a) of the ancestors and that the base

measure is uniform, we have:

∑
a

p(hit |a)p(a) =
∏
j

(∑
l∈B

p(aj = l)p(hit,j |aj = l)
)

=
∏
j

(∑
l∈B

1
|B|

(
αh

αh + βh

)I(hit,j=l)( βh

(|B| − 1)(αh + βh)

)I(hit,j 6=l)
)

=
(

1
|B|

)J

(5.10)

In this case (that each locus has its own mutation parameter), the conditional likelihood com-

puted in Eq. (5.7) is:

p(hit,j |a
(k)

j ,m[−it],k,j)

=
∏
j

(
αh +m[−it],k,j

αh + βh + nk − 1

)I(hit,j=a
(k)
j )( βh +m′

[−it],k,j

(|B| − 1)(αh + βh + nk − 1)

)I(hit,j 6=a
(k)
j )

(5.11)

Note that during the sampling ofcit , the numerical values ofcit are arbitrary, as long as they

index distinct equivalence classes.

Now we need to sample the ancestor templatea(k), wherek is the newly sampled ancestor index

for cit . Whenk is not equal to any other existing indexci′
t′

, a value forak needs to be chosen from

p(a|hit), the posterior distribution ofA based on the priorp(a) and the single dependent haplotype

hit . On the other hand, ifk is an equivalence class populated by previous samples ofci′
t′

, we draw

a new value ofa(k) from p(a|{hit , : cit = k}). If after a new sample ofcit , a template is no longer

associated with any haplotype instance, we remove this template from the pool. The conditional

distribution for this Gibbs step is therefore:

p(a(k)|a(−k),h, c) = p(a(k)|{hit , : cit = k})

=
p({hit , : cit = k}|a(k))∑

a p({hit , : cit = k}|a(k) = a)

=
∏
j

p(mk,j |a(k)

j )∑
l∈B p(mk,j |a(k)

j = l)
. (5.12)
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We can samplea(k)

1 , a(k)

2 , . . . , sequentially:

p(a(k)

j |{hit,j : cit = k}) =

1
Z p(hit,j |a

(k)

j )

=
(

αh
αh+βh

)I(hit,j=a
(k)
j )( βh

(|B|−1)(αh+βh)

)I(hit,j 6=a
(k)
j )

if k is not previously instantiated

1
Z p({hit,j : cit = k}|a(k)

j )

= 1
Z

Γ(αh+mk,j)Γ(βh+m′
k,j)

Γ(αh+βh+nk)·(|B|−1)
m′

k,j

=
Γ(αh+mk,j)Γ(βh+m′

k,j)/(|B|−1)
m′

k,jP
l∈B Γ(αh+mk,j(l))Γ(βh+m′

k,j(l))/(|B|−1)
m′

k,j
(l)

if k is previously instantiated,

(5.13)

wheremk,j (respectively,m′
k,j) is the number of allelic instances originating from ancestork at

locusj that are identical to (respectively, different from) the ancestor, when the ancestor has the

patterna(k)

j ; andmk,j(l) (respectively,m′
k,j(l)) is the value ofmk,j (respectively,m′

k,j) when

a(k)

j = l. 4

We now proceed to the second sampling stage, in which we sample the haplotypeshit . We

sample eachhit,j , for all j, i, t, sequentially according to the following conditional distribution:

p(hit,j |h[−(i,j)], hit̄,j , c,a,g)

∝ p(gi|hit,j , hit̄,j ,u[−(i,j)])p(hit,j |a
(k)

j ,m[−(it,j)],k)

= Rg
Γ(αg + u)Γ(βg + (u′ + u′′))

Γ(αg + βg + IJ)
[µ1]u

′
[µ2]u

′′ ×Rh

Γ(αh +mit,k,j)Γ(βh +m′
it,k,j)

Γ(αh + βh + nk) · (|B| − 1)m′
it,k,j

,

(5.14)

where[−(it, j)] denotes the set of indices excluding(it, j) andmit,k,j = m[−(it,j)],k,j + I(hit,j =

a(k)

j ) (and similarly for the other sufficient statistics). Note that during each sampling step, we do

not have to recompute theΓ(·), because the sufficient statistics are either not going to change (e.g.,

4Note that here the countsmk (andm′
k) vary with different possible configurations of the ancestora(k) under given

h, unlike previously in Eqs. (5.6)-(5.11), in which they vary with different possible configurations ofhit under given
a(k).
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when the newly sampledhit,j is the same as the old sample), or only going to change by one (e.g.,

when the newly sampledhit,j results in a change of the allele). In such cases the new gamma

function can be easily updated from the old one.

5.3.2 A Metropolis-Hasting Sampling Algorithm

Note that for a long list of loci, ap(a) that is uniform over all possible ancestral template patterns

will render the probability of sampling a new ancestor infinitesimal, due to the small value of the

smoothed marginal likelihood of any haplotype patternhit , as computed from Eq. (5.5). This could

result in slow mixing.

An alternative sampling strategy is to use a partial Gibbs sampling strategy with the following

Metropolis-Hasting updates, which could allow more complexp(a) (e.g., non-factorizable and non-

uniform) to be readily handled. To sample the equivalence class ofhit from the target distribution

π(cit) = p(cit |c[−it],h,a) described in Eq.5.5, consider the following proposal distribution:

q(c∗it = k|c[−it]) =

{n[−it],k

n−1+τ : if k = ci′
t′

for somei′t′ 6= it
τ

n−1+τ : if k 6= ci′
t′

for all i′t′ 6= it
(5.15)

Then we samplea(c∗it
) from the priorp(a). For the target distributionp(cit = k|c[−it],h,a), the

proposal factor cancels when computing the acceptance probabilityξ 5 , leaving:

ξ(c∗it , cit) = min
[
1,
p(hit |a

c∗it , c,h[−it])
p(hit |acit , c,h[−it])

]
. (5.17)

The choice of a more informativep(a) is an open issue. Besides using a uniform prior, one can,

for example, begin with a (small and hence inexpensive) finite mixture model using EM to roughly

5 The cancellation of the proposal inξ can be seen from the following steps:

q(cit |c[−it])

q(c∗it
|c[−it])

π(c∗it
)

π(cit)
=

q(cit |c[−it])

q(c∗it
|c[−it])

p(c∗it
|c[−it],h,a)

p(cit |c[−it],h,a)

=
q(cit |c[−it])

q(c∗it
|c[−it])

p(c∗it
|c[−it])p(hit |a

(c∗it
)
, c,h[−it])

p(cit |c[−it])p(hit |a(cit
), c,h[−it])

=
p(hit |a

(c∗it
)
, c,h[−it])

p(hit |a(cit
), c,h[−it])

, (5.16)
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ascertain major population haplotypes, and then construct ap(a) by letting the EM-derived popu-

lational haplotypes take a large portion of the probability mass, and leaving some mass uniformly

to all other possible ancestors. Using a non-rigorous heuristic, we sample according to Eq. (5.13).

It can be shown that with this proposal, the acceptance rate defined by Eq.5 still roughly holds6.

In practice, we found that the above modification to the Gibbs sampling algorithm leads to substan-

tial improvement in efficiency for long haplotype lists (even with a uniform base measure forA),

whereas for short lists, the Gibbs sampler remains better due to the high (100%) acceptance rate.

5.3.3 A Sketch of MCMC Strategies for the Pedi-haplotyper model

Recall that the Pedi-haplotyper model is an extension of the basic Dirichlet process mixture hap-

lotype model (i.e., the DP haplotyper model) that incorporates pedigree information for some in-

dividuals in a study population. The MCMC sampling strategy for the Pedi-haplotype model is

similar to the one for the basic DP-haplotyper described above, except that we need to sample a few

more variables newly introduced on top of the DP-haplotyper model, which requires collecting a

few more sufficient statistics for updating the predictive distributions of these variables.

In addition to the sufficient statisticsm (for the consistency between the ancestral and individual

haplotypes (i.e., the number of cases of which the ancestral and individual haplotypes agree in a

single sweep during sampling), andu (for the consistency between the individual haplotypes and

genotype (i.e., the number of cases of which the genotype and its corresponding haplotype pair

agree in a single sweep during sampling), needed in the DP-haplotyper model, we need to update

the following sufficient statistics during each sampling step that sweeps all the random variables:

6 To see this, note that now the proposal distribution is:q(cit |c[−it])p(a(cit
)|a[−cit

],h, c), and the desired equilibrium
distribution isπ(cit , a

(cit
)) = p(cit , a

(cit
) | c[−it],h,a[−cit

]). The Markov transition probability is therefore:

q(cit |c[−it])

q(c∗it
|c[−it])

p(acit
|a[−cit

],h, c)

p(ac∗it
|a[−c∗it

]
,h, c)

π(c∗it
, a

[c∗it
]
)

π(cit , a
[cit

])

=
q(cit |c[−it])

q(c∗it
|c[−it])

p(acit |a[−cit
],h, c)

p(a
c∗it |a[−c∗it

]
,h, c)

p(c∗it
|c[−it])p(hit |a

[c∗it
]
, c,h[−it])

p(cit |c[−it])p(hit |a[cit
], c,h[−it])

p(ac∗it |a[−c∗it
],h, c[−it])

p(acit |a[−cit
],h, c[−it])

≈
p(hit |a

c∗it , c,h[−it])

p(hit |acit , c,h[−it])
. (5.18)
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• w: the sufficient statistics of the transition probabilityζ,

wrr′ =
∑

t

∑
i

∑
j

1(sit,j = r)1(sit,j+1 = r′).

If we prefer to model the recombination rates in males and females differently, then we com-

putewt separately fort = 0 andt = 1.

• v: the sufficient statistics of the single generation inheritance (i.e., non-mutation) rateε,

v =
∑

t

∑
r

∑
i

∑
j

1(hit,j = hπr(it),j)1(sit,j = r).

The ancestral template indicators associated with the founding subjects and the ancestor pool

can be sampled as usual using the Gibbs and/or MH procedures used for the basic Dirichlet process

mixture model for haplotypes. Now we derive the additional predictive distributions needed for

collapsed Gibbs sampling for the Pedi-haplotyper model. For each predictive distribution of the

hidden variables, we integrate out the model parameters given their (conjugate) priors (see§3.3 and

§5.3.1 for definitions of most of the notations used here).

• To sample a founding haplotype:

p(hit,j |h[−(i,j)], hit̄,j , s, c,a,g)

= p(hit,j |hit̄,j , hλ(i),j , sλ(i),j , acit ,j , gi,v[−(i,j)],u[−(i,j)],m[−(i,j)])

∝ p(hit,j , hλ(i),j , gi|hit̄,j , sλ(i),j , acit ,j ,v[−(i,j)],u[−(i,j)],m[−(i,j)])

= p(hλ(i),j |hit,j , hit̄,j , sλ(i),j ,v[−(i,j)])p(gi|hit,j , hit̄,j ,u[−(i,j)])p(hit,j |acit ,j ,m[−(i,j)])

= Rm
Γ(αm + v(hit,j))Γ(βm + v′(hit,j))
Γ(αm + βm + v(hit,j) + v′(hit,j))

×

Rg
Γ(αg + u(hit,j))Γ(βg + u′(hit,j) + u′′(hit,j))

Γ(αm + βm + IJ)
µu′

1 µ
u′′
2 ×

Rh
Γ(αh +m(hit,j))Γ(βh +m′(hit,j))

Γ(αh + βh +m(hit,j) +m′(hit,j)) · (|B| − 1)m′(hit,j)
, (5.19)

wherehλ(i),j refers to the allele in the child ofi that is inherited fromi. For simplicity, we

suppose only one child. For the case of multiple children, the first term of Eq. (5.19) becomes

a product of such terms each corresponding to one child.

203



5.3 Markov Chain Monte Carlo for Haplotype Inference

• To sample a non-founding haplotype:

p(hit,j |h[−(i,j)], hit̄,j , s, c,a,g)

= p(hit,j |h[−(i,j)], hit̄,j , hλ(i),j , hπ(it)0,j , hπt(it),j , sit,j , sλ(i),j , gi,v[−(i,j)],u[−(i,j)])

∝ p(hit,j , hλ(i),j , gi|h[−(i,j)], hit̄,j , hπ(it)0,j , hπt(it),j , sit,j , sλ(i),j ,v[−(i,j)],u[−(i,j)])

= p(hit,j |hπ(it)0,j , hπ(it)1,j , sit,j ,v[−(i,j)])p(hλ(i),j |hit,j , hit̄,j , sλ(i),j ,v[−(i,j)])

p(gi|hit,j , hit̄,j ,u[−(i,j)])

= Rm
Γ(αm + v(hit,j))Γ(βm + v′(hit,j))
Γ(αm + βm + v(hit,j) + v′(hit,j))

×

Rg
Γ(αg + u(hit,j))Γ(βg + u′(hit,j) + u′′(hit,j))

Γ(αm + βm + IJ)
µu′

1 µ
u′′
2 . (5.20)

• To sample the segregation variable:

p(sit,j |h, s[−(i,j)], sit̄,j , c,a,g)

= p(sit,j |hit,j , hπ0(it),j , hπ1(it),j , sit,j−1, sit,j+1,v[−(i,j)],w[−(it,j)])

∝ p(hit,j |hπ0(it),j , hπ1(it),j , sit,j ,v[−(i,j)])p(sit,j−1|sit,j ,w[−(it,j)])

= p(sit,j |sit,j+1,w[−(it,j)])

= Rm
Γ(αm + v(sit,j))Γ(βm + v′(sit,j))
Γ(αm + βm + v(sit,j) + v′(hit,j))

×

Rs
Γ(αs + w00(sit,j) + w11(sit,j))Γ(βs + +w01(sit,j) + w10(sit,j))

Γ(αs + βs + |w|)
,

(5.21)

where|w| =
∑

r,r′ wr,r′ .

5.3.4 Summary

In this section we presented stochastic inference algorithms based on a pure Gibbs sampling scheme

and a variant based on a Metropolis Hasting scheme for haplotype inference under a Dirichlet pro-

cess mixture model—DP haplotyper. We also sketched Pedi-haplotyper, a Gibbs sampler for hap-

lotype inference with pedigree information. We implemented the DP-haplotyper and validated it on
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both simulated and real genotype data (see§3.4), and demonstrated superior performance compared

to the state-of-the-art algorithm for haplotype inference. An implementation of the Pedi-haplotyper

Gibbs sampler is deferred to future work.

If desired, we can also use these algorithms as subroutines to compute Bayesian estimates of

model parameters of interest, such as the recombination rateζ under the Pedi-haplotyper model.

This can be done via a Monte Carlo EM algorithm, where in the E step we sample the hidden

variables using the algorithms just presented, and in the M step we use sufficient statistics from the

samples to estimate the parameter based on sample average. We omit further discussion on this

subject.

5.4 Conclusion

In comparison to the GMF algorithms presented in the previous chapter, modulo time complexity

(for reaching equilibrium) and space complexity (for storing the samples), Monte Carlo methods

are arguably more general and easier to apply for statistical computations (especially Bayesian in-

ference) in a wide range of probabilistic models. Under the graphical model formalism where

the conditional independencies among variables are made explicit, implementing a Markov chain

Monte Carlo algorithm such as a Gibbs sampler is particularly straightforward—the proposal dis-

tribution of each variable reduces to a conditional distribution under the Markov blanket of the

variable, which is easily identifiable from the graph topology and can be automated. In this chapter,

we presented MCMC algorithms for the large-scale Bayesian models we developed for motif de-

tection and haplotype inference, taking advantage of the simplicity offered by our graphical model

formalism.

In particular, for certain graphical models, such as the non-parametric Bayesian models defined

via a Dirichlet process prior (as for haplotype inference), MCMC algorithms appear to be the only

practical methodology for probabilistic inference. They naturally handle the issue of representing

the densities of a potentially infinite dimensional mixture model via sequentially generated samples

from such a distribution, whereas it seems that a variational approximation (still being developed

205



5.4 Conclusion

by several authors, including the author of this thesis) has to apply anad hocpredetermined trunca-

tion scheme to represent the approximate density. This reduces the original distribution to a finite

mixture model[Blei and Jordan, 2004], greatly diminishing the flexibility offered by the original

non-parametric model. Our Gibbs sampling algorithm for the Dirichlet process mixture model for

haplotypes is quite competent in performance, although a comparison to a variational inference

algorithm under the same model would be interesting to reveal any performance/cost trade-off.

Such a comparison was done for theLOGOS model, which belongs to the family of parametric

Bayesian models (and hence is of fixed dimensionality). Despite the simplicity of implementing

the Gibbs sampler forLOGOS, and acceptable performance in small-scale test problems, we found

that the GMF algorithm significantly outperforms the Gibbs sampler in more challenging large-scale

problems given finite time (see§4.7). This suggests that GMF is a competent and efficient alter-

native to Monte Carlo methods for what we believe to be a wide range of large fixed-dimensional

parametric models, especially when the performance/cost trade-off needs to be tilted toward lower-

ing the computational cost without sacrificing significantly in performance.
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Chapter 6

Conclusions

6.1 Conclusions from This Work

In this work, we focused on probabilistic graphical models and algorithms for analyzing two par-

ticular types of genomic data known as gene regulatory sequences and single nucleotide polymor-

phisms. We presented new algorithms to solve the related computational biology tasks of motif

detection and haplotype inference.

In Chapter 2, we re-formulated the conventional unsupervisedde novomotif detection problem

in genomic analysis as a semi-unsupervised learning problem, and developed a modular Bayesian

Markovian model calledLOGOS, which can be trained on biologically identified motifs and gener-

alized to novel motif patterns. This model captures various properties of motifs, including canonical

structures of motif families, syntax of motif occurrences, and the distribution of nucleotides in back-

ground sequences. The graphical model formalism enables us to model these aspects with individual

submodels in a divide-and-conquer fashion, and results in a joint model that can be efficiently solved

using an approximate inference algorithm based on generalized mean field approximation.

Chapter 3 introduces a novel application of the non-parametric Bayesian approach to the hap-

lotype inference problem. Our model extends a conventional finite mixture model to a potentially

infinite mixture model via a Dirichlet process that induces a prior distribution over the centroids

(i.e., the identities of populational ancestral haplotypes) and the cardinality (i.e., the number of dis-

tinct ancestral haplotypes) of the mixture model. Such an extension is particularly suitable for data
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with a complex unknown distribution. It provides an alternative approach to the conventional model

selection methods based on a finite model space, imposes an implicit parsimonious bias on the de-

gree of diversity of haplotypes and allows a model to expand in a statistically consistent fashion

to accommodate increasing data that may have new patterns. Our model also incorporates a like-

lihood factor that naturally handles missing values and statistical errors in the haplotype/genotype

relationship.

Another major technical focus of this thesis is the development of efficient approximate algo-

rithms for probabilistic inference in complex models that are intractable for exact algorithms. In

Chapter 4, we developed a generalized mean field theory for approximate probabilistic inference

in complex graphical models using a generic optimization procedure based on graph partitioning

and message passing that provably converges to globally consistent marginals and a lower bound on

the likelihood. This framework generalizes previous works on model-specific structured variational

approximation yet specializes a previous study suggesting non-disjoint model decompositions, and

appears to strike the right balance between approximation quality and complexity. This work aims to

develop a turnkey algorithm for distributed approximate inference with bounded performance. The

GMF algorithm has been successfully used as the main algorithm for inference and learning in the

LOGOS model and exhibits superior performance compared to its MCMC counterpart. However,

under a non-parametric Bayesian setting, as used for haplotyping, MCMC algorithms developed in

Chapter 5 still appear to be the only practical approach.

6.2 Future Work

6.2.1 Modeling Gene Regulation Networks of Higher Eukaryotes in Light of Systems
Biology and Comparative Genomics

It is widely believed that using diverse sources of related data and modeling them jointly is essential

to gain deep insight into complex biology phenomena. As discussed briefly in§2.8, joint models

comprising aspects of regulatory sequences, gene expression (e.g., microarray data), protein bind-

ing (CHiP data), and phylogenetic information, have begun to emerge and have shown promising

208



6.2 Future Work

potential. We intend to explore extensions of our motif models along these directions under the

LOGOS framework.

In particular, we are interested in studying the gene regulatory networks of higher eukaryotic or-

ganisms under a developmental context that involves temporal-spatial regulation of gene activities.

Note that during the formation of a multicellular system such as an early embryo from a single cell

such as a fertilized egg, each cell in the embryo has the same DNA content, but almost every single

cell has a different function. This is somewhat analogous to a massive heterogeneous parallel sys-

tem bootstrapped from the same program and subsequently differentiated by executing (temporally

and spatially) context-specific subroutines of the common program. Deciphering the control mech-

anisms underlying such a system is crucial for understanding many biological processes typical of

higher eukaryotes but nonexistent in bacteria or yeast, such as embryogenesis and differentiation,

which are closely related to important biomedical problems such as birth defects and cancer devel-

opment. Due to the high complexity of higher eukaryotic genomes and the technical difficulties of

directly profiling gene expression patterns in such species, (e.g., conventional approaches such as

cDNA microarrays used in uni-cellular organisms, which reflect the average effect of a homoge-

neous cell population, are not sufficiently informative), a mere extrapolation of extant techniques

developed on the bacteria/yeast platform is not sufficient. Departing from theLOGOS model, we

plan to develop more accurate and expressive statistical models that facilitate investigations of the

gene regulation networks of higher eukaryotes in light of richer information from systems biology

and comparative genomics. Specifically, the following extensions are of particular interest:

Richer motif models. To improve the sensitivity and specificity of motif prediction in higher eu-

karyotic genomic sequences, it is necessary to upgrade both the local submodel and global submodel

of the currentLOGOS model to encode richer regulatory grammar and capture higher-order depen-

dencies among and within the regulatory signals. An immediate extension of the models presented

in this thesis is to replace the 1st-order Markov models over sequence positions with more elab-

orated Bayesian networks to model richer dependencies. Another promising future direction is to

209



6.2 Future Work

combine the generative framework we adopted in this thesis with discriminative models such as con-

ditional random fields[Lafferty et al., 2001], so that long range interactions of sequence elements

and the influence of neighborhood statistical properties on motif locations can be comprehensively

integrated in a semi-supervised fashion.

Joint models for temporal-spatial profiles of gene expression. Image profiles ofin situ hy-

bridization (e.g., see Fig.2.2) and immuno-staining are standard tools for cell and developmental bi-

ologists to study the whole-body temporal-spatial patterns of gene expression in higher eukaryotes,

and prove to be much more informative than microarray profiles of homogenized tissue samples.

Correlating this representation of gene expression withcis-regulatory sequences is an intriguing

open problem, which demands much effort in both computational image analysis and the devel-

opment of appropriate probabilistic models that can interface the image models and the sequence

models.

Joint models for comparative genomics. It can be highly informative to investigate an organ-

ism in the light of its evolutionary relationship to other organisms. Therefore, comparative studies

of non-protein-coding genomic sequences in several related species can potentially help to improve

motif detection. Along this direction, plausible evolutionary models of motif sequences, and general

methods to address the problem of low-quality alignment of regulatory sequences (compared to that

of gene sequences) during comparative genomic analysis (which critically depends on alignment

quality) are still to come. We intend to develop a joint model that correctly models within-species

and cross-species variations of motif sequences resulting from genomic stochasticity and from spe-

ciation, respectively, in order to infer the compositions and locations of these recurring elements

from either aligned or unaligned genomic sequences of multiple species.

In summary, an integration of heterogeneous biological data via unified and consistent joint

mathematical models is essential for analyzing biological systems at a much more comprehensive

scale, and will greatly help the pursuit of a predictive understanding of how developmental gene
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regulatory networks are encoded and evolved.

6.2.2 Genetic Inference and Application Based on Polymorphic Markers

SNPs comprise the largest class of individual differences in genomes, and have become a focus

of research interest because of their value for investigating the genetic and evolutionary basis of

multi-factorial diseases and complex traits. Such investigations require an integration of polymor-

phic molecular markers, such as the SNP markers we studied, with genetic linkage maps, complex

phenotypic traits, pedigrees, etc., under a unified model. Continuing on our current work on phasing

SNP haplotypes of aniid population, future directions include both theoretical explorations of the

evolutionary mechanisms and dynamics of the populational diversity reflected in the haplotypes and

their implications for trait diversification and inheritance; and practical upgrades of our current mod-

els into ones that can be used to infer SNP blocks concurrently with phase resolution, to infer haplo-

types under the constraints of partial pedigrees (briefly sketched in§3.6), to infer map-locations of

genetic traits associated with phenotypic patterns, etc. The graphical model framework used in this

thesis makes it straightforward to pursue these future directions by constructing advanced models

using the Dirichlet process mixture model developed in this thesis as a basic building block. For

example, the following extensions are immediately on the horizon:

Bayesian treatment of the scaling parameter in DP. The scaling parameterτ in the Dirichlet

process controls the prior tendency to instantiate new ancestral haplotypes in a population. Since DP

can be described by a metaphor of non-Darwinian evolution process,τ may indeed reveal certain

aspects of the dynamics of genetic drift and fixation during evolution and hence plays an interesting

role in modeling populational diversity. In Bayesian non-parametrics, it is standard to introduce

an easy-to-handle prior forτ [Westet al., 1994; Rasmussen, 2000], which makes it adaptable to

populational diversity, and allows it to be estimateda posteriori.

Hierarchical DP for ethnic-group-specific populational diversity. The early split of an ances-

tral population following a populational bottle-neck (e.g., due to sudden migration or environmental
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changes) may lead to ethnic-group-specific populational diversity, which features both ancient hap-

lotypes (that have high variability) shared among different ethnic groups, and modern haplotypes

(that are more strictly conserved) uniquely present in different ethnic groups. This structure is anal-

ogous to a hierarchical clustering setting in which different groups comprising multiple clusters

may share clusters with common centroids (e.g., different new topics may share some common key

words). The hierarchical Dirichlet process mixture model developed byTehet al. [2004] provides

a promising Bayesian approach to model such structure. We are pursuing an extension of our (flat)

DP haplotyper model using this approach.

Linkage analysis. The degree of correlation between haplotypes of genetic markers (SNPs) and

phenotypic traits (e.g., disease susceptibility, drug response, body features, etc.), formally known

as linkage disequilibrium, reflects the frequency of genetic recombinations (hence the physical dis-

tance) between the marker(s) and the potential causal gene(s) of the phenotypic traits on the chro-

mosome, a measure of great medical and clinical value. In principle, a joint model for linkage

analysis and haplotype inference can be obtained by replacing (or extending) the simple genotype

model discussed in this thesis with a more sophisticated phenotype model that comprises 1) are-

combination submodel, describing the dependencies between the marker and the target gene, e.g.,

via a stochastic process capturing distance-dependent decay of the recombination rate, 2) apene-

tration submodel, describing the correspondence between the target gene and the phenotypic traits,

and 3) a likelihood submodel, capturing the stochasticity in phenotypic measurements. In practice,

for multi-factorial traits, the problem is complicated by the necessity of modeling complex depen-

dencies between multiple causal genes and their net effects at the phenotype level, which is still an

open-ended problem that calls for advances in modeling and probabilistic inference methodology.

In summary, a long-term goal we intend to pursue along this direction is to build clinical-

grade phasing and mapping software that performs routine genetic diagnosis based on individual or

familial SNP records. Generalizing SNPs to general markers, the model to be developed can also
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be extended to general pedigree inference, which is applicable to forensic analysis based on genetic

material, a problem also of great interest and practical value. We believe that with the models and

inference algorithms developed in this thesis, technical foundations are in place for developing a

full-scale joint model for statistical genetic inference.

6.2.3 Automated Inference in General Graphical Models

Large-scale probability models, such as the ones we developed in this thesis, have outgrown the

ability of current (and probably future) exact inference algorithms to compute posteriors and learn

parameters. For this reason, development of efficient and broadly applicable approximation algo-

rithms is critical to further progress. The generalized mean field theory we developed potentially

opens paths to the implementation of efficient and general-purpose variational inference engines

that are easily scalable and adaptable to a wide range of complex probabilistic models using canoni-

cal computational procedures, which should require little or no work on model-specific derivations,

and should be capable of answering arbitrary probabilistic queries. To further improve the approxi-

mation quality, we also expect that better tractable families associated with higher-order approxima-

tions or novel model decomposition schemes will need to be explored. Analysis of the relationships

between the structure of the optimization space and the quality of the resulting bounds on approxi-

mation error also deserves further investigation.

To conclude, in order to pursue a predictive understanding of how developmental gene regula-

tory networks are encoded and evolved, and the genetic basis of multi-factorial diseases and complex

traits, thorough understanding of the biological entities under investigation and high-throughput

generation of experimental data must join forces with rigorous quantitative models based on solid

mathematical foundations and algorithms for efficient computation. In particular, we expect that the

exploration of formalisms for data fusion and for modularizing large-scale probabilistic models, and

the development of more powerful inference and learning algorithms scalable to complex models,

213



6.2 Future Work

will be essential to keep up with the rapid pace of biological research, and furthermore will con-

tribute to applications in other science and engineering domains involving predictive understanding

and reasoning under uncertainty.
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Appendix A

More details on inference and learning
for motif models

A.1 Multinomial Distributions and Dirichlet Priors

To model a categorical random variableZ, which can takeJ possible discrete values (e.g., all 4

possible nucleotides, A, C, G and T, in a DNA sequence), a standard distribution is themultinomial

distribution : p(Z = j|θ) = θj , |θ| =
∑J

j=1 θj = 1, θj > 0,∀j, wherej represents one of theJ

possible values. The (column) vectorθ = [θ1, . . . , θJ ]t is called the multinomial parameter vector1.

For a set ofM i.i.d. samples ofZ, z = (z1, . . . , zM ) (e.g. a whole column of nucleotides in a multi-

alignmentA), the sufficient statistics are the counts of each possible value:hj =
∑M

m=1 δ(zm, j),

whereδ(a, b) = 1 if a = b and 0 otherwise. Under a multinomial distribution, the likelihood of a

single samplezm is:

p(zm|θ) =
J∏

j=1

[
θj

]δ(zm,j)
, (A.1)

and the joint likelihood of thei.i.d. sample setz is:

p(z|θ) =
M∏

m=1

J∏
j=1

[
θj

]δ(zm,j) =
J∏

j=1

[
θj

]hj . (A.2)

1Note that for simplicity, in this thesis we reuse the symbolθ (and alsoh andα in the sequel) to denote a single column
vector, whose elements are singly subscripted (e.g.θj); whereas in the main text and the next section, these symbols each
denote a two-dimensional array consisting of a sequence of column vectors, whose elements are consequently doubly
subscripted (e.g.,θl,j).
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To model uncertainty about the multinomial parameters, we can treatθ as a multivariate con-

tinuous random variable, and use aDirichlet density to define a prior distribution Dir(α) for θ:

p(θ|α) = C(α)
J∏

j=1

[
θj

]αj−1
, (A.3)

where the hyperparametersα = [α1, . . . , αJ ]t, αj > 0,∀j are called the Dirichlet parameters, and

C(α) is the normalizing constant which can be computed analytically:

C(α) =
Γ(|α|)∏J
j=1 Γ(αj)

, (A.4)

whereΓ(·) is thegammafunction.

Now we can calculate the joint probabilityp(θ, z|α):

p(θ, z|α) = p(z|θ)p(θ|α)

= C(α)
J∏

j=1

[
θj

]αj+hj−1

=
C(α)

C(α+ h)
Dir(α+ h). (A.5)

Integrating Eq. (A.5) overθ, we obtain the marginal likelihood:

p(z|α) =
∫
p(θ, z|α)dθ

=
Γ(|α|)

Γ(|α|+ |h|)

J∏
j=1

Γ(αj + hj)
Γ(αj)

=
C(α)

C(α+ h)
. (A.6)

From Eq. (A.6) we can see that the quantityαj − 1 can be thought of as an imaginary count of

the number of times that event(Z = j) has already occurred. Furthermore, we have the posterior

distributionp(θ|z, α) = p(θ, z|α)/p(z|α) = Dir(α+ h), which is isomorphic to the prior distribu-

tion, and thus analytically integrable. This isomorphism between the prior and posterior is called

conjugacyand priors of such nature are calledconjugate priors.
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A.2 Estimating Hyper-Parameters in the HMDM Model

We can compute the maximum likelihood estimate of the hyper-parametersΘ = {α, υ,Υ} of the

HMDM model from a training dataset of known motifs using an EM algorithm. This approach is

often referred to as empirical Bayes parameter estimation.

Following Sj̈olanderet al.[1996], for a given set of multi-alignment matrices{A(1), . . . ,A(K)},

where eachA(k) represents a multiple alignment ofMk biologically identified instances of motifk

of lengthLk, the likelihood of the count vectorh(k)

l summarizing the column of aligned nucleotides

at sitel of motif k, under the Dirichlet priorαi, is

p(h(k)

l |αi) =
Γ(|h(k)

l |+ 1)Γ(|αi|)
Γ(|h(k)

l |+ |αi|)

4∏
j=1

Γ(h(k)

l,j + αi,j)

Γ(h(k)

l,j + 1)Γ(αi,j)
. (A.7)

Note that this formula is slightly different from Eq. (A.6) becauseh(k)

l can result from
Γ(|h(k)

l |+1)Q4
j=1 Γ(h

(k)
l,j +1)

distinct permutations of theMk nucleotides. Since no particular ordering of the motif instances

in multi-alignment matrices is assumed for the training data, it is more appropriate to model the

probability of the count matricesh resulting fromA than that ofA itself [Sjölanderet al., 1996].

Thus, the complete log likelihood of the count matricesh(k) = {h(k)

1 , . . . , h(k)

Lk
},∀k, and the

latent HMDM state sequencess(k) = {s(k)

1 , . . . , s(k)

Lk
},∀k, can be obtained by replacing theA(k)’s

in Eq. (2.17) with h(k)’s, integrating over eachθ(k) (which results in a term like Eq. (A.7) for each

count vector), and taking the logarithm of the resulting marginal:

lc({α, υ,Υ}) = log p(h(1), . . . , h(K), s(k), . . . , s(K)|{α, υ,Υ})

= log

{
K∏

k=1

[
p(s(1)

1 |υ) ·
[ Lk−1∏

l=1

p(s(k)

l+1|s
(k)

l ,Υ)
]
·
[ Lk∏

l=1

p(h(k)

l |s(k)

l , α)
]]}

=
K∑

k=1

I∑
i=1

δ(s(k)

1 , i) log υi +
K∑

k=1

Lk−1∑
l=1

I∑
i,i′=1

δ(s(k)

l , i)δ(s(k)

l+1, i
′) log Υi,i′

+
K∑

k=1

Lk∑
l=1

I∑
i=1

δ(s(k)

l , i)
(

log
Γ(|h(k)

l |+ 1)Γ(|αi|)
Γ(|h(k)

l |+ |αi|)
+

4∑
j=1

log
Γ(h(k)

l,j + αi,j)

Γ(h(k)

l,j + 1)Γ(αi,j)

)
.

(A.8)
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The EM algorithm is essentially a coordinate ascent procedure that maximizes the expected

complete log likelihoodEQ(s)[lc({α, υ,Υ})] (also written as〈lc(Θ)〉Q for simplicity) over the dis-

tribution Q(s) and the parametersΘ = {α, υ,Υ} [Neal and Hinton, 1998]. In the E step, we

seekQ(s) = arg maxQ 〈lc(Θ)〉Q, which turns out to beQ(s) = p(s|h,Θ) =
∏

k p(s
(k)|h(k),Θ).

Thus the E step is equivalent to computing〈lc(Θ)〉p(s|h,Θ), which reduces to replacing the sufficient

statistics dependent ons(k) in Eq. (A.8) with their expectations with respect top(s(k)|h(k),Θ). In

the M step, we computeΘ = arg maxΘ 〈lc(Θ)〉Q. Specifically, we iterate between the following

two steps until convergence:

E step:

• Compute the posterior probabilitiesp(s(k)

l |h(k)) of the hidden states, and the matrix of co-

occurrence probabilitiesp(s(k)

l , s(k)

l+1|h
(k)) for each motifk, using theforward-backwardal-

gorithm in a hidden Markov model with initial and transition probabilities defined by{υ,Υ}

and emission probabilities defined byp(h(k)

l |S(k)

l = i) = p(h(k)

l |αi) (i.e., Eq. (A.7)).

M step:

• Baum-Welch update for the HMM parameters{υ,Υ} based on expected sufficient statistics

computed from all thep(s(k)

l |h(k)) andp(s(k)

l , s(k)

l+1|h
(k)):

υi =

∑
k,l p(S

(k)

l = i|h(k))∑
k Lk

(A.9)

Υi,j =

∑
k,l p(S

(k)

l = i, S(k)

l+1 = j|h(k))∑
k,l

∑
j p(S

(k)

l = i, S(k)

l+1 = j|h(k))
(A.10)

• Gradient ascent (one step per M-step) for the Dirichlet parameters: (To force the Dirichlet

parameters to be positive, we reparameterize the Dirichlet parameters asαi,j = ewi,j ,∀i, j,

as described by Sjölanderet al. [1996].)

wi,j = wi,j + η
∂〈lc(Θ)〉
∂wi,j

(A.11)
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where

∂〈lc(Θ)〉
∂wi,j

=
∂〈lc(Θ)〉
∂αi,j

∂αi,j

∂wi,j
=

K∑
k=1

Lk∑
l=1

αi,jp(S
(k)

l = i|h(k))
(
Ψ(|αi|)−Ψ(|h(k)

l |+ |αi|) + Ψ(h(k)

l,j + αi,j)−Ψ(αi,j)
)
,

(recall thatΨ(x) = ∂ log Γ(x)
∂x = Γ̇(x)

Γ(x) is the digamma function) andη is the learning rate,

usually set to be a small constant.

A.3 Computing the Expected Sufficient Statistics in the Global HMM

We show how to compute the expected sufficient statisticsh̄ in a global HMM, in which the emission

parameters are defined by the background distribution and the motif multinomial parameters (or

their estimates).

Note that the overall counting matrix equals the summation of the counting matrices of all

identified motif instances (each single instance forms a matrix with four rows, one per nucleotide;

each column of such a matrix has only one nonzero element, whose row index corresponds to the

observed nucleotide at the position of the column and the value of this element is equal to 1):

h =
∑

t

h(yt:t+L−1)I(Xt:t+L−1 = (1, . . . , L)),

whereI(·) is an indicator function matching a sequence of states to a given motif state sequence.

Taking the expectation on both sides with respect to the joint distributionqs(x), we have:

h̄ = Eqs(x)[h]

=
∑
x

qs(x)
T−L+1∑

t=1

h(yt:t+L−1)I(xt:t+L−1 = (1, . . . , L)).

We have to sum over all possible configurations ofX. Under the GMF approximation,qs(x) is

a reparameterized HMMp(x|y, φ̄(θ), θbg) (Eq.4.29), which leads to the following simplification:

h̄ =
T−L+1∑

t=1

h(yt:t+L−1)p(Xt:t+L−1 = (1, . . . , L)|y)
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where p(Xt:t+L−1 = (1, . . . , L)|y) =∏L−1
l=1 p(Xt+l = l + 1|Xt+l−1 = l)α(Xt = 1)β(Xt+L−1 = L)

∏L−1
l=1 p(yt+l|Xt+l = l + 1)

p(y)
,

whereα(xt) , p(y1, . . . , yt, xt) andβ(xt) , p(yt+1, . . . , yT |xt) are the two standard intermediate

probabilistic terms computed in the forward-backward algorithm for HMMs. With a little algebra

and using the assumption that for the global HMM state transitions within a motif are deterministic,

it is easy to show that

p(Xt:t+L−1 = (1, . . . , L)|y) =
α(Xt = 1)β(Xt = 1)

p(y)
= p(Xt = 1|y),

which means that the posterior probability of a subsequence of states being a motif state sequence is

just the posterior probability of the first indicator in the sequence being the motif-start state, which

is surprisingly simple. Now,

h̄ =
T−L+1∑

t=1

h(yt:t+L−1)p(Xt = 1|y), (A.12)

wherep(Xt = 1|y) can be computed using the forward-backward algorithm. The time complexity

of this inference is linear in the length of the sequence, and quadratic in the number of motif states.

Since all within-motif state transitions are deterministic, careful bookkeeping during implementa-

tion can reduce the complexity to quadratic in the number of motif types, that is,O(K2T ). For

multiple input sequences, the overall expected counting matrixh̄ is just the sum of the expected

counting matrices computed from each sequence using Eq. (A.12).

A.4 Bayesian Estimation of Multinomial Parameters in the HMDM
Model

We now show how to compute the Bayesian estimate ofφ(θ), the natural parameter of the multino-

mial distribution, in an HMDM model given the expected sufficient statisticsh̄.

First, we compute the posterior probability of a hidden state sequences given h̄. Pluggingh̄

220



A.4 Bayesian Estimation of Multinomial Parameters in the HMDM Model

into Eq. (2.17) and integrating overθ, we have the marginal probability:

p(h̄, s|α, υ,Υ) = p(s1)
L−1∏
l=1

p(sl+1|sl)
L∏

l=1

p(h̄l|sl), (A.13)

which is a standard (local) HMM with emission probability:

p(h̄l|Sl = i) =
Γ(|αi|)

Γ(|h̄l|+ |αi|)

4∏
j=1

Γ(h̄l,j + αi,j)
Γ(αi,j)

. (A.14)

With this fully specified HMM, we can compute the posterior probabilities of the hidden states

p(sl|h̄) and the matrix of co-occurrence probabilitiesp(sl, sl+1|h̄) using the standard forward-

backward algorithm for HMMs.

Then, the Bayesian estimate ofφ(θ) = ln(θ) (in which ln(·) is a componentwise operation) is

computed as follows:

φ̄l,j =
∫

θl

∑
sl

ln θl,jp(θl|sl, α, h̄)p(sl|α, h̄)dθl

=
∑
sl

p(sl|h̄)
∫

θl

ln θl,jp(θl|αl, h̄l)dθl

=
I∑

i=1

p(Sl = i|h̄)
(
Ψ(αi,j + h̄l,j)−Ψ(|αi|+ |h̄l|)

)
. (A.15)
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Appendix B

Proofs

B.1 Theorem2: GMF approximation

For clarity, we restate the GMF theorem here, with the evidence symbol and hidden variable sub-

scripts omitted. Our subsequent proof starts from this simplified statement.

Theorem (GMF): For a general undirected probability modelp(x) and a clusteringC : {XCi
}I

i=1,

if all the potential functions that cross cluster borders are cluster-factorizable, then the generalized

mean field approximation top(x) with respect to clusteringC is a product of cluster marginals

qGMF (x) =
∏

Ci∈C q
GMF
i (xCi

) satisfying the following generalized mean field equations:

qGMF
i (xCi

) = p(xCi
|Fi), ∀i. (B.1)

To prove the GMF theorem we need to use the calculus of variations[Sagan, 1992] to solve

the optimization defined by Eq. (4.21). For convenience, we distinguish two subsets of nodes in a

clusteri, the interior nodes and the border nodes, i.e., lettingXCi
denote the nodes in clusterCi, we

haveXCi
= {YCi

,ZCi
} whereYCi

∩XBi
= ∅ (i.e., the interior nodes) andZCi

⊂ XBi
(i.e., the

border nodes).

Proof. From Eq. (4.21), to find the optimizer of:∫
dyCi

dzCi
exp

{
−
∑
Ci∈C

E′i(yCi
, zCi

)
}(

1−∆
)
,

222



B.1 Theorem 2: GMF approximation

where∆ ≡ E −
∑

Ci∈C E
′
i +A(θ), subject to the constraints that eachE′i defines a valid marginal

distributionqi(yCi
, zCi

) over all hidden variables in clusteri, we solve the Euler equations for a

variational extremum, defined over Lagrangiansf(E′i,xCi
) =

∫
dx[·\i]

[
exp{−

∑
j E

′
j}(1−∆)−∑

j λj exp{−E′j}
]

(wherex[·\i] refers to all hidden variables excluding those from clusteri):

∂f

∂E′i
− d

dxCi

( ∂f
∂Ė′i

)
= 0 ∀i. (B.2)

Sincef does not depend oṅE′i (= dE′
i

dxCi
), we have:∫

dx[·\i]
∏
j 6=i

exp{−E′j}(E −
∑

j

E′j)− λi = 0

⇒

E′i =
∫
dx[·\i]

∏
j 6=i

exp{−E′j}(E −
∑
j 6=i

E′j)− λi

= C −
∑

Dα⊆Ci

θαφα(yDα)−
∑

Dβ∈Bi

θβ

〈
φβ(zCi∩Dβ

, {zCj∩Dβ
: j ∈ Iβi})

〉
q

Iβi

,

whereqj = exp{−E′j(yCj
, zCj

)} is the local marginal of clusterj; Iβi denotes index set of the set

of clusters other thanCi that intersect with cliqueDβ (i.e., all the clusters neighboring clusteri that

intersect with cliqueβ); andqIβi
=
∏

j∈Iβi
qj is the marginal over cluster setIβi.

When the potential functions at the cluster boundaries factorize (say, multiplicatively) with

respect to the clustering, we have:

E′i = C −
∑

Dα⊆Ci

θαφα(yDα)−
∑

Dβ∈Bi

θβFβ(φβi
(zCi∩Dβ

), {〈φβj
(ZCj∩Dβ

)〉
qj

: j ∈ Iβi}).

= C −
∑

Dα⊆Ci

θαφα(yDα)−
∑

Dβ∈Bi

θβφβi
(zCi∩Dβ

)
∏

j∈Iβi

〈φβj
(ZCj∩Dβ

)〉
qj
.

So,

qi(yCi
, zCi

) = exp{−E′i}

= p(yCi
, zCi

|{〈φβj
(ZCj∩Dβ

)〉
qj
}j∈Iβi,Dβ∈Bi

)

= p(xCi
|Fi), ∀i. (B.3)

The presence of evidencexCi,E merely changes Eq. (B.3) to q(xCi
) ∝ p(xCi

,xCi,E|Fi). After

normalization, this leads toq(xCi
) = p(xCi

|xCi,E,Fi).
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B.2 Theorem5: GMF bound on KL divergence

Proof.

According to the GMF theorem, the GMF approximation top(x) is

q(x) =
∏

i

q(xCi)

=
1
Zq

exp
{∑

i

∑
Dα⊆Ci

θαφα(xDα) +
∑

i

∑
Dβ⊆Bi

θβφ
′
β(xDβ∩Ci

)
}

=
1
Zq

exp
{∑

α

θαφα(xDα)−
∑

Dβ⊆∪Bi

θβφβ(xDβ
) +

∑
Dβ⊆∪Bi

kβθβφ
′
β(xDβ∩Ci

)
}

=
1
Zq

exp
{∑

α

θαφα(xDα) +
∑

Dβ⊆∪Bi

θβ

(
kβφ

′
β(xDβ∩Ci

)−φβ(xDβ
)
)}
,

(B.4)

wherekβ = |Iβ | is the number of clusters intersecting with cliqueβ (note that for simplicity, we

omit the argumentqIβi
in the peripheral marginal potentials). Thus, the KL divergence fromq to p

is:

KL(q‖p) =
∫
x
q(x) log

q(x)
p(x)

dx

=
∑

Dβ⊆∪Bi

θβ

(
kβ

〈
φ′β(XDβ∩Ci

)
〉
q
−
〈
φβ(XDβ

)
〉
q

)
− log

Zq

Zp

=
∑

Dβ⊆∪Bi

θβ(kβ − 1)
〈
φβ(XDβ

)
〉
q
− logZq + logZp. (B.5)

Now, lettingφβ,max = maxx φβ(xDβ
), andφβ,min = minx φβ(xDβ

), we haveφβ,min ≤ 〈φβ(XDβ
)〉

q
≤

φβ,max. Defineaφ = minDβ⊆∪Bi
(kβ − 1)φβ,min, andbφ = maxDβ⊆∪Bi

(kβ − 1)φβ,max. Then (since

all theθs are positive by definition),

aφ

∑
Dβ⊆∪Bi

θβ ≤
∑

Dβ⊆∪Bi

θβ(kβ − 1)
〈
φβ(XDβ

)
〉
q
≤ bφ

∑
Dβ⊆∪Bi

θβ.

(B.6)
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To bound the log partition function, we find that

Zq =
∑
x

exp
{∑

α

θαφα(xDα)
}
× exp

{ ∑
Dβ⊆∪Bi

θβ

(
kβφ

′
β(xDβ∩Ci

)− φβ(xDβ
)
)}

≤
∑
x

exp
{∑

α

θαφα(xDα)
}
× exp

{
bZ

∑
Dβ⊆∪Bi

θβ

}
= Zp exp

{
bZ

∑
Dβ⊆∪Bi

θβ

}
, (B.7)

where

bZ = max
β

(kβφβ,max − φβ,min)

= max
β

(
(kβ − 1)φβ,max + (φβ,max − φβ,min)

)
. (B.8)

Similarly,

Zq ≥ Zp exp
{
aZ

∑
Dβ⊆∪Bi

θβ

}
, (B.9)

where

aZ = min
β

(
(kβ − 1)φβ,min + (φβ,min − φβ,max)

)
. (B.10)

Thus,

logZp + aZ

∑
Dβ⊆∪Bi

θβ ≤ logZq ≤ logZp + bZ
∑

Dβ⊆∪Bi

θβ. (B.11)

Putting these together, we have

aW ≤ KL(q‖p) ≤ bW, (B.12)

wherea = max(0, aφ − bZ) andb = bφ − aZ .

In the special case wherekβ = k, for all β (e.g., all potentials are pairwise),aφ − bZ =

(k − 1) minβ,β′(φβ,min − φβ′,max) + minβ(φβ,min − φβ,max) ≥ kminβ,β′(φβ,min − φβ′,max), andb =

bφ − aZ ≤ kmaxβ,β′(φβ,max − φβ′,min) ≡ k∆φ. Since KL divergence is always nonnegative, we

have

0 ≤ KL(q‖p) ≤ k∆φW. (B.13)
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