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On semide�nite relaxation for normalized k-cutand connections to spectral clusteringEric P. XingComputer Science DivisionUniversity of California, BerkeleyBerkeley, CA 94720epxing@cs.berkeley.eduMichael I. JordanComputer Science and StatisticsUniversity of California, BerkeleyBerkeley, CA 94720jordan@cs.berkeley.eduJune 2003AbstractThe normalized cut (NC) provides a plausible cost function for clustering. Finding an optimal NCis NP-hard, and the well-known spectral graph partition methods rely on a loose spectral relaxation.In this paper, we study a semide�nite programming (SDP) model for the normalized k-cut (k-NC),a generalization of the conventional NC on bisection to k-section that naturally relates to multi-wayclustering. Our SDP relaxation to k-NC provides a tighter lower bound on the cut weight, as well asa better feasible cut, than that of the spectral relaxation. In applications to clustering, however, theimproved solution to k-NC does not translate into improvements in clustering|the results for the SDPapproach and spectral relaxations are very similar. We conclude that the normalized cut criterion isuseful in terms of leading via various relaxations to reasonable clustering methods, but normalized cutalone does not characterize optimal clusterings.1 IntroductionClustering and segmentation problems are intrinsically hard to formulate. Classical algorithms such as K-means or EM optimize simple objectives, such as (minimizing) the spread over centroids or (maximizing)the log likelihood under a mixture model. While these criteria are seductively simple to de�ne, and bearintuitive interpretations, they can give poor solutions due to their simplifying assumptions about the clusterstructure; e.g., that each cluster constitutes a \densely populated" convex sub-manifold, or that the densityof each cluster is Gaussian, etc., assumptions which are often not warranted in real data (see [10] for a galleryof problems that do not satisfy these assumptions). Furthermore, these cost functions are in general notconvex.Spectral clustering (SC) algorithms [7, 10] provide an alternative approach to clustering which havehad signi�cant practical successes [12, 17]. SC generally makes use of the top eigenvectors of an aÆnitymatrix to transform the original clustering problem into one in a lower-dimensional eigenspace. While thisprocedure can be interpreted as an optimization procedure, it is generally not the case that the cost functionbears a direct relationship to the clustering problem. Thus comparisons between SC and the centroid-basedalgorithms tend to be somewhat indirect. 1



There is an analogy between spectral clustering and the normalized cut (NC) problem [2, 12], a graph-theoretic problem of bisection. This problem is speci�ed in terms of a ratio between intra-cluster andinter-cluster similarities of vertices, and this would seem to have a natural relationship to data clustering.Is NC the right criterion function for clustering?In this paper, we build upon recent work of Gu et. al. [5], who pointed out a connection between SCand the normalized k-cut (k-NC) of a graph, a generalization of conventional NC on bisection to k-section.They formulate a graph-theoretic model for general k-way clustering based on optimizing the normalizedk-cut, which amounts to a constrained quadratic optimization problem for which an SC algorithm (e.g., asdescribed in [10]) can be thought of as a spectral relaxation. Although it is generally believed that spectralrelaxations work well in practice, Guattery and Miller [6] present graphs for which spectral partitioningyields poor separators. Motivated by recent success of semide�nite programming (SDP) as a powerful toolfor approximating diÆcult graph optimization problems such as Max-Cut and graph partitioning [4, 3, 8],we have developed an SDP relaxation for normalized k-cut, which yields a tighter relaxation of k-NC thanthat of a spectral relaxation. With this improved tool in hand, we can then ask whether improvement innormalized cuts yield improvements in clustering.2 Preliminaries: graph partitionLet G(V;E;A) be a weighted undirected graph with nodes V = f1; : : : ; ng, edges E and nonnegative weightsaij , for (i; j) 2 E (aij = 0 if there is no edge between node i and j; also aii = 0;8i). We refer to thesymmetric matrix A = faijg as the aÆnity matrix. We equip the space of n � n matrices with the traceinner product A�B = tr AB; let A � 0 denote positive semide�niteness (A � B denotes A�B � 0); and letA � 0 denote elementwise non-negativity of A. The linear operator Diag(a) forms a diagonal matrix fromthe vector a, and its adjoint operator diag(A) yields a vector containing the diagonal elements of A. Wedenote by ek the vector containing k ones.A classical graph partition (GP) problem involves partitioning the nodes into k disjoint subsets (S1; : : : ; Sk)of speci�ed sizesm1 � m2 � : : : � mk; Pkj=1mj = n, so as to minimize the total weight of the edges connectingnodes in distinct subsets of the partition. This problem is well known to be NP hard.A k-way node partition can be represented by an indicator matrix X 2 Rn�k with the columns, xj =(x1j x2j : : : xnj)t, being the indicator vector for the set Sj ; 8j:xij = � 1 : if i 2 Sj0 : if i =2 Sj : (1)For each partition X , the total weight of the edges connecting nodes within cluster Si to its complement�Si is, w(Si; �Si) = 12xti(D � A)xi, where D = Diag(Aen) is the weighted degree matrix. The total cut of ak-way partition is therefore Ck =Pi 12xti(D �A)xi = 12 trXtLX , where L , D �A is the Laplacian matrixassociated with G. Thus classical GP amounts to minimizing Ck subject to constraint (1).3 Clustering and graph partition: the normalized cut problemA pairwise metric-based clustering problem can be formulated as a graph partition problem. Let V (G) mapto an n-item dataset, with A = (aij) the aÆnity matrix, i.e., aij , i 6= j, i; j = 1; : : : ; n, encode a nonnegative\similarity measure" for points i and j. A legitimate objective of data clustering is to partition the datasuch that the sum of pairwise aÆnities of points from di�erent clusters is minimized. But to prevent trivialsolutions, we \normalize" the cut of each cluster with the total weighted degree of nodes in this cluster, suchthat the weight of a normalized k-cut can be de�ned as:NCk = Xi w(Si; �Si)w(Si; V ) = 12Xi xti(D � A)xixtiDxi= 12tr Diag((xt1Dx1)�1; : : : ; (xtkDxk)�1)(Xt(D �A)X)= 12tr [(XtDX)�1(XtLX)]: (2)2



Note that from the 2nd to the 3rd line of the above equations, we use the fact that XtDX is a diagonalmatrix whose inversion is just the elementwise inversion.According to Eq. 1, k-way clusterings are in one-to-one correspondence with the setFk = fX : Xek = en; Xten � c; xij = f0; 1gg;where c is the minimum size of each cluster. Thus, a clustering problem based on k-NC can be modeled asthe following optimization problemNC�k = 12 minX2Fk tr(XtDX)�1(XtLX): (NC)NC is NP-hard even for k = 2 [12]. The diÆculty lies in the nonlinear structure of the objective, and thecombinatorial nature of the feasible set.Generalizing the probabilistic analysis by Melia and Shi on 2-NC [9], we can interpret the weight of thek-NC as NCk =Xi P (Si ! �SijSi); (3)which corresponds to the total conditional probabilities of escaping from each of the clusters via a singlerandom walk started within the respective clusters. Thus k-NC directly relates to the concept of lowconductivity sets and mixing time of Markov random walk, suggesting that the k-NC criteria is well foundedfor clustering.3.1 k-NC as a quadratic optimization problemDe�ning S = Diag(s1; : : : ; sk) = (XtDX)1=2, Y = D1=2XS�1, W = D�1=2AD�1=2, the following optimiza-tion problem is equivalent to k-NC, with a somewhat simpler objective function.(P) 8>>>>>><>>>>>>: max 12 trY tWYs.t. Y tY = Ik (a)(D�1=2yj)i 2 f0; s�1j g;8i; j (b)Y Sek = diag(D1=2) (c)SY tdiag(D1=2) � c (d)S = Diag(s1; : : : ; sk) 2 Rn+ (e)Constraint (a) is due to our de�nition of Y ; (b) is to ensure that D�1=2yj is a column vector whoseelements can take only two discrete values (zero or a positive constant originating from the binary assignmentof X); (c) corresponds to the membership exclusivity condition for X in Fk; (d) corresponds to the minimumsize condition of each cluster in Fk; and (e) comes from the de�nition of the normalization matrix. Notethat this is not a convex optimization problem because W may not be positive semide�nite.3.2 Spectral clustering and k-way normalized cutOne form of the k-way spectral clustering algorithm, described in [10], uses the truncated eigenvector basisof W (top k eigenvectors) to re-represent the original data (known as embedding) for subsequent clusteringusing standard methods such as K-means. Although one may simply view the embedding step as the bestrank k approximation of W in terms of squared error, perhaps a better way to justify the use of the Wmatrix is via its connection to the k-NC.Consider the following weak relaxation of (P), which drops all but the �rst constraint,(P0) ( max 12 trY tWYs.t. Y tY = Ik :3



Clearly, the optimal solution of (P0) is attained at Y = Uk, whose columns ui; i = 1; : : : ; k are eigen-vectors corresponding to the (ordered) top k largest eigenvalues of W , and NC�k (P0) := k �Pi=1 �k(W ).This is exactly what is achieved by the embedding procedure in [10]. Thus this form of SC can be regardedas solving a spectral relaxation of (P). The subsequent unit-ball projection of the embedded points and theK-means procedure can be regarded as recovering the feasible solution of the k-NC problem, but with asomewhat indirect cost function|the distortion measure of the points in the k-eigenfeature space.4 Semide�nite relaxations for NCAlthough the eigenvalue relaxation (P0) yields a globally optimum approximation to k-NC, it correspondsto a rather loose relaxation. In this section we seek a tighter relaxation using semide�nite programming(SDP).4.1 Semide�nite programmingSemi-de�nite programming (SDP) refers to the problem of optimizing a convex function over the convexcone of symmetric and positive semide�nite matrices, subject to linear equality constraints [14]. A canonical(primal) SDP has the form:(SDP) 8<: min C �Xs.t. Ai �X = bi for i = 1; : : : ;mX � 0Because of the convexity of the objective function and the feasible space, SDP problems have a singleglobal optimum. With the development of eÆcient, general purpose solvers based on interior-point methods(e.g., Sedumi [13]), SDP has become a powerful tool in solving diÆcult combinatorial optimization problems.4.2 SDP relaxationWe now derive the semide�nite model for the normalized k-cut problem, following a strategy similar to thatdescribed in [8]. The basic idea is to linearize tr Y tWY by tr WZ, where Z corresponds to Y Y t. Let usde�ne the set Tk:Tk := fZ : 9X 2 Fk such that Z = Y Y t;where Y = D1=2X(XTDX)�1=2g:Thus P reads NC�k = maxf12tr WZ : Z 2 conv(Tk)g:Note that due to linearization of the objective, our feasible set can be rewritten as the convex hull ofthe original set Tk. One of the diÆculties of this optimization problem is approximating the convex hull ofTk by outer approximations that can be handled eÆciently. To derive these relaxations, we introduce thefollowing sets, all of which contain Tk.First, note that since Y tY = Ik, we can optimize overOk := convfY Y t : Y tY = Ikg:The following lemma provides an equivalent description of this set in terms of Z.Lemma 1 (Overton and Womersley [11])Ok = fZ : Z = Zt; tr Z = k; I � Z � 0g:This orthonormal outer approximation is not directly useful for the general classical GP problem asdescribed in x2, because for a general GP, the indicator matrix X is not orthonormal due to the sizeconstraint, i.e, XtX = Diag(m1; : : : ;mk) � M . But for a special case of GP, the equi-partition, whereM = mI , Ok can be used directly as a constraint set for, say, 1m1=2X , which is widely used for SDPrelaxation of graph equi-partition [8].The following lemma leads to a second outer approximation.4



Lemma 2 Z = Y Y t satis�es transportation constraints: Z diag(D1=2) = diag(D1=2).Proof. According to the de�nition of Y ,Y Y tdiag(D1=2) = �XD1=2X(XtDX)�1=2(XtDX)�1=2XtD1=2D1=2en= D1=2X(XtDX)�1Xtdiag(D)= D1=2X(XtDX)�1[xt1Dx1; : : : ; xtkDxk]t= D1=2X(XtDX)�1(XtDX)ek= D1=2Xek= D1=2en = diag(D1=2)Note that from the 2nd to the 3rd line, and from the 3rd to the 4th line, the equalities can be vari�edusing the properties of X as a cluster indicator matrix (i.e. Eq. (1)).Thus, we have the following linear submanifold of matrices that contains Tk,E := fZ : Z diag(D1=2) = diag(D1=2)g:This linear constraint is unique to k-NC, implicitly capturing the fact that Y is a \normalized" indicatormatrix even though we do not explicitly know the value of the normalization factor (i.e., (XtDX)�1). Asimple counterpart in the equipartition case is Xen = men [8], but for general GP, no obvious analogy canbe drawn.Finally, since X � 0, D > 0, it is obvious that Tk is contained in the nonnegative orthantN := fZ : Z � 0g:From Lemma 1, the eigenvalue bound attained by SC in (P0) can be reformulated as a SDP relaxationof the k-NC problem as follows.Theorem 3 Eigenvalue bound of k-NC is an SDP relaxationNCk(P0) = k �maxf12tr WZ : Z 2 Okg= minf12tr �LZ : Z 2 Ok; �L = Ik �Wg (4)This formulation appears very similar to an SDP rendition of the Donath-Ho�man bound for graphequipartition [8]. But note that for k-NC, what enters the cost function is the \rescaled" Laplacian �L, ratherthan the original graph Laplacian.Imposing the additional conditions Z 2 E and Z 2 N still leads to a tractable relaxation, but will give astronger bound. Thus we arrive at the following strengthened SDP relaxation of the k-NC problem.Theorem 4 For a clustering problem de�ned by (G;A), we have NCk(P0) � NCk(P1) � NC�k , whereNCk(P1) is de�ned as (P1) 8>>>>>><>>>>>>: min 12 tr �LZs.t. Z diag(D1=2) = diag(D1=2) (1)Z � 0 elementwise (2)tr Z = k (3)Z � 0; Z = Zt (4)I � Z � 0 (5)Comparing to the SDP relaxations of the classical GP or Max-Cut problem [4, 8], constraints (1), (3) and(5) are speci�c to k-NC. (P1) can be straightforwardly cast into the canonical SDP format of a standardSDP solver such as Sedumi. 5



5 Finding a Closest Feasible SolutionDue to the relaxation, the optimal solution of problems (P0) or (P1) are in general not feasible for (P).Thus we need to recover from the approximate solution a closest feasible solution, X , to the original k-NCproblem. This process is often referred to as rounding. We use the following rounding scheme in this paper.� From Z = Y 0Y 0t, obtain Y 0 via SVD (Y 0 is usually full rank rather than rank k).� Based on condition (b) in (P), rescale Y 0: Y 00 = D�1=2Y 0.� Treat each row in Y 00 as a point in Rn ; clustering them with restarts using any standard algorithm (e.g.,K-means); pick the X with the lowest NCk value.This rounding scheme, which we refer to as \rank-n KM rounding" (and \rank-k rounding" if only keigenvectors of Z are used), is related to the randomized projection heuristic studied by [4] in their work onMax-Cut. In this approach, the label (-1 or +1) of each vector is chosen according to whether the vector isabove or below a randomly chosen hyperplane passing through the origin. In [3] this scheme is generalizedto max k-cut.A majority of the spectral clustering methods adopt a K-means clustering procedure on row-rescaled, topk eigenvectors in Y derived from (P0). In particular, the rescaling projects all row-associated points onto ak-dimensional unit ball, therefore the K-means actually �nds clustering with minimal intra-cluster angularspread. This rounding scheme distinguishes SC from the k-NC problem because a di�erent cost function(i.e., not NCk) is used to determine the optimal rounding. As a result, despite the similarity of SC and NC,they may be aiming at capturing di�erent objectives.Recently, [1] showed that the distortion measure of a weighted K-means applied on the relaxed solutionmatrix Y 0 corresponds to a di�erence measure between the subspaces spanned by the relaxed solution Y 0 anda feasible solution Y = [D1=2x1xt1Dx1 ; : : : ; D1=2xkxtkDxk ], where X = [x1; : : : ; xk ] is a feasible indicator matrix obtainedvia K-means from Y 0 1: � = 12kY 0Y 0t � Y Y tk2F= min[�1;:::;�k]Xj Xi dikd1=2i y0i � �jk2;where di denotes the ith diagonal element of D. This cost function for K-means is similar to the one weuse, except that each \point-to-centroid" distance is now weighted by the \degree" of the point, di. Notethat although the foregoing � de�nes a good measure of rounding error, it is not necessarily coincide withminimal deviation from optimal normalized cut, but nevertheless provide a good heuristic of moving closeto it.6 Experimental resultsIn this section, we study normalized k-cut de�ned on high-dimensional real datasets of various natures,whose cluster structures are not directly visible and likely to be ambiguous. Human labels are availablefor all dataset, and we use them as a gold standard for clustering. We collected six real datasets, twofrom the Whitehead Institute microarray database of cancer samples (the \Lung Carcinomas" set and the\multi-cancer dataset"), two from the Reuters-21578 collection (subsampled from the four smallest, andfour largest categories, respectively, with feature vectors based on word counts), a protein dataset fromhttp://www.nersc.gov/�cding/protein/, and the soybean dataset from the UCI repository. The �rst fourdatasets are very high-dimensional (>5000), and we use a simple unsupervised �ltering procedure describedin [15] to reduce the total features to 1000.1Because Y 0 is de�ned up to a rotation matrix, a common di�erence measure is thus to compare the orthogonal projectionoperators on the subspaces, i.e., the Frobenius norm between Y 0Y 0t and YfY tf .
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6.1 Optimizing normalized k-cutWe generate k-NC problems by constructing the aÆnity matrixA using a Gaussian kernel, aij = expf�d2ij=�g,where dij is Euclidean distance. We let � = r � c, where c = 1nPiminj dij is the mean nearest-neighbordistance, and r is an integer called the aÆnity window. It is easier empirically to choose r (than �), as itroughly translates to a \sensitivity range" of neighboring points 2.Table 1 summarizes the results of k-NC on the six datasets using SDP and spectral relaxations. Weshow the lower bounds of NC�k computed from both relaxations, as well as the NCk attained by the feasiblesolutions yielded by the SDP and the spectral methods, with several di�erent rounding schemes. Due tothe NP-hardness of the problems, we can not compute the NC�k of graphs for evaluation, but the ratio f=bbetween the feasible cut and the lower bound straddles the optimal value. Consistent with Theorem 4, theSDP bound is tighter than the spectral bound, and except for random-projection rounding, SDP almostalways leads to better (tie for soybean) feasible NCk values than that of the spectral methods. For SDPrelaxation, the K-means-based roundings are far better than the random-projection rounding, and it seemsthat rounding using the rank-n relaxed solution is slightly better than that of rank-k.For spectral relaxation, even when we round to the best feasible NCk after K-means, the result is notmuch better than the one attained by a standard SC methods, suggesting that the SC algorithm is in factvery close to solving a k-NC with spectral relaxation.Table 1: Performance on k-NC. (KM: K-means; rp: random projection; SC: spectral clustering)SDP relaxation Spectral relaxationrank-n rprounding rank-n KMrounding rank-k KMrounding rank-k KMrounding SCdataset size k r lower-b feas. X f/b feas. X f/b feas. X f/b lower-b feas. X f/b feas. X f/bcancer1 120 4 1 1.923 2.070 1.077 1.960 1.019 1.961 1.020 1.826 2.024 1.108 2.032 1.113cancer2 122 12 2 6.955 9.887 1.422 7.820 1.124 7.905 1.137 6.279 8.316 1.324 8.456 1.347reuters1 111 4 2 2.667 2.725 1.022 2.681 1.005 2.683 1.006 2.597 2.705 1.042 2.705 1.042reuters2 120 4 1 1.850 1.908 1.031 1.860 1.005 1.860 1.005 1.793 1.900 1.060 1.900 1.060protein 116 6 2 4.408 4.625 1.049 4.466 1.013 4.491 1.019 4.240 4.499 1.061 4.519 1.066soybean 47 4 10 0.112 0.141 1.259 0.121 1.080 0.121 1.080 0.100 0.121 1.210 0.121 1.2106.2 Clustering based on normalized k-cutNow we examine whether the feasible solutions to normalized k-cut found by relaxed optimization agree wellwith the cluster labels of the datapoints, and whether a better value of NCk suggests better agreement.Table 2 summarizes the consistency measures (as de�ned in [16]) between the feasible X and the samplelabels for the six datasets. We also give the K-means results for reference. Comparing the rank-n KMrounding for SDP and the SC column, we see that the results are quite similar, with SDP slightly better insome cases, with SC slightly better in others, and with parity in several cases. Overall, we do not �nd thata better value of NCk translates into a higher consistency with the label.Table 2: Performance for data clustering.SDP relaxation Spectral relaxation K-meansdataset rank-n rprounding rank-n KMrounding rank-k KMrounding rank-k KMrounding SCcancer1 0.5213 0.7558 0.7465 0.7962 0.7959 0.7752cancer2 0.5159 0.7548 0.7305 0.7309 0.7112 0.6608reuters1 0.6785 0.6200 0.6346 0.6272 0.6272 0.6189reuters2 0.6799 0.7016 0.7016 0.6693 0.6693 0.6829protein 0.5440 0.6530 0.6404 0.6291 0.6459 0.6150soybean 0.5681 0.9014 0.9014 0.9014 0.9014 0.79102In the following experiment, we pick r based on multiple trials that �nds a range that gives stable feasible solutions.
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7 DiscussionWe have presented an SDP relaxation for the normalized k-cut problem. We show that the SDP relaxationgives a tighter lower bound in theory than that of spectral relaxation; moreover, this is borne out in practice.Modulo computational issues, the SDP relaxation may prove to be a useful approach to solving normalizedk-cut problems.We do not �nd a compelling relationship between improvement in normalized k-cut values, and improve-ment in clustering performance. This shows that although both the SDP approach and the SC approachcan be viewed as relaxations of normalized k-cut, their clustering performance is not explained entirely interms of their performance on the partitioning problem. Thus, while the normalized k-cut criterion is usefulin terms of formulating clustering problems as optimization problems, there may be other criteria that moredirectly capture the underlying clustering criterion of spectral clustering and explain its success.A promising application of the SDP formulation of the normalized k-cut problem is that it provides aprinciple framework for incorporating side-information (e.g., small amount of (dis)similarity constraints asstudied in [16]) during optimization to achieve a transduction e�ect, which is not directly achievable in thespectral clustering paradigm 3. Currently, we are exploring this direction, and its combination with themetric learning approach.AcknowledgementsWe thank Francis Bach for help discussions on the mathematical interpretations of the K-means rounding.References[1] F. R. Bach and M. I. Jordan. Learning spectral clustering. TR CSD-03-1249, CS Division, UC Berkeley,2003.[2] F. Chung. Spectral Graph Theory. No. 92 in CBMS Regional Conference Series in Mathematics,American Mathematical Society, 1997.[3] A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT and MAX BISECTION.In Integer Programming and Combinatorial Optimization. Springer, 1995.[4] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut andsatis�abil ity problems using semide�nite programming. JACM, 42:1115{1145, 1995.[5] M. Gu, H. Zha, C. Ding, X. He, and H. Simon. Spectral relaxation models and structure analysis fork-way graph clustering and bi-clustering. TR CSE-01-007, Penn State University, 2001.[6] S. Guattery and G. L. Miller. On the quality of spectral separators. SIAM Journal on Matrix Analysisand Applications, 19(3):701{719, 1998.[7] R. Kannan, S. Vempala, and A. Vetta. On clusterings { good, bad and spectral. In Proc. of 41st annualSymposium on Foundations of Computer Science, 2001.[8] S. E. Karisch and F. Rendl. Semide�nite programming and graph equipartition. In Topics in Semidef-inite and Interior-Point Methods, volume 18, pages 77{95. AMS, 1998.[9] M. Maila and J. Shi. A random walks view of spectral segmentation. In AISTATS, 2001.[10] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS,2002.3Although one could resort to an \indirect" approach, i.e., using the side-information to learn a metric [16], select features,or �t the scaling constant [1] for the distance measure, and \prepossess" the data based on these results before conducting thespectral clustering. 8
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