Chapter 6

FEATURE SELECTION IN MICROARRAY
ANALYSIS

Eric P. Xing
Computer Science Division
University of California, Berkeley

epxing@cs.berkeley.edu

1. Introduction

Microarray technology makes it possible to put the probes for the
genes of an entire genome onto a chip, such that each data point provided
by an experimenter lies in the high-dimensional space defined by the
size of the genome under investigation. However, the sample size in
these experiments is often severely limited. For example, in the popular
leukemia dataset (Golub et al., 1999), which is used as a running example
in this chapter, there are only 72 observations of the expression levels of
each of 7,130 genes. This problem exemplifies a situation that will be
increasingly common in the analysis of microarray data using machine
learning techniques such as classification or clustering.

In high-dimensional problems such as these, feature selection meth-
ods are essential if the investigator is to make sense of his/her data,
particularly if the goal of the study is to identify genes whose expression
patterns have meaningful biological relationships to the classification or
clustering problem. For example, for a microarray classification prob-
lem, it is of great clinical and mechanistic interest to identify those genes
that directly contribute to the phenotype or symptom that we are try-
ing to predict. Computational constraints can also impose important
limitations. Many induction methods' suffer from the curse of dimen-
sitonality, that is, the time required for an algorithm grows dramatically,

nduction (or inductive inference, inductive learning) refers to the following learning task:
given a collection of examples (z, f(x)), find a function h that approximates f. The function
h is called a hypothesis.



2

sometimes exponentially with the number of features involved, render-
ing the algorithm intractable in extremely high-dimensional problems
we are facing with microarray data. Furthermore, a large number of
features inevitably lead to a complex hypothesis and a large number
of parameters for model induction or density estimation, which can re-
sult in serious overfitting over small datasets and thus a poor bound
on generalization error.(Indeed we may never be able to obtain a ’suffi-
ciently large’ dataset. For example, theoretical and experimental results
suggest that the number of training examples needed for a classifier to
reach a given accuracy, or sample complexity, grow exponentially with
the number of irrelevant features.)

The goal of feature selection is to select relevant features and elimi-
nate irrelevant ones. This can be achieved by either explicitly looking
for a good subset of features, or by assigning all features appropriate
weights. Explicit feature selection is generally most natural when the
result is intended to be understood by humans or fed into different induc-
tion algorithms. Feature weighting, on the other hand, is more directly
motivated by pure modeling or performance concerns. The weighting
process is usually an integral part of the induction algorithm and the
weights often come out as a byproduct of the learned hypothesis.

In this chapter, we survey several important feature selection tech-
niques developed in the classic supervised learning paradigm. We will
first introduce the classic filter and wrapper approaches and some recent
variants for explicit feature selection. Then we discuss several feature
weighting techniques including WINNOW and Bayesian feature selec-
tion. We also include a brief section describing recent works on feature
selection in the unsupervised learning paradigm, which will be useful for
clustering analysis in the high-dimensional gene space.

Before proceeding, we should clarify the scope of this survey. There
has been substantial work on feature selection in machine learning, pat-
tern recognition and statistics. Due to space limit and the practical
nature of this volume, we will refrain from detailed formal discussions
and focus more on algorithmic solutions for practical problems from a
machine learning perspective. Readers can follow the references of this
chapter for more details. We use the leukemia microarray profile from
the Whitehead Institute as our running example in the presentation.

2. Explicit Feature Selection

In explicit feature selection, we look for the subset of features that
leads to optimal performance in our learning task, such as classifying
biological samples according to their mRNA expression profiles.



Feature Selection 3

Explicit feature selection can be formulated as a heuristic search prob-
lem, with each state in the search space specifying a specific subset of
features (Blum and Langley, 1997). Any feature selection algorithm
needs to deal with the following four issues which determine the nature
of the heuristic search process: 1) How to start the search. One can
either begin with an empty set and successively add features (forward
selection) or start with all features and successively discard them (back-
ward elimination) or other variations in between. 2) How to explore the
search space. Popular strategies include a hill-climbing type of greedy
scheme or a more exhaustive best-first search. 3) How to evaluate a fea-
ture subset. A common metric involves the degree of consistency of a
feature with the target concept (e.g. sample labels) in the training data;
more sophisticated criteria concern how selected features interact with
specific induction algorithms. 4) When to stop the search. Depending
on which search and evaluation scheme is used, one can use thresholding
or a significance test, or simply stop when performance stops improv-
ing. It should be clear that all the above design decisions must be made
for a feature selection procedure, which leaves practitioners substantial
freedom in designing their algorithms.

2.1 The Filter Methods

The filter model relies on general characteristics of the training data
to select a feature subset, doing so without reference to the learning algo-
rithm. Filter strategies range from sequentially evaluating each feature
based on simple statistics from the empirical distribution of the train-
ing data to using an embedded learning algorithm (independent of the
induction algorithm that uses its output) to produce a feature subset.

Discretization and discriminability assessment of features.
The measurements we obtained from microarrays are continuous values.
In many situations in functional annotation (e.g., constructing regu-
latory networks) or data analysis (e.g. the information-theoretic-based
filter technique we will discuss later), however, it is convenient to assume
discrete values. One way to achieve this is to deduce the functional states
of the genes based on their observed measurements.

A widely adopted empirical assumption about the activity of genes,
and hence their expression, is that they generally assume distinct func-
tional states such as ’on’ or ’off’. (We assume binary states for simplicity
but generalization to more states is straightforward.) The combination
of such binary patterns from multiple genes determines the sample phe-
notype. For concreteness, consider a particular gene i (feature F;). Sup-
pose that the expression levels of F; in those samples where Fj is in the



4

‘on’ state can be modeled by a probability distribution, such as a Gaus-
sian distribution N (z|p1, 01) where g1 and o7 are the mean and standard
deviation. Similarly, another Gaussian distribution N (x|u2,02) can be
assumed to model the expression levels of F; in those samples where F; is
in the 'off’ state. Given the above assumptions, the marginal probability
of any given expression level x; of gene ¢ can be modeled by a weighted
sum of the two Gaussian probability functions corresponding to the two
functional states of this gene (where the weights 7/, correspond to the
prior probabilities of gene ¢ being in the on/off states):

P(zi) = mN (zilp, 01) + moN (23] p2, 02). (6.1)

Such a model is called a univariate mizture model with two compo-
nents (which includes the degenerate case of a single component when
either of the weights is zero). The histogram in Figure 6.1a gives the
empirical marginal of gene 109, which clearly demonstrates the case of a
two-component mixture distribution of the expression levels of this gene
in the 72 leukemia samples (which indicates this gene can be either 'on’
or 'oft’ in these samples), whereas Figure 6.1b is an example of a nearly
uni-component distribution (which indicates that gene 1902 remains in
the same functional state in all the 72 samples).

gene 109 gene 1902

(@) (b)

I 1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 6.1. The histograms and estimated density functions of the expression profiles
of two representative genes. The x-axes represent the normalized expression level.

For feature selection, if the underlying binary state of the gene does
not vary between the two classes, then the gene is not discriminative
for the classification problem and should be discarded. This suggests a
heuristic procedure in which we measure the separability of the mixture
components as an assay of the discriminability of the feature.

Given N microarray experiments for which gene i is measured in each
experiment, the complete likelihood of all observations X; = {x1;,...,xyN;}
and their corresponding state indicator Z; = {z1;,..., 2y} is:

Pu(Xi, Zi]6;) = ﬁ ll[ | = _(oni — pi)® - 6.2
c\ A, 44|V;) = T,k \/ﬁ()’iyk exXp 2(0'72,]9)2 ( : )

n=1k=0



Feature Selection 5

Random variable z,; € {0,1} indicates the underlying state of gene
i in sample n (we omit sample index n in the subscript in the later
presentation for simplicity) and is usually latent. We can fit the model
parameters using the EM algorithm (Dempster et al., 1977). The solid
curves in Figure 6.1a depict the density functions of the two Gaussian
components fitted on the observed expression levels of gene 109. The
curve in Figure 6.1b is the density of the single-component Gaussian
distribution fitted on gene 1902. Note that each feature F; is fitted inde-
pendently based on its measurements in all N microarray experiments.

Suppose we define a decision d(F;) on feature F; to be 0 if the posterior
probability of {z; = 0} is greater than 0.5 under the mixture model, and
let d(F;) equal 1 otherwise. We can define a mizture-overlap probability:

e = Pz = 0)P(d(F}) = 1|z = 0) + P(z = 1)P(d(F;) = 0|z = 1). (6.3)

If the mixture model were a true representation of the probability of
gene expression, then e would represent the Bayes error of classification
under this model (which equals to the area indicated by the arrow in
Figure 6.1a). We can use this probability as a heuristic surrogate for the
discriminating potential of the gene. Figure 6.2(a) shows the mixture
overlap probability e for the genes in the leukemia dataset in ascending
order. It can be seen that only a small percentage of the genes have an
overlap probability significantly smaller than € < 0.5, where 0.5 would
constitute a random guessing under a Gaussian model if the underlying
mixture components were construed as class labels.

The mixture model can be used as a quantizer, allowing us to dis-
cretize the measurements for a given feature. We can simply replace the
continuous measurement f; with the associated binary value d(f;).

o T 0,
ol \

05 . __ 008 N
03| o i1 =
w > 2
02 =03 iy
<

04

01

02 002 %
04 k

0 500 1000 1500 2000 2500 3000 3500 4000 4500 oW 2000 @00 4000 5000 6000 7000 0 50 100 150 200 250 300 30 400
rank index rank index removal order index

(a) (b) (©)

Figure 6.2. Feature selection using filter methods. (a) Genes ranked by mixture-
overlap probability €. Only 2-state genes (i.e. those whose distributions of expressions
in all samples have two mixture components corresponding to the ’on’ and ’off’ states)
are displayed. (b) Genes ranked by their information gains I, with respect to the
reference partition induced by the sample labels. (c) The A(F;|M) of the last 360
genes removed during MB filter. (The z axis indexes the inverse removal order of the
genes. {z = 1} refers to the gene that is removed last.)

Correlation-based feature ranking. We now turn to methods
that make use of the class labels. Perhaps the simplest filter scheme of
this category is to rank each feature individually based on its correlation
to the target function. The goal of these methods is to find a good



6

approximation of the conditional distribution, P(C' | F), where F is the
overall feature vector and C is the class label.

The information gain is commonly used as a surrogate for approx-
imating a conditional distribution in the classification setting (Cover
and Thomas, 1991). Let the class labels induce a reference partition
Si,...,8c (e.g. different types of cancers). Let the probability of this
partition be the empirical proportions: P(T) = |T'|/|S| for any subset
T. Suppose a test on feature F; induces a partition of the training set
into Ey,...,Ex. Let P(S:|Ex) = P(S.N Ey)/P(E). We define the
information gain due to F; with respect to the reference partition as:

I,=H(P(S),...,P Z P(Ey)H(P(S1|Eg), ..., P(Sc|Ek)),
(6.4)

where H is the entropy function®. To calculate the information gain,
we need to quantize the values of the features. This is achieved to
the mixture model quantization discussed earlier. Back to the leukemia
example: quantization of all the 72 measurement of gene 109 results in
36 samples in the ’on’ state (of which 20 are of type I leukemia and
16 type II) and 36 samples in the ’off’ state (27 type I and 9 type II).
According to Eq. 6.4, the information gain induced by gene 109 with
respect to the original sample partition (47 type I and 25 type II) is:

Iy(Fio) = H(3, %) — (B H(2, 18) + 8 H(Z, &) = 0.0304.

The information gain reveals the degree of relevance of a feature to
the reference partition. The greater the information gain, the more
relevant the feature is to the reference partition. Figure 6.2(b) shows
the information gain due to each individual gene with respect to the
leukemia cancer labels. Indeed, only a very small fraction of the genes
induce a significant information gain. One can rank all genes in the
order of increasing information gain and select genes conservatively via
a statistical significance test (Ben-Dor et al., 2000).

Markov blanket filtering. If we have a large number of similar
or redundant genes in a dataset, all of them will score similarly in in-
formation gain®. This will cause undesirable dominance of the resulting
classifier by a few gene families whose members have coherent expression

2For discrete cases, the entropy of distribution {Py, ..., P.} isgiven by H = 25:1 —P;log P;.
3Such situations could either arise from true functional redundancy, or result from artifacts
of the microarray (e.g. the probe of a particular gene is accidentally spotted k times and
appears as k ’similar genes’ to a user who is unaware of the erroneous manufacturing process).



Feature Selection 7

patterns, or even by a group of replicates of genes. This will seriously
compromise the predictive power of the classifier. To alleviate this prob-
lem, we turn to Markov blanket filtering, a technique due to Koller and
Sahami (1996), which can screen out redundant features.

Let G be a subset of the overall feature set F. Let f; denote the pro-
jection of f onto the variables in G. Markov blanket filtering aims to min-
imize the discrepancy between the conditional distributions P(C|F = f)
and P(C|G = f;), as measured by a conditional entropy:

Ag =) P(E)D(P(CIF =f) || P(C|G = fg)), (6.5)
f

where D(P||Q) = >, P(z)log(P(z)/Q(z)) is the Kullback-Leibler di-
vergence. The goal is to find a small set G for which Ag is small.
Intuitively, if a feature F; is conditionally independent of the class
label given some small subset of other features, then we should be able
to omit F; without compromising the accuracy of class prediction. Koller
and Sahami formalize this idea using the notion of a Markov blanket.

Definition 1 (Markov blanket) For a feature set G and class label
C, the set M; C G (F; ¢ M,) is a Markov Blanket of F; (F; € G) if:
given M, F; is conditionally independent of G — M; — {F;} and C.

Biologically speaking, one can view the Markov blanket M; of gene
1 as a subset of genes that exhibit similar expression patterns as gene 4
in all the samples under investigation. Such a subset could correspond
to genes of isozymes, coregulated genes, or even (erroneous) experimen-
tal/manufactural replicates of probes of the same gene in an array.

Theoretically, it can be shown that once we find a Markov blanket
of feature F; in a feature set G, we can safely remove F; from G with-
out increasing the divergence from the desired distribution (Xing et al.,
2001). Furthermore, in a sequential filtering process in which unneces-
sary features are removed one by one, a feature tagged as unnecessary
based on the existence of a Markov blanket M; remains unnecessary in
later stages when more features have been removed.

In most cases, however, few if any features will have a Markov blanket
of limited size. Hence we must instead look for features that have an
“approximate Markov blanket.” For this purpose we define

A(F;M) = Y PM = fum, F; = fi)
fm,fi
D(P(CIM = far, Fi = f;) |P(CIM = far)). (6.6)

If M is a Markov blanket for F; then A(F;/M) = 0 (following the
definition of Markov blanket), which means all information carried by



8

F; about the sample is also carried by feature subset M;. Since an
exact zero is unlikely to occur, we relax the condition and seek a set
M such that A(F;|M) is small. It can be proved that those features
that form an approximate Markov blanket of feature F; are most likely
to be more strongly correlated to F;. We can construct a candidate
Markov blanket of F; by collecting the k features that have the highest
correlations (defined by the Pearson correlations between the original
feature vectors that are not discretized) with F;, where k is a small
integer. This suggests an easy heuristic way to search for features with
approximate Markov blankets (Koller and Sahami, 1996):

Initialize
-G=F
Iterate
- For each feature F; € G, let M; be the set of k features F; € G—{F;}
for which the correlations between F; and Fj are the highest.
- Compute A(F;|M;) for each 4
- Choose the i that minimizes A(F;|M;), and define G = G—{F;}

This heuristic method requires computation of quantities of the form
P(CIM = fy, F; = f;) and P(C|M = f);), which can be easily computed
using the discretization technique described in Sec. 2.1. When working
on a small dataset, one should keep the Markov blankets small to avoid
fragmenting the data*. The fact that in a real biological regulatory
network the fan-in and fan-out will generally be small provides some
justification for enforcing small Markov blankets.

Figure 6.2(c) displays the values of A(F;|M;) (Eq. 6.6) for each Fj,
an assessment of the extent to which the approximate Markov blanket
M, subsumes information carried by F; and thus renders F; redundant.
Genes are ordered in their removal sequence from right to left. Note
the increasing trend of A(F;|M;) with more genes being removed, which
reveals the expected decrease of redundancy of the remaining genes.

Decision Tree Filtering. A decision tree is itself an induction
algorithm and learns a decision rule (a Boolean function) mapping rel-
evant attributes to the target concept. Since a decision tree typically
contains only a subset of the features, those included in the final tree
can be viewed as a relevant feature subset and fed into another classifica-
tion algorithm of choice. Thus, we can use the decision-tree algorithm as

4This refers to the situation in which, given small number of samples, one has to estimate, for
example, P(C|M = fy,) for many different possible configurations of fa;. When M is large,
each fj; configuration is seen only in a very small number of samples, making estimation of
the conditional probabilities based on empirical frequency very inaccurate.



Feature Selection 9

an embedded selection scheme under the filter model®. This approach
has worked well for some datasets, but does not have a guarantee of
performance gain on an arbitrary classifier since features that are good
for a decision tree are not necessarily useful in other models. Essen-
tially, a decision tree is itself a classifier (or an hypothesis), the features
admitted to the learned tree inevitably bears inductive bias®. For high-
dimensional microarray data, current methods of building decision trees
may also suffer from data fragmentation and lack of sufficient samples.
These shortcomings will result in a feature subset of possibly insufficient
size. Nevertheless, if users have a strong prior belief that only a small
number of genes are involved in a biological process of his/her interest,
decision tree filtering could be a highly efficient way to pick them out.

2.2 The Wrapper Methods

The wrapper model makes use of the algorithm that will be used to
build the final classifier to select a feature subset. Thus, given a classifier
C, and given a set of features F', a wrapper method searches in the space
of subsets of F', using cross-validation to compare the performance of
the trained classifier C on each tested subset. While the wrapper model
tends to be more computationally expensive, it also tends to find feature
sets better suited to the inductive biases of the learning algorithm and
tends to give superior performance.

A key issue of the wrapper methods is how to search the space of
subsets of features. Note that when performing the search, enumera-
tion over all 2"V possible feature sets is usually intractable for the high-
dimensional problems in microarray analysis. There is no known algo-
rithm for otherwise performing this optimization tractably. Indeed, the
feature selection problem in general is NP-hard”, but much work over
recent years has developed a large number of heuristics for performing

5Tf at each tree-growing step, we choose to incorporate the feature whose information gain
with respect to the target concept is the highest among all features not yet in the tree, then
decision tree filtering is in a sense similar to information gain ranking mentioned previously.
However, general decision tree learning algorithm can also use other criteria to choose qualified
features (e.g. classification performance of the intermediate tree resulted from addition of
one more feature), and usually a learned tree needs to be pruned and cross-validated. These
differences distinguish decision tree filtering from information gain ranking.

6 Any preference for one hypothesis over another, beyond mere consistency with the examples,
is called a inductive bias. For example, over many possible decision trees that are consistent
with all training examples, the learning algorithm may prefer the smallest one, but the
features included in such a tree may be insufficient for obtaining a good classifier of another
type, e.g. support vector machines.

NP stands for nondeterministic polynomial. Tn short, the NP-hard problems are a class
of problems for which no polynomial-time solution is known.



10

this search efficiently. A thorough review on search heuristics can be
found in (Russell and Norvig, 1995).

It is convenient to view the search process as building up a search tree
that is superimposed over the state space (which, in our case, means each
node in the tree corresponds to a particular feature subset, and adjacent
nodes correspond to two feature subsets that differ by one feature). The
root of this tree is the initial feature set which could be full, empty, or
randomly chosen. At each search step, the search algorithm chooses one
leaf node in the tree to expand by applying an operator (i.e. adding,
removing, or replacing one of the features) to the feature subset corre-
sponding to the node to produce a child. The first two search strategies
described in the following can be best understood in this way.

Hill-climbing search. Hill-climbing search is one of the simplest
search techniques also known as greedy search or steepest ascent. In fact,
to perform this search one does not even need to maintain a search tree
because all the algorithm does is to make the locally best changes to the
feature subset. Essentially, it expands the current node and moves to the
child with the highest accuracy based on cross-validation, terminating
when no child improves over the current node. An important drawback
of hill-climbing search is that it tends to suffer from the presence of local
maxima, plateaux and ridges of the value surface of the evaluation func-
tion. Simulated annealing (occasionally picking a random expansion)
provides a way to escape possible sub-optimality.

Best-First search. Best-first search is a more robust search strat-
egy than the hill-climbing search. Basically, it chooses to expand the
best-valued leaf that has been generated so far in the search tree (for
this purpose we need to maintain a record of the search tree to provide
us the tree frontier). To explore the state space more throughly, we do
not stop immediately when node values stop increasing, but keep on ex-
panding the tree until no improvement (within € error) is found over the
last k£ expansions.

Probabilistic search. For large search problems, it is desirable
to concentrate the search in the regions of the search space that has
appeared promising in the past yet still allow sufficient chance of explo-
ration (in contrast to the greedy methods). A possible way to do so is
to sample from a distribution of only the front-runners of the previously
seen feature combinations. Define a random variable z € {0,1}": a
string of n bits that indicates whether each of the n features is relevant.
We can hypothesize a parametric probabilistic model, for example, a de-



Feature Selection 11

pendence tree or even a more elaborated Bayesian network, for random
variable z and learn its distribution via an incremental procedure.
A dependence tree model is of the following form:

p(z) = p(zr) Hp(zi‘zm)a (6.7)
i£Er

where z, is the root node and m; indexes the parent of node 7. This
tree should be distinguished from the search tree we mentioned earlier
where a node represents a feature subset and the size of the tree grows
during search up to 2". In a dependence tree each node corresponds
to an indicator random variable concerning the inclusion or exclusion
of a particular feature, and the size of the tree is fixed. Any particular
composition of feature subset we may select is a sample from the distri-
bution determined by this tree. Given a collection of previously tested
feature subsets, we can use the Chow-Liu algorithm (Chow and Liu,
1968) to find the optimal tree model that fits the data (in the sense of
maximizing the likelihood of the tested instances)®. Then given the tree
model, we can apply a depth first tree-traversal? that allows candidate
feature subsets to be sampled from a concentrated subspace that is more
likely to contain good solutions than mere random search. Figure 6.3
gives the pseudo-code of dependence-tree search. A detailed example of
this algorithm can be found in (Baluja and Davies, 1997).

Initialization
— Generate N random bit-strings as candidate feature subsets
Iterate
— Evaluate each of the N candidate feature subsets by training the classifier

on each feature subset and cross-validating
— Collect the aN top performing feature subsets (bit-strings), use them to

update (with decay factor 3) all pairwise mutual information between each

pair of bits in the bit-strings
Generate a maximum spanning tree for the bit-strings using Kruskal’s al-

gorithm
Generate IV bit-strings based on joint probability encoded by the depen-

dence tree (using depth first traversal)

if performance converges, end iteration

Figure 6.3. The dependence-tree search algorithm

8We skip the details of the Chow-Liu algorithm due to the space limit. Essentially, it con-
structs a maximum spanning tree from a complete graph of the feature nodes whose edges
are weighted by the mutual information of the random variables connected by the edge.

9A strategy of touching every node in a tree by always visit the child-node of the current
node before going back to its parent-node and visit a sibling-node.



12

2.3 The ORDERED-FS Algorithm

For microarray data which have thousands of features, filter methods
have the key advantage of significantly smaller computational complexity
than wrapper methods. Therefore, these methods have been widely
applied in the analysis of microarray data (Golub et al., 1999; Chow
et al., 2002; Dudoit et al., 2000). But since a wrapper method searches
for feature combinations that minimize classification error of a specific
classifier, it can perform better than filter algorithms although at the
cost of orders of magnitude of more computation time.

An additional problem with wrapper methods is that the repeated use
of cross-validation on a single dataset can potentially cause severe over-
fitting for problems with a few samples but very large hypothesis spaces,
which is not uncommon for microarray data. While theoretical results
show that exponentially many data points are needed to provide guaran-
tees of choosing good feature subsets under the classic wrapper setting (
Ng, 1998), Ng has recently described a generic feature selection method-
ology, referred to as ORDERED-FS, which leads to more optimistic
conclusions (Ng, 1998). In this approach, cross-validation is used only
to compare between feature subsets of different cardinality. Ng proves
that this approach yields a generalization error that is upper-bounded
by the logarithm of the number of irrelevant features.

Filter(D = {Xnxn,C})
- Quantize each feature via mixture modeling (MM)
- Rank all features via information gain (IG) filter
- Pick I features with highest IG, determine a removal order via Markov
Blanket (MB) filter
Return an order 7 of the [ features

Wrapper (D, H, )
Fork=1:1
- Train hypothesis hy € H using the best k features
- Leave-One-Out CV on hj, compute e
End
k™ = arg ming €,
Return  hy« (optimal hypothesis), k* (optimal cardinality)

Figure 6.4. The ORDERED-FS algorithm

Figure 6.4 presents an algorithmic instantiation of the ORDERED-
FS approach in which filtering methods are used to choose best subsets
for a given cardinality. We can use simple filter methods described earlier
to carry out the major pruning of the hypothesis space, and use cross-
validation for final comparisons to determine the optimal cardinality.
This is in essence a hybrid of a filter and a wrapper method.



Feature Selection 13

In Figure 6.5, we show training set and test set errors observed for
the leukemia data when applying the ORDERED-FS algorithm!?. Three
different classifiers: a Gaussian quadratic classifier, a logistic linear clas-
sifier and a nearest neighbor classifier, are used (Xing et al., 2001). For
all classifiers, after an initial coevolving trend of the training and testing
curves for low-dimensional feature spaces, the classifiers quickly overfit
the training data. For the logistic classifier and KNN, the test error
tops out at approximately 20 percent when the entire feature set of 7130
genes is used. The Gaussian classifier overfits less severely in the full
feature space. For all three classifiers, the best performance is achieved
only in a significantly lower dimensional feature space.

kNN (k=3) Gaussian generative model logistic regression
0.5 0.5 0.5

training error training error training error
0.4 —— testing error 0.4 —— testing error 04 —— testing error

0.2 0.2
0.1 0.1

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
number of features number of features number of features

(a) (b) (©)
Figure 6.5. Classification in a sequence of different feature spaces with increasing
dimensionality due to inclusion of gradually less qualified features. (a) Classification
using kNN classifier; (b) A quadratic Bayesian classifier given by a Gaussian genera-
tive model; (c) A linear classifier obtained from logistic regression. All three classifiers
use the same 2-100 genes selected by the three stages of feature filtering.

error rate
error rate
error rate

Figure 6.5 shows that by an optimal choice of the number of features
it is possible to achieve error rates of 2.9%, 0% and 0% for the Gaussian
classifier, the logistic regression classifier and kNN, respectively. (Note
that due to inductive bias, different types of classifiers admit different
optimal feature subsets.) Of course, in actual diagnostic practice we
do not have the test set available, so these numbers are optimistic. To
choose the number of features in an automatic way, we make use of
leave-one-out cross-validation on the training data.

The results of leave-one-out cross-validation are shown in Figure 6.6.
Note that we have several minima for each of the cross-validation curves.
Breaking ties by choosing the minima having the smallest cardinality,
and running the resulting classifier on the test set, we obtain error rates
of 8.8%, 0% and 5.9% for the Gaussian classifier, the logistic regression
classifier and kNN, respectively. The size of the optimal feature subsets
determined hereby for the three classifiers are 6, 8 and 32, respectively.

10The 72 leukemia samples are split into two sets, with 38 (typel/typelT=27/11) serving as
a training set and the remaining 34 (20/14) as a test set.



kNN Gaussian generative model logistic regression
0.5 0.5 0.5
0.4 0.4
© 03 03
I o o
s So2 So2
@ 5 5
0.1 0.1
0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
number of features number of features number of features

(a) (b) (c)

Figure 6.6. Plots of leave-one-out cross-validation error for the three classifiers.

3. Feature Weighting

Essentially, feature selection methods search in the combinatorial space
of feature subsets, and pick an optimal subset of 'relevant’ features as
input to a learning algorithm. In contrast, feature weighting applies
a weighting function to features, in effect assigning them a degree of
perceived relevance and thereby performing feature selection implicitly
during learning. In the following, we describe both a classic feature
weighting scheme called WINNOW and a more general-purpose Bayesian
learning technique that integrates feature weighting into the learning.
For concreteness we consider the generalized linear model (GLIM) for
classification, where the input z € X (i.e. the measure on the microar-
ray) enters into the model via a linear combination ¢ = 07z and the
predictor, for example, the conditional distribution p(y|x) of the cor-
responding label y € {0,1} is characterized by an exponential family
distribution with conditional mean f(£), where f is known as a response
function. Many popular classifiers belong to this family, for example,
the logistic regression classifier:

1

Tre e (6.8)

Ply = 1]2,0) =

3.1 The WINNOW Algorithm

The WINNOW algorithm is originally designed for learning Boolean
monomials, or more generally, also k-DNF'! formulas and r-of-k thresh-
old functions'?, from noiseless data (Littlestone, 1988). Under these
settings it enjoys worst-case loss logarithmic in the number of irrelevant

1A boolean formula is in k-disjunctive normal form (k-DNF) if it is expressed as a OR.
of clauses, each of which is the AND of k literals

2For a chosen set of k(k <= n) variables and a given number r(1 <= r <= k), an r-of-k
threshold function is true if and only if at least r of the k relevant variables are true. The
learning problem arises when both r and k are unknown.



Feature Selection 15

features (i.e. the error rate is a function of the logarithm of the number
of irrelevant features) . For more realistic learning tasks encountered
in microarray analysis, such as building a classifier from training set
{(=',y"),..., (2%, %)}, we can use the following multiplicative update
rule for the weight of feature j: if the classifier misclassifies an input
training vector z! with true label 4, then we update each component j
of the weight vector w as:

wj — w; exp(nx;-yi), (6.9)

where 7 is a learning rate parameter, and the initial weight vector is set
to w; = wj;o > 0. Where does w appear in the classifier? Back to the
GLIM model, this simply means a slight change of the linear term ¢ in
the response function: ¢ = 7 (w * x), where w x  means element-wise
product of vectors w and z.

There are a number of variants of the WINNOW algorithm, such
as normalized WINNOW, balanced WINNOW and large margin WIN-
NOW. See (Zhang, 2000) and reference therein for more details.

3.2 Bayesian Feature Selection

Bayesian methods for feature selection have a natural appeal, because
they model uncertainties present in the feature selection problems, and
allow prior knowledge to be incorporated. In Bayesian feature selection,
each feature is associated with a selection probability, and the feature se-
lection process translates into estimating the posterior distribution over
the feature-indicator variables. Irrelevant features quickly receive low al-
beit non-zero probability of being selected (Jebara and Jaakkola, 2000).
This type of feature selection (which is carried out jointly with induc-
tive learning) is most beneficial when the number of training examples
is relatively small compared to their dimensionality.

Again consider the classification of cancerous and non-cancerous sam-
ples measured on microarrays spanning n genes. Following the represen-
tation introduced in Section 2.2, we can index each of the possible 2"
subsets of features by a random variable z, then the linear combination
term ¢ in the response function f(¢) essentially becomes & = >, 0;z;z;
(which obviates the effect of z; as relevance indicator). Since the appro-
priate value of z is unknown, we can model the uncertainty underlying
feature selection by a mixing prior:

n

P(9,2) = Py(0) [] P:(z), (6.10)
i=1



16

where Py is a (conjugate) prior for the model parameters 6, and
Py(z) = pi' (1 —pi)' 7, (6.11)
where p; controls the overall prior probability of including feature .
For a training set D = {X,Y}, the marginal posterior distribution

P(z|D) contains the information for feature selection, and the Bayesian
optimal classifier is obtained by calculating:

P(y = 1]z, D) — Z/Hp(y —1|2,0)P(0, 2 D)dd.  (6.12)

For high dimensional problems and complex models we may encounter
in microarray analysis, exact probabilistic computation of the posterior
distribution P(z,0|X,Y") as well as evaluation of the decision rule is in-
tractable. Therefore we need to use approximation techniques. George
and McCulloch presented a detailed study of Markov Chain Monte Carlo
methods such as Gibbs sampler or Metropolis-Hasting algorithm to ex-
plore the posterior distribution(George and McCulloch, 1997). Jebara
and Jaakkola, on the other hand, took a Maximum Entropy Discrim-
ination approach, and derived a closed-form solution of the posterior
distribution P(z,0|X,Y") for some model families such as logistic regres-
sion and support vector machines (Jebara and Jaakkola, 2000).

Recently, Ng and Jordan presented a Voting Gibbs classifier that
solves the Bayesian feature selection problem in a surprisingly simple
way (Ng and Jordan, 2001). Rather than taking Eq.6.11, they use a
prior P(6) assuming that the subset of relevant features is picked ran-
domly according to the following procedure: first, sample the number
r of relevant features uniformly from {0,1,...,n}; then a bit-string z
in which r features are relevant is chosen randomly from one of the (7)
possible configurations. The prior P(f) is constrained such that only
the feature corresponding to an ’on’ bit in z has a non-zero prior. Thus
we have a parameter prior conditioned on z, Pg(0|z). Then we proceed
to the usual Gibbs Voting classifier procedure where we sample N repli-
cates of parameters 6 from the posterior distribution p(6|D), followed by
N samples of y each from a particular p(y = 1]z, 6). Finally, we vote for
the result. A notable merit of this algorithm is its high tolerance to the
presence of large number of irrelevant features. Ng and Jordan proved
that their algorithm has sample complexity that is logarithmic in the
number of irrelevant features.

4. Feature Selection for Clustering

Clustering is another important type of analysis for microarray data.
In contrast to classification, in this paradigm (known as unsupervised



Feature Selection 17

learning) a labeled training set is unavailable, and users are supposed
to discover “meaningful” patterns (i.e. the existence of homogeneous
groups that may correspond to particular macroscopic phenotypes such
as clinical syndromes or cancer types) based on intrinsic properties of
the data. Since microarrays usually measure thousands of genes for each
sample, clustering a few hundred samples in such a high dimensional
space may fail to yield a statistically significant pattern.

Eigenvector-based dimensionality reduction techniques such as Mul-
tidimensional Scaling (MDS) (Cox and Cox, 1994) and Principal Com-
ponent Analysis (PCA) (Jolliffe, 1989) handle this problem by trying to
map the data onto a lower-dimensional space spanned by a small num-
ber of “virtual” features (e.g. the principal eigenvectors of the sample
covariance matrix in case of PCA). However, microarray measurement is
usually a highly noisy data source. Results from matrix stability theory
suggest that even small perturbation may cause the eigenvector meth-
ods to pick a different set of eigenvectors (Ng et al., 2001). Moreover, in
methods like PCA, the principal eigenvectors represent those directions
in the original feature space along which data has the greatest variance,
the presence of a few highly variable but not informative “noisy” genes
tends to mislead the algorithm to a wrong set of discriminative eigen-
features. Finally, identifiability remains an outstanding issue. In many
situations we would like to explicitly recover genes that significantly con-
tribute to the sample partition of interest. Eigenvector methods do not
offer a convenient way to do so. (Each eigenvector from PCA is a lin-
ear combination of all the original features, eigenvectors from the Gram
matrix in MDS even lack an explicit connection to the original features.)

Feature selection under the clustering paradigm is substantially more
difficult than that for classification. The main difficulty lies in the ab-
sence of reference information for evaluating the relevance of features.
Before concluding this chapter, we briefly introduce some of the recent
attempts on this problem.

Category utility. In the absence of class labels, one possible
measure combining feature quality with the clustering performance is
the average accuracy of predicting the value of each of the features in the
data. The category utility metric is such a measure (Fisher, 1987). For
a partition produced during clustering, the category utility is calculated
as:

1. K 1 J() 1 J@@)
UZ}[ P(Ck)ZZP(FiZ-’Eij|0k)2fzzp(ﬂzmij)2},
k=1 i=17=1 i=17=1

(6.13)



18

where P(F; = ;;|Cy) is the probability of feature F; taking value z;;
conditional on class membership Cj, and P(F; = z;;) is the marginal
probability of feature F; taking value z;; in the dataset. Replacing the
innermost summations with integration, category utility can be readily
computed in the continuous domain for some distribution models (i.e.
the mixture of two Gaussians we assumed in Section2.1).

Devaney and Ram proposed a wrapper-like feature selection strat-
egy using category utility as an evaluation function (Devaney and Ram,
1997). Essentially, any clustering algorithm can be used to evaluate the
candidate feature subsets produced by a search heuristic based on this
metric. The search terminates when category utility stops improving.

Entropy-based Feature Ranking. Dash and Liu made an inter-
esting empirical assumption on the relationship between the entropy and
data distribution: two points belonging to the same cluster or in two dif-
ferent clusters will contribute less to the total entropy than if they were
uniformly separated. They further reasoned that the former situation is
more likely to happen if the similarity between the two points is either
very high or low (rather than intermediate) (Dash and Liu, 2000). Then
given distance measure (e.g. Euclidean distance or Pearson correlation)
D; ; between point ¢ and j, we can compute the entropy of a dataset as:

E=— Z Z (Sivj log Si’j + (1 — Si,j) log(l — Si,j))v (6.14)
i#j J
where S; ; = exp(—aD; ;).

Based on this measure, one can rank features sequentially by discard-
ing, one at a time, the feature whose removal results in minimum E. The
optimal cardinality of the feature subset can be determined by an inde-
pendent clustering algorithm (similar to the ORDERED-FS approach).
However, the entropy assumption underlying this measure is only plau-
sible when clusters are well separated and symmetric in shape. Under
less ideal conditions, the performance is likely to break down.

The CLICK Algorithm. Xing and Karp proposed a strategy
for feature selection in clustering that goes beyond the purely unsuper-
vised feature evaluation techniques such as the entropy-based ranking
or mixture-overlapping probability ranking (Xing and Karp, 2001). In
their CLICK algorithm, they bootstrap an iterative feature selection
and clustering process by using the most discriminative subset of fea-
tures identified by the unsupervised mixture modeling to generate an
initial partition of the samples. This partition is then used as an ap-
proximate reference for supervised feature selection based on informa-



REFERENCES 19

tion gain ranking and Markov blanket filtering, and then the algorithm
alternates between computing a new reference partition given the cur-
rently selected features, and selecting a new set of features based on
the current reference partition. It is hoped that at each iteration one
can expect to obtain an approximate partition that is close to the tar-
get one, and thus allows the selection of an approximately good feature
subset, which will hopefully draw the partition even closer to the target
partition in the next iteration.

5. Conclusion

At a conceptual level, one can divide the task of concept learning into
the subtask of selecting a proper subset of features to use in describing
the concept, and learning a hypothesis based on these features. This di-
rectly leads to a modular design of the learning algorithm which allows
flexible combinations of explicit feature selection methods with model
induction algorithms and sometimes leads to powerful variants. Many
recent works, however, tend to take a more general view of feature selec-
tion as part of model selection and therefore integrate feature selection
more closely into the learning algorithms (i.e. the Bayesian feature se-
lection methods). Feature selection for clustering is a largely untouched
problem, and there has been little theoretical characterization of the
heuristic approaches we described in the chapter. In summary, although
no universal strategy can be prescribed, for high-dimensional problems
frequently encountered in microarray analysis, feature selection offers a
promising suite of techniques to improve interpretability, performance
and computation efficiency in learning.

Acknowledgments

I thank Professor Richard Karp and Dr. Wei Wu for helpful comments
on the manuscript.

References

Baluja, S. and Davies, S. (1997). Using optimal dependency-trees for combinatorial
optimization: Learning the structure of the search space. In Proceedings of the
Fourteenth International Conference on Machine Learning.

Ben-Dor, A., Friedman, N., and Yakhini, Z. (2000). Scoring genes for relevance. In
Agilent Technologies Technical Report AGL-2000-19.

Blum, A. and Langley, P. (1997). Selection of relevant features and examples in ma-
chine learning. Artificial Intelligence, 97:245 271.

Chow, C. and Liu, C. (1968). Approximating discrete probability distribution with
dependency tree. IEEE Transactions on Information Theory, 14:462-367.



20

Chow, M. L., Moler, E. J., and Mian, I. S. (2002). Identification marker genes in
transcription profiling data using a mixture of feature relevance experts. In Phys-
iological Genomics (in press).

Cover, T. and Thomas, J. (1991). Elements of Information Theory. Wiley, New York.

Cox, T. and Cox, M. (1994). Multidimensional Scaling. Chapman & Hall, London.

Dash, M. and Liu, H. (2000). Feature selection for clustering. In PAKDD, pages 110~
121.

Dempster, A., Laird, N., and Revow, M. (1977). Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society, B 39(1):1-38.

Devaney, M. and Ram, A. (1997). Efficient feature selection in conceptual clustering.
In Proceedings of the Fourteenth International Conference on Machine Learning.

Dudoit, S., Fridlyand, J., and Speed, T. (2000). Comparison of discrimination methods
for the classification of tumors using gene expression data. In Technical report 576,
Department of Statistics, UC Berkeley.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 2:139 172.

George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection.
Statistica Sinica, 7:339-373.

Golub, T., D.K., S., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H.,
Loh, M. L., Downing, J., Caligiuri, M., Bloomfield, C., and Lander, E. (1999).
Molecular classification of cancer: Class discovery and class prediction by gene
expression monitoring. Science, 286:531 537.

Jebara, T. and Jaakkola, T. (2000). Feature selection and dualities in maximum en-
tropy discrimination. In Proceedings of the Sizteenth Annual Conference on Un-
certainty in Artificial Intelligence. Morgan Kaufmann.

Jolliffe, 1. (1989). Principal Component Analysis. Springer-Verlag, New York.

Koller, D. and Sahami, M. (1996). Toward optimal feature selection. In Proceedings
of the Thirteenth International Conference on Machine Learning.

Littlestone, N. (1988). Learning quickly when irrelevant attribute abound: A new
linear-threshold algorithm. Machine Learning, 2:285-318.

Ng, A. (1998). On feature selection: Learning with exponentially many irrelevant fea-
tures as training examples. In Proceedings of the Fifteenth International Conference
on Machine Learning.

Ng, A. Y. and Jordan, M. (2001). Convergence rates of the voting Gibbs classifier,
with application to Bayesian feature selection. In Proceedings of the Eighteenth
International Conference on Machine Learning.

Ng, A. Y., Zheng, A. X., and Jordan, M. (2001). Link analysis, eigenvectors, and
stability. In Proceedings of the Seventeenth International Joint Conference on Ar-
tificial Intelligence.

Russell, S. and Norvig, P. (1995). Artificial Intelligence, A Modern Approach. Prentice
Hall, New Jersey.

Xing, E., Jordan, M., and Karp, R. (2001). Feature selection for high-dimensional
genomic microarray data (long version). In Proceedings of the Eighteenth Interna-
tional Conference on Machine Learning.

Xing, E. and Karp, R. (2001). Cliff: Clustering of high-dimensional microarray data
via iterative feature filtering using normalized cuts. In Proceedings of the Ninth
International Conference on Intelligence Systems for Molecular Biology.

Zhang, T. (2000). Large margin winnow methods for text categorization. In KDD-
2000 Workshop on Text Mining, pages 81-87.



