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Abstract
Accurate and e�cient video classi�cation demands the
fusion of multimodal information and the use of interme-
diate representations. Combining the two ideas into the
one framework, we propose a probabilistic approach for
video classi�cation using intermediate semantic repre-
sentations derived from multi-modal features. Based on
a class of bipartite undirected graphical models named
harmonium, our approach represents the video data as
latent semantic topics derived by jointly modeling the
transcript keywords and color-histogram features, and
performs classi�cation using these latent topics under a
uni�ed framework. We show satisfactory classi�cation
performance of our approach on a benchmark dataset
as well as interesting insights into the data.

1 Introduction
Classifying video data into semantic categories, some-
times known as semantic video concept detection, is an
important research topic. Video data contain multi-
ple data types including image frames, transcript text,
speech, audio signal, each bearing correlated and com-
plementary information essential to the analysis and re-
trieval of video data. The fusion of such multimodal
information is regarded as a key research problem [10],
and has been a widely used technique in video clas-
si�cation and retrieval methods. Many fusion strate-
gies have been proposed, varying from early fusion [12],
which merges the feature vectors extracted from di�er-
ent modalities, to late fusion, which combines the out-
puts of the classi�ers or �retrieval experts� built on each
single modality [12, 6, 18, 15]. Empirical results show
that the methods based on the fusion of multimodal in-
formation outperforms those based on any single type
of information in both classi�cation and retrieval tasks.
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Another trend in video classi�cation is the search of
low-dimensional, intermediate representations of video
data. Its primary motivation is to make sophisticated
classi�ers (e.g, SVM) a�ordable, which otherwise would
be computationally expensive on the high-dimensional
raw features. Moreover, using intermediate representa-
tions holds the promise of better interpretation of the
data semantics, and may lead to superior classi�cation
performance. Related work along this direction includes
the conventional dimension-reduction methods such as
principal component analysis (PCA) and Fisher linear
discriminant (FLD) [4], as well as probabilistic methods
such as probabilistic latent semantic indexing (pLSI) [5],
latent Dirichlet allocation (LDA) [2], exponential-family
harmonium (EFH) [14]. While many of these models are
initially developed for single-modal data such as textual
documents only, some extensions have been studied re-
cently in order to model multi-modal data such as cap-
tioned images and video [1, 17].

The key insights for video classi�cation from previ-
ous works appear to be combining multimodal informa-
tion and using intermediate representations. Therefore
the goal of this paper is to take advantage of both in-
sights through an integrated and principled approach.
Based on a class of bipartite, undirected graphical mod-
els (i.e., random �elds) called harmonium [14, 17], our
approach extracts intermediate representation as latent
semantic topics of video data by jointly modeling the
correlated information in image regions and transcript
keywords. Moreover, this approach explicitly introduces
category label(s) into the model, which allows the clas-
si�cation and representation to be accomplished in a
uni�ed framework.

The proposed approach di�ers signi�cantly from
previous models for text/multimedia data in that it in-
corporates category labels as (hidden) model variables,
in addition to the variables representing data (features)
and latent semantic topics. This allows us to classify



unlabeled data by directly inferencing the distribution
of the label variables conditioned on the observed data
variables. In contrast, existing models [2, 1, 5, 14, 17]
are solely focused on deriving the intermediate repre-
sentations in terms of latent semantic topics. One has
to build a separate classi�er on top of the derived in-
termediate representations if classi�cation results are
needed. Therefore, one major advantage of our ap-
proach is unifying both representation and classi�ca-
tion in one model, which avoids the additional steps to
build separate classi�ers. More importantly, by con-
sidering the interactions between latent semantic top-
ics and category labels, our approach may be able to
learn better intermediate representations so as to re-
�ect the category information from the data. Such �su-
pervised� intermediate representations are expected to
provide more discriminative power and insights of the
data than the �unsupervised� representations generated
by existing methods [2, 1, 5, 14, 17].

Our proposal includes two related models, each
bearing di�erent implications to the representation and
classi�cation of the video data. Family-of-harmonium
(FoH) builds a family of category-speci�c harmonium
models, with each modeling the video data from one
speci�c category. The label of a video shot is predicted
by comparing its likelihood against each harmonium
model. Hierarchical harmonium (HH) treats the cat-
egory labels as an additional layer of hidden variables
into a single harmonium model, and performs classi�ca-
tion through the inference of these label variables. The
FoH model reveals the internal structure of each cate-
gory, and can be easily extended to include new cate-
gories without retraining the whole model. In contrast,
the HH model reveals the relationships between multi-
ple categories, and takes advantage of such relationships
in classi�cation.

In Section 2 we review the related work on the fu-
sion of multimodal video features as well as representa-
tion models for video data. We describe the two pro-
posed models in Section 3, and discuss their learning
algorithms in Section 4. In Section 5, we show the ex-
periment results and illustrate interesting interpretation
of the data from TRECVID video collection. The con-
clusions and future work are discussed in Section 6.

2 Related Works
As pointed out in [10], the processing, indexing, and
fusion of the data in multiple modalities is a core prob-
lem of multimedia research. For video classi�cation
and retrieval, the fusion of features from multiple data
types (e.g., key-frames, audio, transcript) allows them
to complement each other and achieve better perfor-
mance than using any single type of feature. This idea

has been widely used in many existing methods. The fu-
sion strategies vary from early fusion [12], which merges
the feature vectors extracted from di�erent data modal-
ities, to late fusion, which combines the output of classi-
�ers or �retrieval experts� built on each single modality
[12, 6, 18, 15]. It remains an open question as to which
fusion strategy is more appropriate for a certain task,
and a comparison of the two strategies in video clas-
si�cation is presented in [12]. The approach presented
in this paper takes neither approach; instead, it derives
the latent semantic representation of the video data by
jointly modeling the multimodal low-level features, so
that the fusion takes place somewhere between early fu-
sion and late fusion.

There are many approaches to obtaining low-
dimensional intermediate representations of video data.
Principal component analysis (PCA) has been the most
popular method, which projects the raw features into
a lower-dimensional feature space where the data vari-
ances are well preserved. Independent component
analysis (ICA) and Fisher linear discriminant (FLD) are
widely-used alternatives for dimension reduction. Re-
cently, there are also many studies on modeling the la-
tent semantic topics of the text and multimedia data.
For example, latent semantic indexing (LSI) by Deer-
wester et al. [3] transforms term counts linearly into
a low-dimensional semantic eigenspace, and the idea
was later extended by Hofmann to probabilistic LSI
(pLSI) [5]. The latent Dirichlet allocation (LDA) by
Blei et al. [2] is a directed graphical model that pro-
vides generative semantics of text documents, where
each document is associated with a topic-mixing vector
and each word is independently sampled according to a
topic drawn from this topic-mixing. LDA has been ex-
tended to Gaussian-Mixture LDA (GM-LDA) and Cor-
respondence LDA (Corr-LDA) [1], both of which are
used to model annotated data such as captioned im-
ages or video with transcript text. Exponential-family
harmonium (EFH) proposed by Welling et al. [14] is bi-
partite undirected graphical model consisting a layer of
latent nodes representing semantic aspects and a layer of
observed nodes representing the raw features. To model
multi-modal data, Xing et al. [17] have extended it to
the multi-wing harmonium model where the data layer
consists of two or more �wings� of nodes representing
textual, imagery, and other types of data, respectively.

In practice, the methods mentioned above are
mainly used for transforming the high-dimensional raw
features into a low-dimensional representation which
presumably capture the latent semantics of the data.
Classi�cation task is usually performed by building a
separate discriminative classi�er (e.g., SVM) based on
such latent semantic representations. In this paper, we
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Figure 1: A sketch of our approach

seek for one uni�ed approach in which the representa-
tion and classi�cation can be integrated into the same
framework. This approach not only achieves satisfac-
tory classi�cation performance, but also provides inter-
esting insights into the data semantics, such as the in-
ternal structure of each category and the relationships
between di�erent categories. Fei-Fei et al. [8] used a
uni�ed model for representing and classifying natural
scene images by introducing category variables into the
LDA model, which is similar to our approach except
that our models are undirected.

3 Our Approach
A sketch of our approach is illustrated in Figure 1. The
data to be classi�ed are called video shots, namely video
segments with length varying from a few seconds to
half minute or even longer. We represent each video
shot as a bag of keywords (extracted from the video
closed-captions or via speech recognition systems), and
a set of �xed-sized image regions (extracted from the
keyframe of the video shot). Each region is described
by its color histogram feature. In the training phase,
our goal is to learn a model that best describes the
joint distribution of the keywords and color features of
the video shots in each category. During testing phase,
we extract the keywords and color features from an
unlabeled video shot, and then use them as features
to predict which category this shot belongs to. Our two

proposed models, family-of-harmonium and hierarchical
harmonium, di�er in the way that the data are modeled
and classi�ed.

Both of our models are based on a class of bipar-
tite undirected model (i.e., random �elds) called har-
monium, which has been used by Welling et al. [14]
and Xing et al. [17] to model text and multimedia data.
Our models use their models as the basic building block,
but di�er from theirs by explicitly incorporating the cat-
egory labels into the model. This allows our model to
represent and classify video data in a uni�ed framework,
while the previous harmonium models are only for data
representation.

3.1 Notations and de�nitions The notations used
in the paper follow the convention of probabilistic mod-
els. Uppercase characters represent random variables,
while lowercase characters represent the instances (val-
ues) of the random variables. Bold font is used to indi-
cate a vector of random variables or their values. In the
illustrations, shaded circles represent observed nodes
while un�lled circles represent hidden (latent) nodes.
Each node in a graphical model is associated with a
random variable, and we use the term node and vari-
able interchangeably in this paper.

The semantics of the model variables are described
below:
• A video shot s is represented by a tuple as

(x, z,h,y), which respectively denote the key-
words, region-based color features, latent semantic
topics, and category labels of the shot.

• The vector x = (x1, ..., xN ) denotes the keyword
feature extracted from the transcript associated
with the shot. Here N is the size of the word
vocabulary, and xi ∈ {0, 1} is a binary variable
that indicates the absence or presence of the ith

keyword (of the vocabulary) in the shot.
• The vector z = (z1, ..., zM ) denotes color-histogram

features of the keyframe in the shot. Each keyframe
is evenly divided into a grid of totally M �xed-
sized rectangular regions, and zj ∈ RC is a C-
dimensional vector that represents the color his-
togram of the jth region. So z is a stacked vector
of length equal to CM .

• The vector h = (h1, ..., hK) represents the latent
semantic topics of the shot, where K is the total
number of the latent topics. Each component
hk ∈ R denotes how strongly this shot is associated
with the kth latent topic.

• The category labels of a shot are modeled di�er-
ently in the two models. In family-of-harmonium,
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Figure 2: The family-of-harmonium model

a single variable y ∈ {1, ..., T} indicates the cate-
gory this shot belongs to, where T is the total num-
ber of categories. In hierarchical harmonium, the
labels are represented by a vector y = (y1, ..., yT ),
with each yt ∈ {0, 1} denoting whether the shot is
in the tth category. Here a video shot belongs to
only one category, so we have

∑
t yt = 1.

• The two proposed models have di�erent sets of pa-
rameters. The family-of-harmonium has a speci�c
harmonium model for each category y, with para-
meters as θy = (πy, αy, βy,W y, Uy). The hierar-
chical harmonium has a single set of parameters as
θ = (α, β, τ,W,U, V ).

3.2 Family-of-harmonium (FoH) The FoH model
is illustrated in Figure 2. It contains a set of T
category-speci�c harmoniums, with each harmonium
modeling the video data from a speci�c category. Each
harmonium is a bipartite undirected graphical model
that consists of two layers of nodes. Nodes in the top
layer represent the latent semantic topics H = {Hk}
of the data. To represent the bi-modal features of
video data, the bottom layer contains two �wings� of
observed nodes that represent the keyword features
X = {Xi} and region-based color features Z = {Zj},
respectively. Each node is linked with all the nodes
in the opposite layer, but not with any node of the
same layer. This topology ensures that the nodes
in one layer are conditionally independent given the
nodes in the opposite layer, a property important to
the construction and inference of the model. All the
component harmoniums in FoH share exactly the same
structure, but each has a unique set of parameters
θy = (πy, αy, βy,W y, Uy) indexed by the category label
y.

We now describe the distributions of these variables.

The category label Y follows a prior multinomial distri-
bution:
(3.1) p(y) = Multi (π1, ..., πT ),

where
∑T

t=1 πt = 1. In FoH, Y is not actually linked
with any nodes in the component harmoniums; instead,
it serves as an indicator variable for us to select a
speci�c harmonium for modeling the video data of that
particular category. In the distribution function of each
harmonium, Y only appears as the subscript of the
model parameters.

Given its category label y, we consider the raw fea-
tures of a shot as well as its latent semantic topics as two
layers of representations mutually in�uencing each other
in the speci�c harmonium associated with this category.
We can either conceive keyword and color features as
being generated by the latent semantic topics, or con-
ceive the semantic topics as being summarized from the
keyword and image features. This mutual in�uence is
re�ected in the conditional distributions of the variables
representing the features and the semantic topics.

For the keyword feature, the variable xi indicating
the presence/absence of term i ∈ {1, ..., N} in the
vocabulary follows a distribution as:

P (Xi = 1|h, y) =
1

1 + exp(−αy
i −

∑
k W y

ikhk)
(3.2)

P (Xi = 0|h, y) = 1− P (Xi = 1|h, y)

This shows that each keyword in a video shot is sampled
from a Bernoulli distribution dependent on the latent
semantic topics h. That is, the probability whether a
keyword appears is a�ected by a weighted combination
of semantic topics h. Parameter αy

i and W y
ik are both

scalars, so αy = (αy
1 , ..., αy

N ) is an N -dimensional vector,
and W y = [W y

ik] is a matrix of size N ×K. Due to the
conditional independence between xi given h, we have
p(x|h, y) =

∏
i p(xi|h, y).



The color-histogram feature zj of the jth region in
the keyframe of the shot admits a conditional multivari-
ate Gaussian distribution as:

(3.3) p(zj |h, y) = N (zj |Σy
j (βy

j +
∑

k

Uy
jkhk), Σy

j )

where zj is sampled from a distribution parameterized
by the latent semantic topics h. Here, both βy

j and
Uy

jk are C-dimensional vectors, and therefore βy =
(βy

1 , ..., βy
M ) is a stacked vector of dimension CM and

Uy = [Uy
jk] is a matrix of size CM × K. Note that

Σy
j is a C × C covariance matrix, which, for simplicity,

is set to identity matrix I in our model. Again,
we have p(z|h, y) =

∏
j p(zj |h, y) due to conditional

independence.
Finally, each latent topic variable hj follows a

conditional univariance Gaussian distribution whose
mean is determined by a weighted combination of the
keyword feature x and the color feature z:

(3.4) p(hk|x, z, c) = N (hk|
∑

i

W y
ikxi +

∑

j

Uy
jkzj , 1)

where W y
ik and Uy

jk are the same parameters used
in Eq.(3.2) and (3.3). Similarly, p(h|x, z, y) =∏

k p(hk|x, z, y) holds.
So far we have presented the conditional distribu-

tions of all the variables in the model. These local con-
ditionals can be mapped to the following harmonium
random �elds as:

p(x, z,h|y) ∝ exp
{ ∑

i αy
i xi +

∑
j βy

j zj −
∑

j

z2
j

2(3.5)

−∑
k

h2
k

2 +
∑

ik W y
ikxihk +

∑
jk Uy

jkzjhk

}

We present the detailed derivation for this random �eld
in the Appendix. Note that the partition function
(global normalization term) of this distribution is not
explicitly shown, so we use a proportional sign instead of
an equal sign. This hidden partition function increases
the di�culty of learning the model.

By integrating out the hidden variables h in
Eq.(3.5), we obtain the category-conditional distribu-
tion over the observed keyword and color features of a
video shot:

p(x, z|y) ∝ exp
{ ∑

i αy
i xi +

∑
j βy

j zj −
∑

j

z2
j

2(3.6)

+ 1
2

∑
k(

∑
i W y

ikxi +
∑

j Uy
jkzj)2

}
.

There is also a hidden partition function in this
distribution. The marginal distribution (likelihood) of a
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Figure 3: Hierarchical harmonium model

labeled video shot can be decomposed into a category-
speci�c marginal and a prior over the categories, i.e.,
p(x, z, y) = p(x, z|y)p(y).

The learning of FoH involves learning T compo-
nent harmoniums, with each harmonium learned inde-
pendently using the (labeled) video shots from the cor-
responding category. To learn the harmonium model
for a category y, we estimate its model parameters
θy = (αy, βy,W y, Uy) by maximizing the likelihood of
the video shots in category y, where the likelihood func-
tion is de�ned by Eq.(3.6). Due to the existence of par-
tition function, the learning requires approximate infer-
ence methods, which we will further discuss in Section
4.

The category of an unlabeled shot is predicted by
�nding the component harmonium that best describes
the features of the shot. Given the keyword feature x
and color feature z of a shot, we compute the posterior
probability of each category label as:

(3.7) p(y|x, z) ∝ p(x, z|y)p(y) ∝ p(x, z|y)

The second step in the derivation assumes that the cat-
egory prior is a uniform distribution, e.g., p(y) = 1/T .
Eq.(3.7) indicates that we can predict the category of a
shot by comparing its likelihood p(x, z|y) in each of the
category-speci�c harmoniums computed by Eq.(3.6).
The harmonium that best �ts the shot determines its
category (here we adopts similar idea of generative clas-
si�ers, such as naive Bayes, except that we assume equal
prior for all categories).

3.3 Hierarchical harmonium (HH) The second
proposed model, hierarchical harmonium, adopts a dif-
ferent way of incorporating category labels into the basic
harmonium model. Instead of building a separate har-
monium for each category, it introduces the category la-
bels as another layer of nodes Y = {Y1, ..., YT } into one
single harmonium, with Yt ∈ {0, 1} indicating a shot's
membership with category t. As illustrated in Figure 3,



these label variables Y form a bipartite subgraph with
the latent topic nodes H. There is a link between any Yt

and Hj but not between two Yt, which are conditionally
independent given H. Unlike FoH, there is only a single
hierarchical harmonium in this model.

In the HH model, the conditional distribution of
x and z stay the same as those in the FoH model,
which are de�ned by Eq.(3.2) and Eq.(3.3), respectively.
The only di�erence is that the model parameters θ =
(α, β, τ, W,U, V ) no longer depend on category labels.
The label variable Yi follows a Bernoulli distribution as:

P (Yt = 1|h) =
1

1 + exp(−τt −
∑

k Vtkhk)
(3.8)

P (Yt = 0|h) = 1− P (Yt = 1|h)

where V = [Vtk] is a matrix of size T × K. Note
that if we treat h as input, Vtk and τ as parameters,
this distribution has exactly the same form as the
distribution of the class label in logistic regression [4],
i.e., P (Y = 1|x) = 1/(1 + exp(−β0 − βT x)). This
implies that the model is actually performing logistic
regression to compute each category label Yt using the
latent semantic topics h as input.

The distribution of each latent topic variable hk

needs to be modi�ed to incorporate the interactions
between label variables y and the topic variables h:

p(hk|x, z,y) =(3.9)
N (hk|

∑

i

Wikxi +
∑

j

Ujkzj +
∑

t

Vtkyt, 1)

Therefore, the distribution of the latent semantic topics
are not only a�ected by the data features x and z, but
also by their labels y. This is signi�cantly di�erent
from existing harmonium models [14, 17] in which the
distribution of latent topics depend on the observed
features only.

With the incorporation of label variables, the ran-
dom �eld of hierarchical harmonium becomes:

p(x, z,h,y) ∝ exp

�X
i

αixi +
X

j

βjzj −
X

j

z2
j

2
+
X

t

τtyt

(3.10)

−
X

k

h2
k

2
+
X

ik

Wikxihk +
X

jk

Ujkzjhk +
X

tk

Vtkythk

�

After integrating out the hidden variable H, the
marginal distribution of a labeled video shot (x, z,y)
is:

p(x, z,y) ∝ exp

�X
i

αixi +
X

j

βjzj −
X

k

z2
k

2
+
X

t

τtyt

(3.11)

+
1

2

X

k

(
X

i

Wikxi +
X

j

Ujkzj +
X

t

ytVtk)2
�

.

The parameters of the HH model, θ =
(α, β, τ,W,U, V ), are estimated by maximizing the like-
lihood function de�ned by Eq.(3.11). The classi�cation
is performed in a very di�erent way in HH. To predict
the category of an unlabeled video shot, we need to in-
fer the unknown label variables Y of the shot, from its
keyword and color features. This is done by computing
the conditional probability p(Yt = 1|x, z) for each label
variable Yt. The category that gives the highest con-
ditional probability is predicted as the category of the
shot:

(3.12) t∗ = argmaxtp(Yt = 1|x, z)

There is, however, no analytical solution to this condi-
tional probability. Various approximate inference meth-
ods are available to solve this problem, as further dis-
cussed in Section 4.

3.4 Model comparison We compare our models
with other existing models for text and multimedia data
analysis, including pLSI [5], LDA [2] and its variants
GM-LDA and Corr-LDA [1], exponential-family harmo-
nium [14, 17]. First of all, our models not only derive the
latent semantic representation of the data but also per-
form classi�cation within the same framework. In con-
strast, all the models above are only intended for data
representation and therefore separate classi�ers need to
be trained for the classi�cation task. This is not neces-
sarily a theoretical advantage of our approach, but does
provide a more integrated and cleaner setting, which
presumably leads to superior performance and better
data interpretation. The Bayesian hierarchical model,
an extention of the LDA model with similar ideas, has
demonstrated strong empirical improvement for scene
classi�cation [8]. Second, in our models the category
labels �supervise� the derivation of latent semantic rep-
resentation. As a result, the derived representation re-
�ects not only the characteristics of the underlying data
but also the category information, which is di�erent
from the �unsupervised� derivation in all the other mod-
els. The third issue is the choice between directed and
undirected models. The harmonium models [14, 17],
including the ones proposed in this paper, are all undi-
rected models, while the rest are directed ones. There
are no conclusions on which version is better. In undi-
rected models, inferences are much easier due to condi-
tional independence of hidden variables, but learning is
usually harder due to the global normalization term.

There are also several interesting observations when
we make comparisons between the two proposed models.
First, they di�er in the semantics of the learnt latent
topics. In FoH, each harmonium model is built for a
speci�c category, and therefore the latent topics in each



harmonium capture the internal structure of the data
in that category, i.e., they represent the themes or data
sub-clusters in that particular category. There are no
correspondences between the semantic topics across dif-
ferent harmoniums: the �rst topic in one harmonium is
unrelated to the �rst topic in another. In contrast, HH
has a single set of latent semantic topics derived from
the data in various categories. These semantic topics are
however di�erent from those learned by other represen-
tation models, as they are �supervised� by the category
labels and presumably contain more discriminative in-
formation. Sharing a single semantic representation also
helps to reveal the connections and di�erences between
multiple categories. The two models also di�er in terms
of scalability. FoH can easily accommodate a new cat-
egory by adding another harmonium trained from the
data of this new category, without any changes to other
existing harmoniums. However, introducing a new cat-
egory into HH means adding another (label) node into
the model, which requires re-training of the whole model
since its structure is changed.

4 Learning and inference
The parameters of our models, namely (αy, βy,W y, Uy)
in the FoH model and (α, β, τ, W,U, V ) in the HHmodel,
can be estimated by maximizing the data likelihood.
However, there is no closed-form solution to the parame-
ters in complex models like ours, and therefore iterative
searching algorithm has to be applied. As an example,
we discuss the learning and inference algorithms for the
HH model. The learning and inference of each compo-
nent harmonium in the FoH model can be easily derived
accordingly.

As described in the previous section, the log-
likelihood of the data under the HH model is de�ned
by Eq.(3.11). By taking derivatives of the log-likelihood
function w.r.t the parameters, we have the following gra-
dient learning rules:

δαi = 〈xi〉p̃ − 〈xi〉p
δβj = 〈zj〉p̃ − 〈zj〉p
δτt = 〈yt〉p̃ − 〈yt〉p

δWik =
〈
xih

′
k

〉
p̃
− 〈

xih
′
k

〉
p

δUjk =
〈
zjh

′
k

〉
p̃
− 〈

zjh
′
k

〉
p

δVtk =
〈
yth

′
k

〉
p̃
− 〈

yth
′
k

〉
p

(4.13)

where h′k =
∑

i Wikxi +
∑

j Ujkzj +
∑

t Vtkyt, and 〈·〉p̃
and 〈·〉p denotes expectation under empirical distrib-
ution (i.e., data average) or model distribution of the
harmonium, respectively. Like other undirected graph-
ical models, there is a global normalizer term in the

likelihood function of harmonium, which makes the di-
rect computing of 〈·〉p intractable. Therefore, we need
approximate inference methods to estimate these model
expectations 〈·〉p. We explored four methods which are
brie�y discussed below. The conditional distribution
of the label nodes p(Yt = 1|x, z), which is needed for
predicting class labels, is also computed using these ap-
proximate inference methods.

4.1 Mean �eld approximation Mean �eld (MF)
is a variational method that approximates the model
distribution p through a factorized form as a product
of marginals over clusters of variables [16]. We use
the naive version of MF, where the joint probability
p is approximated by an surrogate distribution q as a
product of singleton marginals over the variables:

q(x, z,y,h) =
∏

i

q(xi|νi)
∏

j

q(zj |µj , I)
∏

t

q(yt|λt)
∏

k

q(hk|γk)

where the singleton marginals are de�ned as q(xi) ∼
Bernoulli (νi), q(zj) ∼ N(µj , I), q(yt) ∼ Bernoulli (λt),
and q(hk) ∼ N(γk, 1), and {νi, µj , λt, γk} are varia-
tional parameters. The variation parameters can be
computed by minimizing the KL-divergence between p
and q, which results in the following �xed-point updat-
ing equations:

νi = σ(αi +
∑

k

Wikγk)

µj = βj +
∑

k

Ujkγk

λt = σ(τt +
∑

k

Vtkγk)

γk =
∑

i

Wikvi +
∑

j

Ujkµj +
∑

t

Vtkλt

where σ(x) = 1/(1 + exp(−x)) is the sigmoid funciton.
After the �xed-point equations converge, the surrogate
distribution q is fully speci�ed by the converged varia-
tional parameters. We replace the intractable 〈·〉p with
〈·〉q in Eq.(4.13), which is easy to compute from the fully
factorized q. Note that after each iterative searching
step in Eq.(4.13), we need to recompute the variational
parameters in q since the model parameters of p have
been updated.

4.2 Gibbs sampling Gibbs sampling, as a spe-
cial form of the Markov chain Monte Carlo (MCMC)
method, has been used widely for approximate infer-
ence in complex graphical models [7]. This method re-
peatedly samples variables in a particular order, with



one variable at a time and conditioned on the current
values of the other variables. For example in our hierar-
chical harmonium model, we de�ne the sampling order
as y1, . . . , yT , h1, . . . , hK , and then sample each yt from
the conditional distribution de�ned in Eq.(3.8) using the
current values of hj , �nally sample each hj according to
Eq.(3.9). After a large number of iterations (�burn-in�
period), this procedure guarantees to reach an equilib-
rium distribution that in theory is equal to the model
distribution p. Therefore, we use the empirical expecta-
tion computed using the Gibbs samples collected after
the burn-in period to approximate the true expectation
〈·〉p.

4.3 Contrastive divergence An alterative to exact
gradient ascent search based on the learning rules in
Eq.(4.13) is the contrastive divergence (CD) algorithm
[13] proposed by Hinton and Welling that approximates
the gradient learning rules. In each step of the gradi-
ent update, instead of computing the model expectation
〈·〉p, CD starts from the empircal values as the initial
samples, runs the Gibbs sampling for up to only a few
iterations and uses the resulting distribution q to ap-
proximate the model distribution p. It has been proved
that the �nal values of the parameters by this kind of
updating will converge to the maximum likelihood es-
timation [13]. In our implementation, we compute 〈·〉q
from a large number of samples obtained by running
only one step of Gibbs sampling with di�erent initial-
izations. Straightforwardly, CD is signi�cantly more ef-
�cient than the Gibbs sampling method since the �burn-
in� process is skipped.

4.4 The uncorrected Langevin method The un-
corrected Langevin method [9] is originated from the
Langevin Monte Carlo method by accepting all the pro-
posal moves. It makes use of the gradient information
and resembles noisy steepest ascent to avoid local op-
timal. Similar to the gradient ascent, the uncorrected
Langevin algorithm has the following update rule:

(4.14) λnewij = λij +
ε2

2
∂

∂λij
log p(X,λ) + εnij

where nij ∼ N (0, 1) and ε is the parameter to control
the step size. Like the contrastive divergence algorithm,
we use only a few iterations of Gibbs sampling to
approximate the model distribution p.

5 Experiments
We evaluate the proposed models using video data from
the TRECVID 2003 development set [11]. Based on
the manual annotations on this set, we choose 2468
shots that belong to 15 semantic categories, which are
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Figure 4: The representative images and keywords of 5
latent topics derived from the data in category �Fire�

airplane, animal, baseball, basketball, beach, desert, �re,
football, hockey, mountain, o�ce, road tra�c, skating,
studio, and weather news. Each shot belongs to only
one category. The size of a category varies from 46 to
373 shots. The keywords of each shot are extracted
from the video closed-captions associated with that
shot. By removing non-informative words such as stop
words and less frequent words, we reduce the total
number of distinct keywords (vocabulary size) to 3000.
Meanwhile, we evenly divide the key-frame of each shot
into a grid of 5×5 regions, and extract a 15-dimensional
color histogram on HVC color space from each region.
Therefore, each video shot can be represented by a 3000-
d keyword feature and a 375-d color histogram feature.
For simplicity, the keyword features are made binary,
meaning that they only capture the presence/absence
information of each keyword, because it is rare to see a
keyword appears multiple times in the short duration of
a shot.

The experiment results are presented in two parts.
First, we show some illustrative examples of the latent
semantic topics derived by the proposed models and
discuss the insights they provide about the structure
and relationships of video categories. In the second
part, we evaluate the performance of our models in video
classi�cation in comparison with some of the existing
approaches.
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Figure 5: The representative images and keywords of 5
latent topics derived from the whole data set

5.1 Interpretation of latent semantic topics
Both the family-of-harmonium (FoH) and the hierarchi-
cal harmonium (HH) model derive latent semantic top-
ics as intermediate representation of video data. Since
each harmonium in FoH is learned independently from
the data of a speci�c category, its latent topics are ex-
pected to capture the structure of that particular cat-
egory. To show these topics are meaningful, in Figure
4 we illustrate 5 latent topics learned from the video
category �Fire� by showing the keywords and images
associated with 5 video shots that have the highest con-
ditional probability given each latent topic. As we can
see, the 5 topics roughly correspond to 5 sub-categories
under the category ��re�, which can be described as �for-
est �re in the night�, �explosion in outer space�, �launch
of missile or space shuttle�, �smoke of �re�, and �close-
up scene of �re�. Since these latent topics are derived
by jointly modeling the textual and image features of
the video data, they are more than simply clusters in
color or keyword feature space, but sort of �co-clusters�
in both feature spaces. For example, the shots of Topic
1 are very similar to each other visually; the shots of
Topic 2 are not so similar visually, but it is clear that
they have very close semantic meanings and share com-
mon keywords such as ��ight� and �radar�. The key-
words associated with Topic 5 seem to be irrelevant at
�rst glance, but later we �nd that these shots contain
the scenes from a movie, which explains the occurrence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.fire

2.football

3.moutain

4.studio

5.airplane

6.animal

7.baseball

8.basketball

9.beach

10.desert

11.hockey

12.skating

13.office

14.traffic

15.weather

Figure 6: The color-coded matrix showing the pairwise
similarity between categories. Best viewed with color.

of keywords like �love�, �freedom�, and �beautiful�.
We also illustrate 5 latent topics out of a set

of 20 topics learned in the HH model in Figure 5.
Note that these topics are learned from the whole
data set instead of the data from one category, so
they are expected to represent some high-level semantic
topics. We can see that these 5 topics are about
�studio�, �baseball or football�, �weather news�, �airplane
or skating�, �animal�, which can be roughly mapped to
some of the 15 categories in the data set. These results
clearly show that the latent semantic topics learned by
our models are able to capture the semantics of the video
data.

Another advantage of hierarchical harmonium, as
we discussed in Section 3.4, is that it reveals of the
relationships between di�erent categories through the
hidden topics. We can tell how much a category t is
associated with a latent topic j from the conditional
probability p(yt|hj). Therefore, we are able to compute
the similarity between any two categories by examining
the hidden topics they are associated with. We show the
pairwise similarity between the 15 categories using the
color-coded confusion matrix in Figure 6, where red(er)
color denotes higher similarity and blue(er) color de-
notes lower similarity. We can see many meaningful
pairs of related categories, e.g., �mountain� is strongly
related to �animal�, �baseball� is related to �hockey�,
while �studio� is not related to any category. These re-
lationships are basically consistent with common sense.

5.2 Performance on video classi�cation To eval-
uate the performance of the FoH and HH model in video
classi�cation, we evenly divide our data set into a train-
ing set and a test set. The model parameters are es-
timated from the training set. Speci�cally, we imple-
mented the learning methods based on the four inference
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Figure 7: Classi�cation performance of di�erent models

algorithms described in Section 4, in order to examine
their e�ciency and accuracy. We also explore the issue
of model selection, namely the impact of the number of
latent semantic topics to the classi�cation performance.

Several other methods have been implemented for
comparison, all of which produce intermediate represen-
tation of some kind for the video data. First, we imple-
mented the approach used in [17], which learns a dual-
wing harmonium (DWH) from the data and then builds
a SVM classi�er based on the latent semantic represen-
tations generated by DWH. We also implemented three
directed graphical models for representing video data,
which are Gaussian multinomial mixture model (GM-
Mixture), Gaussian multinomial latent Dirichlet allo-
cation (GM-LDA), and correspondence latent Dirichlet
allocation (Corr-LDA). The details of these models can
be found in [1]. Similar to DWH, all the three directed
models are used only for data representation, and each
of them requires a SVM classi�er for classi�cation. To
make the experiments tractable on various models with
di�erent learning algorithms and di�erent numbers of
latent topics, we restrict this part of experiments to a
subset of our collection with the 5 largest categories con-
taining totally 1078 shots as airplane, basketball, base-
ball, hockey, and weather news.

Figure 7 shows the classi�cation accuracies of the
proposed FoH and HH models as well as the compari-
son methods including DWH, GM-Mixture, GM-LDA,
and Corr-LDA. To be fair, all the models are imple-
mented using the mean �eld variational method (MF)
for learning and inference, except GM-Mixture which
uses the expectation-maximization (EM) method. All
the approaches are evaluated with the number of latent
semantic topics set to 5, 10, 20, and 50, in order to
study the relationship between performance and model
complexity.
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Figure 8: Classi�cation performance of di�erent approx-
imate inference methods in hierarchical harmonium

Several interesting observations can be drawn from
Figure 7. First, the three undirected models as FoH,
HH, and DWH achieve signi�cantly higher performance
than the directed models as GM-Mixture, GM-LDA,
and Corr-LDA, which indicates that the harmonium
model is an e�ective tool for video representation and
classi�cation. Among them, FoH is the best performer
at 5 and 10 latent semantic nodes, while DWH is the
best performer at 20 and 50 latent nodes with HH as the
close runner-up. Second, we �nd that the performance
of FoH and HH is overall comparable with DWH.
Given that DWH uses a SVM classi�er, this result is
encouraging as it shows that our approach is comparable
to the performance of a state-of-the-art discriminative
classi�er. On the other hand, our approach enjoys many
advantages that SVM does not have. For example,
FoH can be easily extended to accommodate a new
category without re-training the whole model. Third,
the performance of DWH and HH improves as the
number of latent topics increases, which agrees with
our intuition because using more latent topics leads
to better representation of the data. However, this
trend is reversed in the case of FoH, which performs
much better when using smaller number of latent topics.
While a theoretical explanation of this is still unclear,
in practice it is a good property of FoH to achieve high
performance with simpler models. Fourth, 20 seems to
be a reasonable number of latent semantic topics for this
data set, since further increasing the number of topics
does not result in a considerable improvement of the
performance.

Figure 8 shows the classi�cation accuracies of HH
model implemented using di�erent approximate infer-
ence methods. From the graph, we can see that the
Langevin and contrastive divergence (CD) methods per-
form similarly, but are slightly better than mean-�led



(MF) and Gibbs sampling. We also study the e�ciency
of these inference methods by examining the time they
need to reach convergence during training. The results
show that mean �eld is the most e�cient (approx. 2
min), followed by CD and Langevin (approx. 9 min),
and the slowest one is Gibbs sampling (approx. 49min).
Therefore, Langevin and CD are good choices for the
learning and inference of our models in terms of both
e�ciency and classi�cation performance.

6 Conclusion
We have described two bipartite undirected models for
semantic representation and classi�cation of video data.
The two models derive latent semantic representation
of video data by jointly modeling the textual and image
features of the data, and perform classi�cation based on
such latent representations. Experiments on TRECVID
data have demonstrated that our models achieve sat-
isfactory performance on video classi�cation and pro-
vide insights to the internal structure and relationships
of video categories. Several approximate inference al-
goirthms have been examined in terms of e�ciency and
classi�cation performance.

Our hierarchical harmonium by nature does not
restrict the number of categories an instance (shot)
belongs to, since P (Yt = 1|x, z) can be high for multiple
Yt. Therefore, an interesting future work is to evaluate
the model with a multi-label data set, where each
instance can belong to any number of categories. In
this case, our method is actually a multi-task learning
(MTL) method, and should be compared with other
MTL approaches. Our models can also be improved
using better low-level features as input. The region-
based color histogram features are quite sensitive to
scale and illumination variations. Features such as local
keypoint features are more robust and can be easily
integrated into our models. It is interesting to compare
the latent semantic interpretations and classi�cation
performance using di�erent features.
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APPENDIX
This is to show the derivation of the harmonium random
�elds (joint distribution) in the family-of-harmonium
model. We start by introducing the general form of
exponential-family harmonium [14] that has H as the
latent topic variables and X and Z as two types of
observed data variables. This harmonium random �eld
has the exponential form as:

p(x, z,h) ∝ exp

�X
ia

θiafia(xi) +
X

jb

ηjbgjb(zj) +
X

kc

λkcekc(hk)

+
X

ikac

W kc
ia fia(xi)ekc(hk) +

X

jkbc

Ukc
jb gjb(zj)ekc(hk)

�
.

where {fia(·)}, {gjb(·)}, and {ekc(·)} denote the suf-
�cient statistics (features) of variables xi, zj , and hk,
respectively.

The marginal distributions, say, p(x, z), is then
obtained by integrating out variables h:

p(x, z) =

Z

h

p(x, z,h)dh

∝ exp

�X
ia

θiafia(xi) +
X

jb

ηjbgjb(zj)

�Y

k

Z

hk

exp

�X
c�

λkc +
X
ia

W kc
ia fia(xi) +

X

jb

Ukc
jb gjb(zj)

�
ekc(hk)

�
dhk

= exp

�X
ia

θiafia(xi) +
X

jb

ηjbgjb(zj) +
X

k

Ck({λ̂kc})
�

and similarly we can derive:

p(x,h) ∝ exp

�X
ia

θiafia(xi)+
X

kc

λkcgkc(hk)+
X

j

Bj({η̂jb})
�

p(z,h) ∝ exp

�X

jb

ηjbgjb(zj)+
X

kc

λkcekc(hk)+
X

i

Ai({θ̂ia})
�

where the shifted parameters θ̂ia, η̂jb and λ̂kc are
de�ned as:

θ̂ia = θia +
X

kc

W kc
ia ekc(hk), η̂jb = ηjb +

X

kc

Ukc
jb ekc(hk)

λ̂kc = λkc +
X
ia

W kc
ia fia(xi) +

X

jb

Ukc
jb gjb(zj)

The functions Ai(·), Bj(·), and Ck(·) are de�ned as:

Ai({θ̂ia}) =

Z

xi

exp{
X

a

θ̂iafia(xi)}dxi

Bj({η̂jb})
Z

zj

exp{
X

b

η̂jbgjb(zj)}dzj

Ck({λ̂kc}) =

Z

hk

exp{
X

c

λ̂kcekc(hk)}dhk

Further integrating out variables from these distri-
bution give the marginal distribution of x, z, and h.

p(x) ∝ exp

�X
ia

θiafia(xi)+
X

j

Bj({η̂jb})+
X

k

Ck({λ̂kc})
�

p(z) ∝ exp

�X

jb

ηjbgjb(zj) +
X

i

Ai({θ̂ia}) +
X

k

Ck({λ̂kc}
�

p(h) ∝ exp

�X

kc

λkcekc(hk)+
X

i

Ai({θ̂ia})+
X

j

Bj({η̂jb})
�

We all the above marginal distributions, we are
ready to derive the conditional distributions as:

p(x|h) =
p(x,h)

p(h)
∝
Y

i

exp

�X
a

θ̂iafia(xi)−Ai({θ̂ia})
�

p(z|h) =
p(z,h)

p(h)
∝
Y

j

exp

�X

b

η̂jbgjb(zj)−Bj({η̂jb})
�

p(h|x, z) =
p(x, z,h)

p(x, z)
∝
Y

k

exp

�X
c

λ̂kcekc(hk)−Ck({λ̂kc})
�

The speci�c conditional distribution of x, z, and h
de�ned in Eq.(3.2), (3.3), and (3.4) are all exponential
distributions. They can be mapped to the general forms
above if we make the following de�nitions:

fi1(xi) = xi

θi1 = αi, θ̂i1 = αi +
X

k

Wikhk

gj1(zj) = zj , gj2(zj) = z2
j

ηj1 = βj , ηj2 = −1/2, η̂j1 = βj +
X

k

Ujkhk

ek1 = hk, ek2 = h2
k

λk1 = 0, λk2 = −1/2, λ̂k1 =
X

i

Wikhk +
X

j

Ujkhk

Therefore, by plugging these de�nitions into general
form of harmonium random �eld at the beginning of
this appendix, we have the speci�c random �eld as:

p(x, z,h) ∝ exp

�P
i αixi +

P
j βjzj −

P
j

z2
j

2

−Pk

h2
k
2

+
P

ik Wikxihk +
P

jk Ujkzjhk

�

which is exactly the same as Eq.(3.5) except the latter
one is de�ned for a speci�c category.


