
Chapter 6FEATURE SELECTION IN MICROARRAYANALYSISEric P. XingComputer Science DivisionUniversity of California, Berkeleyepxing@cs.berkeley.edu1. IntroductionMicroarray technology makes it possible to put the probes for thegenes of an entire genome onto a chip, such that each data point providedby an experimenter lies in the high-dimensional space de�ned by thesize of the genome under investigation. However, the sample size inthese experiments is often severely limited. For example, in the popularleukemia dataset (Golub et al., 1999), which is used as a running examplein this chapter, there are only 72 observations of the expression levels ofeach of 7,130 genes. This problem exempli�es a situation that will beincreasingly common in the analysis of microarray data using machinelearning techniques such as classi�cation or clustering.In high-dimensional problems such as these, feature selection meth-ods are essential if the investigator is to make sense of his/her data,particularly if the goal of the study is to identify genes whose expressionpatterns have meaningful biological relationships to the classi�cation orclustering problem. For example, for a microarray classi�cation prob-lem, it is of great clinical and mechanistic interest to identify those genesthat directly contribute to the phenotype or symptom that we are try-ing to predict. Computational constraints can also impose importantlimitations. Many induction methods1 su�er from the curse of dimen-sionality, that is, the time required for an algorithm grows dramatically,1Induction (or inductive inference, inductive learning) refers to the following learning task:given a collection of examples (x; f(x)), �nd a function h that approximates f . The functionh is called a hypothesis. 1



2sometimes exponentially with the number of features involved, render-ing the algorithm intractable in extremely high-dimensional problemswe are facing with microarray data. Furthermore, a large number offeatures inevitably lead to a complex hypothesis and a large numberof parameters for model induction or density estimation, which can re-sult in serious over�tting over small datasets and thus a poor boundon generalization error.(Indeed we may never be able to obtain a 'suÆ-ciently large' dataset. For example, theoretical and experimental resultssuggest that the number of training examples needed for a classi�er toreach a given accuracy, or sample complexity, grow exponentially withthe number of irrelevant features.)The goal of feature selection is to select relevant features and elimi-nate irrelevant ones. This can be achieved by either explicitly lookingfor a good subset of features, or by assigning all features appropriateweights. Explicit feature selection is generally most natural when theresult is intended to be understood by humans or fed into di�erent induc-tion algorithms. Feature weighting, on the other hand, is more directlymotivated by pure modeling or performance concerns. The weightingprocess is usually an integral part of the induction algorithm and theweights often come out as a byproduct of the learned hypothesis.In this chapter, we survey several important feature selection tech-niques developed in the classic supervised learning paradigm. We will�rst introduce the classic �lter and wrapper approaches and some recentvariants for explicit feature selection. Then we discuss several featureweighting techniques including WINNOW and Bayesian feature selec-tion. We also include a brief section describing recent works on featureselection in the unsupervised learning paradigm, which will be useful forclustering analysis in the high-dimensional gene space.Before proceeding, we should clarify the scope of this survey. Therehas been substantial work on feature selection in machine learning, pat-tern recognition and statistics. Due to space limit and the practicalnature of this volume, we will refrain from detailed formal discussionsand focus more on algorithmic solutions for practical problems from amachine learning perspective. Readers can follow the references of thischapter for more details. We use the leukemia microarray pro�le fromthe Whitehead Institute as our running example in the presentation.2. Explicit Feature SelectionIn explicit feature selection, we look for the subset of features thatleads to optimal performance in our learning task, such as classifyingbiological samples according to their mRNA expression pro�les.



Feature Selection 3Explicit feature selection can be formulated as a heuristic search prob-lem, with each state in the search space specifying a speci�c subset offeatures (Blum and Langley, 1997). Any feature selection algorithmneeds to deal with the following four issues which determine the natureof the heuristic search process: 1) How to start the search. One caneither begin with an empty set and successively add features (forwardselection) or start with all features and successively discard them (back-ward elimination) or other variations in between. 2) How to explore thesearch space. Popular strategies include a hill-climbing type of greedyscheme or a more exhaustive best-�rst search. 3) How to evaluate a fea-ture subset. A common metric involves the degree of consistency of afeature with the target concept (e.g. sample labels) in the training data;more sophisticated criteria concern how selected features interact withspeci�c induction algorithms. 4) When to stop the search. Dependingon which search and evaluation scheme is used, one can use thresholdingor a signi�cance test, or simply stop when performance stops improv-ing. It should be clear that all the above design decisions must be madefor a feature selection procedure, which leaves practitioners substantialfreedom in designing their algorithms.2.1 The Filter MethodsThe �lter model relies on general characteristics of the training datato select a feature subset, doing so without reference to the learning algo-rithm. Filter strategies range from sequentially evaluating each featurebased on simple statistics from the empirical distribution of the train-ing data to using an embedded learning algorithm (independent of theinduction algorithm that uses its output) to produce a feature subset.Discretization and discriminability assessment of features.The measurements we obtained from microarrays are continuous values.In many situations in functional annotation (e.g., constructing regu-latory networks) or data analysis (e.g. the information-theoretic-based�lter technique we will discuss later), however, it is convenient to assumediscrete values. One way to achieve this is to deduce the functional statesof the genes based on their observed measurements.A widely adopted empirical assumption about the activity of genes,and hence their expression, is that they generally assume distinct func-tional states such as 'on' or 'o�'. (We assume binary states for simplicitybut generalization to more states is straightforward.) The combinationof such binary patterns from multiple genes determines the sample phe-notype. For concreteness, consider a particular gene i (feature Fi). Sup-pose that the expression levels of Fi in those samples where Fi is in the



4'on' state can be modeled by a probability distribution, such as a Gaus-sian distributionN (xj�1; �1) where �1 and �1 are the mean and standarddeviation. Similarly, another Gaussian distribution N (xj�2; �2) can beassumed to model the expression levels of Fi in those samples where Fi isin the 'o�' state. Given the above assumptions, the marginal probabilityof any given expression level xi of gene i can be modeled by a weightedsum of the two Gaussian probability functions corresponding to the twofunctional states of this gene (where the weights �1=2 correspond to theprior probabilities of gene i being in the on/o� states):P (xi) = �1N (xij�1; �1) + �2N (xij�2; �2): (6.1)Such a model is called a univariate mixture model with two compo-nents (which includes the degenerate case of a single component wheneither of the weights is zero). The histogram in Figure 6.1a gives theempirical marginal of gene 109, which clearly demonstrates the case of atwo-component mixture distribution of the expression levels of this genein the 72 leukemia samples (which indicates this gene can be either 'on'or 'o�' in these samples), whereas Figure 6.1b is an example of a nearlyuni-component distribution (which indicates that gene 1902 remains inthe same functional state in all the 72 samples).
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Figure 6.1. The histograms and estimated density functions of the expression pro�lesof two representative genes. The x-axes represent the normalized expression level.For feature selection, if the underlying binary state of the gene doesnot vary between the two classes, then the gene is not discriminativefor the classi�cation problem and should be discarded. This suggests aheuristic procedure in which we measure the separability of the mixturecomponents as an assay of the discriminability of the feature.Given N microarray experiments for which gene i is measured in eachexperiment, the complete likelihood of all observationsXi = fx1i; : : : ; xNigand their corresponding state indicator Zi = fz1i; : : : ; zNig is:Pc(Xi; Zij�i) = NYn=1 1Yk=0 �i;k " 1p2��i;k exp(�(xni � �i;k)22(�i;k)2 )#!zkni :(6.2)



Feature Selection 5Random variable zni 2 f0; 1g indicates the underlying state of genei in sample n (we omit sample index n in the subscript in the laterpresentation for simplicity) and is usually latent. We can �t the modelparameters using the EM algorithm (Dempster et al., 1977). The solidcurves in Figure 6.1a depict the density functions of the two Gaussiancomponents �tted on the observed expression levels of gene 109. Thecurve in Figure 6.1b is the density of the single-component Gaussiandistribution �tted on gene 1902. Note that each feature Fi is �tted inde-pendently based on its measurements in all N microarray experiments.Suppose we de�ne a decision d(Fi) on feature Fi to be 0 if the posteriorprobability of fzi = 0g is greater than 0:5 under the mixture model, andlet d(Fi) equal 1 otherwise. We can de�ne a mixture-overlap probability :� = P (zi = 0)P (d(Fi) = 1jzi = 0) + P (zi = 1)P (d(Fi) = 0jzi = 1): (6.3)If the mixture model were a true representation of the probability ofgene expression, then � would represent the Bayes error of classi�cationunder this model (which equals to the area indicated by the arrow inFigure 6.1a). We can use this probability as a heuristic surrogate for thediscriminating potential of the gene. Figure 6.2(a) shows the mixtureoverlap probability � for the genes in the leukemia dataset in ascendingorder. It can be seen that only a small percentage of the genes have anoverlap probability signi�cantly smaller than � � 0:5, where 0:5 wouldconstitute a random guessing under a Gaussian model if the underlyingmixture components were construed as class labels.The mixture model can be used as a quantizer, allowing us to dis-cretize the measurements for a given feature. We can simply replace thecontinuous measurement fi with the associated binary value d(fi).
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)(a) (b) (c)Figure 6.2. Feature selection using �lter methods. (a) Genes ranked by mixture-overlap probability �. Only 2-state genes (i.e. those whose distributions of expressionsin all samples have two mixture components corresponding to the 'on' and 'o�' states)are displayed. (b) Genes ranked by their information gains Ig with respect to thereference partition induced by the sample labels. (c) The �(FijM) of the last 360genes removed during MB �lter. (The x axis indexes the inverse removal order of thegenes. fx = 1g refers to the gene that is removed last.)Correlation-based feature ranking. We now turn to methodsthat make use of the class labels. Perhaps the simplest �lter scheme ofthis category is to rank each feature individually based on its correlationto the target function. The goal of these methods is to �nd a good



6approximation of the conditional distribution, P (C j F), where F is theoverall feature vector and C is the class label.The information gain is commonly used as a surrogate for approx-imating a conditional distribution in the classi�cation setting (Coverand Thomas, 1991). Let the class labels induce a reference partitionS1; : : : ; SC (e.g. di�erent types of cancers). Let the probability of thispartition be the empirical proportions: P (T ) = jT j=jSj for any subsetT . Suppose a test on feature Fi induces a partition of the training setinto E1; : : : ; EK . Let P (ScjEk) = P (Sc \ Ek)=P (Ek). We de�ne theinformation gain due to Fi with respect to the reference partition as:Ig = H(P (S1); : : : ; P (SC))� KXk=1P (Ek)H(P (S1jEk); : : : ; P (SC jEk));(6.4)where H is the entropy function2. To calculate the information gain,we need to quantize the values of the features. This is achieved tothe mixture model quantization discussed earlier. Back to the leukemiaexample: quantization of all the 72 measurement of gene 109 results in36 samples in the 'on' state (of which 20 are of type I leukemia and16 type II) and 36 samples in the 'o�' state (27 type I and 9 type II).According to Eq. 6.4, the information gain induced by gene 109 withrespect to the original sample partition (47 type I and 25 type II) is:Ig(F109) = H(4772 ; 2572)� �3672H(2036 ; 1636 ) + 3672H(2736 ; 936)� = 0:0304:The information gain reveals the degree of relevance of a feature tothe reference partition. The greater the information gain, the morerelevant the feature is to the reference partition. Figure 6.2(b) showsthe information gain due to each individual gene with respect to theleukemia cancer labels. Indeed, only a very small fraction of the genesinduce a signi�cant information gain. One can rank all genes in theorder of increasing information gain and select genes conservatively viaa statistical signi�cance test (Ben-Dor et al., 2000).Markov blanket �ltering. If we have a large number of similaror redundant genes in a dataset, all of them will score similarly in in-formation gain3. This will cause undesirable dominance of the resultingclassi�er by a few gene families whose members have coherent expression2For discrete cases, the entropy of distribution fP1; : : : ; Pcg is given byH =Pci=1�Pi logPi.3Such situations could either arise from true functional redundancy, or result from artifactsof the microarray (e.g. the probe of a particular gene is accidentally spotted k times andappears as k 'similar genes' to a user who is unaware of the erroneous manufacturing process).



Feature Selection 7patterns, or even by a group of replicates of genes. This will seriouslycompromise the predictive power of the classi�er. To alleviate this prob-lem, we turn to Markov blanket �ltering, a technique due to Koller andSahami (1996), which can screen out redundant features.Let G be a subset of the overall feature set F. Let fG denote the pro-jection of f onto the variables inG. Markov blanket �ltering aims to min-imize the discrepancy between the conditional distributions P (CjF = f)and P (CjG = fG), as measured by a conditional entropy:�G =Xf P (f)D(P (CjF = f) k P (CjG = fG)); (6.5)where D(PkQ) = Px P (x) log(P (x)=Q(x)) is the Kullback-Leibler di-vergence. The goal is to �nd a small set G for which �G is small.Intuitively, if a feature Fi is conditionally independent of the classlabel given some small subset of other features, then we should be ableto omit Fi without compromising the accuracy of class prediction. Kollerand Sahami formalize this idea using the notion of a Markov blanket.De�nition 1 (Markov blanket) For a feature set G and class labelC, the set Mi � G (Fi =2 Mi) is a Markov Blanket of Fi (Fi 2 G) if:given Mi, Fi is conditionally independent of G�Mi � fFig and C.Biologically speaking, one can view the Markov blanket Mi of genei as a subset of genes that exhibit similar expression patterns as gene iin all the samples under investigation. Such a subset could correspondto genes of isozymes, coregulated genes, or even (erroneous) experimen-tal/manufactural replicates of probes of the same gene in an array.Theoretically, it can be shown that once we �nd a Markov blanketof feature Fi in a feature set G, we can safely remove Fi from G with-out increasing the divergence from the desired distribution (Xing et al.,2001). Furthermore, in a sequential �ltering process in which unneces-sary features are removed one by one, a feature tagged as unnecessarybased on the existence of a Markov blanket Mi remains unnecessary inlater stages when more features have been removed.In most cases, however, few if any features will have a Markov blanketof limited size. Hence we must instead look for features that have an\approximate Markov blanket." For this purpose we de�ne�(FijM) = XfM;fi P (M = fM; Fi = fi)D(P (CjM = fM ; Fi = fi) kP (CjM = fM)): (6.6)If M is a Markov blanket for Fi then �(FijM) = 0 (following thede�nition of Markov blanket), which means all information carried by



8Fi about the sample is also carried by feature subset Mi. Since anexact zero is unlikely to occur, we relax the condition and seek a setM such that �(FijM) is small. It can be proved that those featuresthat form an approximate Markov blanket of feature Fi are most likelyto be more strongly correlated to Fi. We can construct a candidateMarkov blanket of Fi by collecting the k features that have the highestcorrelations (de�ned by the Pearson correlations between the originalfeature vectors that are not discretized) with Fi, where k is a smallinteger. This suggests an easy heuristic way to search for features withapproximate Markov blankets (Koller and Sahami, 1996):Initialize- G = FIterate- For each feature Fi 2 G, letMi be the set of k features Fj 2 G�fFigfor which the correlations between Fi and Fj are the highest.- Compute �(FijMi) for each i- Choose the i that minimizes �(FijMi), and de�neG = G�fFigThis heuristic method requires computation of quantities of the formP (CjM = fM ; Fi = fi) and P (CjM = fM ), which can be easily computedusing the discretization technique described in Sec. 2.1. When workingon a small dataset, one should keep the Markov blankets small to avoidfragmenting the data4. The fact that in a real biological regulatorynetwork the fan-in and fan-out will generally be small provides somejusti�cation for enforcing small Markov blankets.Figure 6.2(c) displays the values of �(FijMi) (Eq. 6.6) for each Fi,an assessment of the extent to which the approximate Markov blanketMi subsumes information carried by Fi and thus renders Fi redundant.Genes are ordered in their removal sequence from right to left. Notethe increasing trend of �(FijMi) with more genes being removed, whichreveals the expected decrease of redundancy of the remaining genes.Decision Tree Filtering. A decision tree is itself an inductionalgorithm and learns a decision rule (a Boolean function) mapping rel-evant attributes to the target concept. Since a decision tree typicallycontains only a subset of the features, those included in the �nal treecan be viewed as a relevant feature subset and fed into another classi�ca-tion algorithm of choice. Thus, we can use the decision-tree algorithm as4This refers to the situation in which, given small number of samples, one has to estimate, forexample, P (CjM = fM ) for many di�erent possible con�gurations of fM . When M is large,each fM con�guration is seen only in a very small number of samples, making estimation ofthe conditional probabilities based on empirical frequency very inaccurate.



Feature Selection 9an embedded selection scheme under the �lter model5. This approachhas worked well for some datasets, but does not have a guarantee ofperformance gain on an arbitrary classi�er since features that are goodfor a decision tree are not necessarily useful in other models. Essen-tially, a decision tree is itself a classi�er (or an hypothesis), the featuresadmitted to the learned tree inevitably bears inductive bias6. For high-dimensional microarray data, current methods of building decision treesmay also su�er from data fragmentation and lack of suÆcient samples.These shortcomings will result in a feature subset of possibly insuÆcientsize. Nevertheless, if users have a strong prior belief that only a smallnumber of genes are involved in a biological process of his/her interest,decision tree �ltering could be a highly eÆcient way to pick them out.2.2 The Wrapper MethodsThe wrapper model makes use of the algorithm that will be used tobuild the �nal classi�er to select a feature subset. Thus, given a classi�erC, and given a set of features F , a wrapper method searches in the spaceof subsets of F , using cross-validation to compare the performance ofthe trained classi�er C on each tested subset. While the wrapper modeltends to be more computationally expensive, it also tends to �nd featuresets better suited to the inductive biases of the learning algorithm andtends to give superior performance.A key issue of the wrapper methods is how to search the space ofsubsets of features. Note that when performing the search, enumera-tion over all 2N possible feature sets is usually intractable for the high-dimensional problems in microarray analysis. There is no known algo-rithm for otherwise performing this optimization tractably. Indeed, thefeature selection problem in general is NP-hard7, but much work overrecent years has developed a large number of heuristics for performing5If at each tree-growing step, we choose to incorporate the feature whose information gainwith respect to the target concept is the highest among all features not yet in the tree, thendecision tree �ltering is in a sense similar to information gain ranking mentioned previously.However, general decision tree learning algorithm can also use other criteria to choose quali�edfeatures (e.g. classi�cation performance of the intermediate tree resulted from addition ofone more feature), and usually a learned tree needs to be pruned and cross-validated. Thesedi�erences distinguish decision tree �ltering from information gain ranking.6Any preference for one hypothesis over another, beyond mere consistency with the examples,is called a inductive bias. For example, over many possible decision trees that are consistentwith all training examples, the learning algorithm may prefer the smallest one, but thefeatures included in such a tree may be insuÆcient for obtaining a good classi�er of anothertype, e.g. support vector machines.7NP stands for nondeterministic polynomial. In short, the NP-hard problems are a classof problems for which no polynomial-time solution is known.



10this search eÆciently. A thorough review on search heuristics can befound in (Russell and Norvig, 1995).It is convenient to view the search process as building up a search treethat is superimposed over the state space (which, in our case, means eachnode in the tree corresponds to a particular feature subset, and adjacentnodes correspond to two feature subsets that di�er by one feature). Theroot of this tree is the initial feature set which could be full, empty, orrandomly chosen. At each search step, the search algorithm chooses oneleaf node in the tree to expand by applying an operator (i.e. adding,removing, or replacing one of the features) to the feature subset corre-sponding to the node to produce a child. The �rst two search strategiesdescribed in the following can be best understood in this way.Hill-climbing search. Hill-climbing search is one of the simplestsearch techniques also known as greedy search or steepest ascent. In fact,to perform this search one does not even need to maintain a search treebecause all the algorithm does is to make the locally best changes to thefeature subset. Essentially, it expands the current node and moves to thechild with the highest accuracy based on cross-validation, terminatingwhen no child improves over the current node. An important drawbackof hill-climbing search is that it tends to su�er from the presence of localmaxima, plateaux and ridges of the value surface of the evaluation func-tion. Simulated annealing (occasionally picking a random expansion)provides a way to escape possible sub-optimality.Best-First search. Best-�rst search is a more robust search strat-egy than the hill-climbing search. Basically, it chooses to expand thebest-valued leaf that has been generated so far in the search tree (forthis purpose we need to maintain a record of the search tree to provideus the tree frontier). To explore the state space more throughly, we donot stop immediately when node values stop increasing, but keep on ex-panding the tree until no improvement (within � error) is found over thelast k expansions.Probabilistic search. For large search problems, it is desirableto concentrate the search in the regions of the search space that hasappeared promising in the past yet still allow suÆcient chance of explo-ration (in contrast to the greedy methods). A possible way to do so isto sample from a distribution of only the front-runners of the previouslyseen feature combinations. De�ne a random variable z 2 f0; 1gn: astring of n bits that indicates whether each of the n features is relevant.We can hypothesize a parametric probabilistic model, for example, a de-



Feature Selection 11pendence tree or even a more elaborated Bayesian network, for randomvariable z and learn its distribution via an incremental procedure.A dependence tree model is of the following form:p(z) = p(zr)Yi6=r p(zijz�i); (6.7)where zr is the root node and �i indexes the parent of node i. Thistree should be distinguished from the search tree we mentioned earlierwhere a node represents a feature subset and the size of the tree growsduring search up to 2n. In a dependence tree each node correspondsto an indicator random variable concerning the inclusion or exclusionof a particular feature, and the size of the tree is �xed. Any particularcomposition of feature subset we may select is a sample from the distri-bution determined by this tree. Given a collection of previously testedfeature subsets, we can use the Chow-Liu algorithm (Chow and Liu,1968) to �nd the optimal tree model that �ts the data (in the sense ofmaximizing the likelihood of the tested instances)8. Then given the treemodel, we can apply a depth �rst tree-traversal9 that allows candidatefeature subsets to be sampled from a concentrated subspace that is morelikely to contain good solutions than mere random search. Figure 6.3gives the pseudo-code of dependence-tree search. A detailed example ofthis algorithm can be found in (Baluja and Davies, 1997).Initialization{ Generate N random bit-strings as candidate feature subsetsIterate{ Evaluate each of the N candidate feature subsets by training the classi�eron each feature subset and cross-validating{ Collect the �N top performing feature subsets (bit-strings), use them toupdate (with decay factor �) all pairwise mutual information between eachpair of bits in the bit-strings{ Generate a maximum spanning tree for the bit-strings using Kruskal's al-gorithm{ Generate N bit-strings based on joint probability encoded by the depen-dence tree (using depth �rst traversal)if performance converges, end iterationFigure 6.3. The dependence-tree search algorithm8We skip the details of the Chow-Liu algorithm due to the space limit. Essentially, it con-structs a maximum spanning tree from a complete graph of the feature nodes whose edgesare weighted by the mutual information of the random variables connected by the edge.9A strategy of touching every node in a tree by always visit the child-node of the currentnode before going back to its parent-node and visit a sibling-node.



122.3 The ORDERED-FS AlgorithmFor microarray data which have thousands of features, �lter methodshave the key advantage of signi�cantly smaller computational complexitythan wrapper methods. Therefore, these methods have been widelyapplied in the analysis of microarray data (Golub et al., 1999; Chowet al., 2002; Dudoit et al., 2000). But since a wrapper method searchesfor feature combinations that minimize classi�cation error of a speci�cclassi�er, it can perform better than �lter algorithms although at thecost of orders of magnitude of more computation time.An additional problem with wrapper methods is that the repeated useof cross-validation on a single dataset can potentially cause severe over-�tting for problems with a few samples but very large hypothesis spaces,which is not uncommon for microarray data. While theoretical resultsshow that exponentially many data points are needed to provide guaran-tees of choosing good feature subsets under the classic wrapper setting (Ng, 1998), Ng has recently described a generic feature selection method-ology, referred to as ORDERED-FS, which leads to more optimisticconclusions (Ng, 1998). In this approach, cross-validation is used onlyto compare between feature subsets of di�erent cardinality. Ng provesthat this approach yields a generalization error that is upper-boundedby the logarithm of the number of irrelevant features.Filter(D = fXN�M ; Cg)- Quantize each feature via mixture modeling (MM)- Rank all features via information gain (IG) �lter- Pick l features with highest IG, determine a removal order via MarkovBlanket (MB) �lterReturn an order � of the l featuresWrapper(D;H;�)For k = 1 : l- Train hypothesis hk 2 H using the best k features- Leave-One-Out CV on hk, compute �kEndk� = argmink �kReturn hk� (optimal hypothesis), k� (optimal cardinality)Figure 6.4. The ORDERED-FS algorithmFigure 6.4 presents an algorithmic instantiation of the ORDERED-FS approach in which �ltering methods are used to choose best subsetsfor a given cardinality. We can use simple �lter methods described earlierto carry out the major pruning of the hypothesis space, and use cross-validation for �nal comparisons to determine the optimal cardinality.This is in essence a hybrid of a �lter and a wrapper method.



Feature Selection 13In Figure 6.5, we show training set and test set errors observed forthe leukemia data when applying the ORDERED-FS algorithm10. Threedi�erent classi�ers: a Gaussian quadratic classi�er, a logistic linear clas-si�er and a nearest neighbor classi�er, are used (Xing et al., 2001). Forall classi�ers, after an initial coevolving trend of the training and testingcurves for low-dimensional feature spaces, the classi�ers quickly over�tthe training data. For the logistic classi�er and kNN, the test errortops out at approximately 20 percent when the entire feature set of 7130genes is used. The Gaussian classi�er over�ts less severely in the fullfeature space. For all three classi�ers, the best performance is achievedonly in a signi�cantly lower dimensional feature space.
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(a) (b) (c)Figure 6.5. Classi�cation in a sequence of di�erent feature spaces with increasingdimensionality due to inclusion of gradually less quali�ed features. (a) Classi�cationusing kNN classi�er; (b) A quadratic Bayesian classi�er given by a Gaussian genera-tive model; (c) A linear classi�er obtained from logistic regression. All three classi�ersuse the same 2-100 genes selected by the three stages of feature �ltering.Figure 6.5 shows that by an optimal choice of the number of featuresit is possible to achieve error rates of 2.9%, 0% and 0% for the Gaussianclassi�er, the logistic regression classi�er and kNN, respectively. (Notethat due to inductive bias, di�erent types of classi�ers admit di�erentoptimal feature subsets.) Of course, in actual diagnostic practice wedo not have the test set available, so these numbers are optimistic. Tochoose the number of features in an automatic way, we make use ofleave-one-out cross-validation on the training data.The results of leave-one-out cross-validation are shown in Figure 6.6.Note that we have several minima for each of the cross-validation curves.Breaking ties by choosing the minima having the smallest cardinality,and running the resulting classi�er on the test set, we obtain error ratesof 8.8%, 0% and 5.9% for the Gaussian classi�er, the logistic regressionclassi�er and kNN, respectively. The size of the optimal feature subsetsdetermined hereby for the three classi�ers are 6, 8 and 32, respectively.10The 72 leukemia samples are split into two sets, with 38 (typeI/typeII=27/11) serving asa training set and the remaining 34 (20/14) as a test set.
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(a) (b) (c)Figure 6.6. Plots of leave-one-out cross-validation error for the three classi�ers.3. Feature WeightingEssentially, feature selection methods search in the combinatorial spaceof feature subsets, and pick an optimal subset of 'relevant' features asinput to a learning algorithm. In contrast, feature weighting appliesa weighting function to features, in e�ect assigning them a degree ofperceived relevance and thereby performing feature selection implicitlyduring learning. In the following, we describe both a classic featureweighting scheme calledWINNOW and a more general-purpose Bayesianlearning technique that integrates feature weighting into the learning.For concreteness we consider the generalized linear model (GLIM) forclassi�cation, where the input x 2 X (i.e. the measure on the microar-ray) enters into the model via a linear combination � = �Tx and thepredictor, for example, the conditional distribution p(yjx) of the cor-responding label y 2 f0; 1g is characterized by an exponential familydistribution with conditional mean f(�), where f is known as a responsefunction. Many popular classi�ers belong to this family, for example,the logistic regression classi�er:P (y = 1jx; �) = 11 + e��T x : (6.8)3.1 The WINNOW AlgorithmThe WINNOW algorithm is originally designed for learning Booleanmonomials, or more generally, also k-DNF11 formulas and r-of-k thresh-old functions12, from noiseless data (Littlestone, 1988). Under thesesettings it enjoys worst-case loss logarithmic in the number of irrelevant11A boolean formula is in k-disjunctive normal form (k-DNF) if it is expressed as a ORof clauses, each of which is the AND of k literals12For a chosen set of k(k <= n) variables and a given number r(1 <= r <= k), an r-of-kthreshold function is true if and only if at least r of the k relevant variables are true. Thelearning problem arises when both r and k are unknown.



Feature Selection 15features (i.e. the error rate is a function of the logarithm of the numberof irrelevant features) . For more realistic learning tasks encounteredin microarray analysis, such as building a classi�er from training setf(x1; y1); : : : ; (xk; yk)g, we can use the following multiplicative updaterule for the weight of feature j: if the classi�er misclassi�es an inputtraining vector xi with true label yi, then we update each component jof the weight vector w as:wj  wj exp(�xijyi); (6.9)where � is a learning rate parameter, and the initial weight vector is setto wj = wj;0 > 0. Where does w appear in the classi�er? Back to theGLIM model, this simply means a slight change of the linear term � inthe response function: � = �T (w ? x), where w ? x means element-wiseproduct of vectors w and x.There are a number of variants of the WINNOW algorithm, suchas normalized WINNOW, balanced WINNOW and large margin WIN-NOW. See (Zhang, 2000) and reference therein for more details.3.2 Bayesian Feature SelectionBayesian methods for feature selection have a natural appeal, becausethey model uncertainties present in the feature selection problems, andallow prior knowledge to be incorporated. In Bayesian feature selection,each feature is associated with a selection probability, and the feature se-lection process translates into estimating the posterior distribution overthe feature-indicator variables. Irrelevant features quickly receive low al-beit non-zero probability of being selected (Jebara and Jaakkola, 2000).This type of feature selection (which is carried out jointly with induc-tive learning) is most bene�cial when the number of training examplesis relatively small compared to their dimensionality.Again consider the classi�cation of cancerous and non-cancerous sam-ples measured on microarrays spanning n genes. Following the represen-tation introduced in Section 2.2, we can index each of the possible 2nsubsets of features by a random variable z, then the linear combinationterm � in the response function f(�) essentially becomes � =Pni=1 �izixi(which obviates the e�ect of zi as relevance indicator). Since the appro-priate value of z is unknown, we can model the uncertainty underlyingfeature selection by a mixing prior:P (�; z) = P�(�) nYi=1Pz(zi); (6.10)



16where P� is a (conjugate) prior for the model parameters �, andPz(zi) = pzii (1� pi)1�zi ; (6.11)where pi controls the overall prior probability of including feature i.For a training set D = fX;Y g, the marginal posterior distributionP (zjD) contains the information for feature selection, and the Bayesianoptimal classi�er is obtained by calculating:P (y = 1jx;D) =Xz Z� p(y = 1jx; �)P (�; zjD)d�: (6.12)For high dimensional problems and complex models we may encounterin microarray analysis, exact probabilistic computation of the posteriordistribution P (z; �jX;Y ) as well as evaluation of the decision rule is in-tractable. Therefore we need to use approximation techniques. Georgeand McCulloch presented a detailed study of Markov Chain Monte Carlomethods such as Gibbs sampler or Metropolis-Hasting algorithm to ex-plore the posterior distribution(George and McCulloch, 1997). Jebaraand Jaakkola, on the other hand, took a Maximum Entropy Discrim-ination approach, and derived a closed-form solution of the posteriordistribution P (z; �jX;Y ) for some model families such as logistic regres-sion and support vector machines (Jebara and Jaakkola, 2000).Recently, Ng and Jordan presented a Voting Gibbs classi�er thatsolves the Bayesian feature selection problem in a surprisingly simpleway (Ng and Jordan, 2001). Rather than taking Eq.6.11, they use aprior P (�) assuming that the subset of relevant features is picked ran-domly according to the following procedure: �rst, sample the numberr of relevant features uniformly from f0; 1; : : : ; ng; then a bit-string zin which r features are relevant is chosen randomly from one of the �nr�possible con�gurations. The prior P (�) is constrained such that onlythe feature corresponding to an 'on' bit in z has a non-zero prior. Thuswe have a parameter prior conditioned on z, P�(�jz). Then we proceedto the usual Gibbs Voting classi�er procedure where we sample N repli-cates of parameters � from the posterior distribution p(�jD), followed byN samples of y each from a particular p(y = 1jx; �). Finally, we vote forthe result. A notable merit of this algorithm is its high tolerance to thepresence of large number of irrelevant features. Ng and Jordan provedthat their algorithm has sample complexity that is logarithmic in thenumber of irrelevant features.4. Feature Selection for ClusteringClustering is another important type of analysis for microarray data.In contrast to classi�cation, in this paradigm (known as unsupervised



Feature Selection 17learning) a labeled training set is unavailable, and users are supposedto discover \meaningful" patterns (i.e. the existence of homogeneousgroups that may correspond to particular macroscopic phenotypes suchas clinical syndromes or cancer types) based on intrinsic properties ofthe data. Since microarrays usually measure thousands of genes for eachsample, clustering a few hundred samples in such a high dimensionalspace may fail to yield a statistically signi�cant pattern.Eigenvector-based dimensionality reduction techniques such as Mul-tidimensional Scaling (MDS) (Cox and Cox, 1994) and Principal Com-ponent Analysis (PCA) (Jolli�e, 1989) handle this problem by trying tomap the data onto a lower-dimensional space spanned by a small num-ber of \virtual" features (e.g. the principal eigenvectors of the samplecovariance matrix in case of PCA). However, microarray measurement isusually a highly noisy data source. Results from matrix stability theorysuggest that even small perturbation may cause the eigenvector meth-ods to pick a di�erent set of eigenvectors (Ng et al., 2001). Moreover, inmethods like PCA, the principal eigenvectors represent those directionsin the original feature space along which data has the greatest variance,the presence of a few highly variable but not informative \noisy" genestends to mislead the algorithm to a wrong set of discriminative eigen-features. Finally, identi�ability remains an outstanding issue. In manysituations we would like to explicitly recover genes that signi�cantly con-tribute to the sample partition of interest. Eigenvector methods do noto�er a convenient way to do so. (Each eigenvector from PCA is a lin-ear combination of all the original features, eigenvectors from the Grammatrix in MDS even lack an explicit connection to the original features.)Feature selection under the clustering paradigm is substantially morediÆcult than that for classi�cation. The main diÆculty lies in the ab-sence of reference information for evaluating the relevance of features.Before concluding this chapter, we briey introduce some of the recentattempts on this problem.Category utility. In the absence of class labels, one possiblemeasure combining feature quality with the clustering performance isthe average accuracy of predicting the value of each of the features in thedata. The category utility metric is such a measure (Fisher, 1987). Fora partition produced during clustering, the category utility is calculatedas:U = 1K h KXk=1P (Ck) IXi=1 J(i)Xj=1P (Fi = xijjCk)2 � IXi=1 J(i)Xj=1P (Fi = xij)2i;(6.13)



18where P (Fi = xij jCk) is the probability of feature Fi taking value xijconditional on class membership Ck, and P (Fi = xij) is the marginalprobability of feature Fi taking value xij in the dataset. Replacing theinnermost summations with integration, category utility can be readilycomputed in the continuous domain for some distribution models (i.e.the mixture of two Gaussians we assumed in Section2.1).Devaney and Ram proposed a wrapper-like feature selection strat-egy using category utility as an evaluation function (Devaney and Ram,1997). Essentially, any clustering algorithm can be used to evaluate thecandidate feature subsets produced by a search heuristic based on thismetric. The search terminates when category utility stops improving.Entropy-based Feature Ranking. Dash and Liu made an inter-esting empirical assumption on the relationship between the entropy anddata distribution: two points belonging to the same cluster or in two dif-ferent clusters will contribute less to the total entropy than if they wereuniformly separated. They further reasoned that the former situation ismore likely to happen if the similarity between the two points is eithervery high or low (rather than intermediate) (Dash and Liu, 2000). Thengiven distance measure (e.g. Euclidean distance or Pearson correlation)Di;j between point i and j, we can compute the entropy of a dataset as:E = �Xi6=jXj �Si;j logSi;j + (1� Si;j) log(1� Si;j)�; (6.14)where Si;j = exp(��Di;j).Based on this measure, one can rank features sequentially by discard-ing, one at a time, the feature whose removal results in minimumE. Theoptimal cardinality of the feature subset can be determined by an inde-pendent clustering algorithm (similar to the ORDERED-FS approach).However, the entropy assumption underlying this measure is only plau-sible when clusters are well separated and symmetric in shape. Underless ideal conditions, the performance is likely to break down.The CLICK Algorithm. Xing and Karp proposed a strategyfor feature selection in clustering that goes beyond the purely unsuper-vised feature evaluation techniques such as the entropy-based rankingor mixture-overlapping probability ranking (Xing and Karp, 2001). Intheir CLICK algorithm, they bootstrap an iterative feature selectionand clustering process by using the most discriminative subset of fea-tures identi�ed by the unsupervised mixture modeling to generate aninitial partition of the samples. This partition is then used as an ap-proximate reference for supervised feature selection based on informa-
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