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Abstract

The normalized cut (NC) provides a plausible cost function for clustering. Finding an optimal NC
is NP-hard, and the well-known spectral graph partition methods rely on a loose spectral relazation.
In this paper, we study a semidefinite programming (SDP) model for the normalized k-cut (k-NC),
a generalization of the conventional NC on bisection to k-section that naturally relates to multi-way
clustering. Our SDP relazation to k-NC provides a tighter lower bound on the cut weight, as well as
a better feasible cut, than that of the spectral relaxation. In applications to clustering, however, the
improved solution to k-NC does not translate into improvements in clustering—the results for the SDP
approach and spectral relaxations are very similar. We conclude that the normalized cut criterion is
useful in terms of leading via various relaxations to reasonable clustering methods, but normalized cut
alone does not characterize optimal clusterings.

1 Introduction

Clustering and segmentation problems are intrinsically hard to formulate. Classical algorithms such as K-
means or EM optimize simple objectives, such as (minimizing) the spread over centroids or (maximizing)
the log likelihood under a mixture model. While these criteria are seductively simple to define, and bear
intuitive interpretations, they can give poor solutions due to their simplifying assumptions about the cluster
structure; e.g., that each cluster constitutes a “densely populated” convex sub-manifold, or that the density
of each cluster is Gaussian, etc., assumptions which are often not warranted in real data (see [10] for a gallery
of problems that do not satisfy these assumptions). Furthermore, these cost functions are in general not
convex.

Spectral clustering (SC) algorithms [7, 10] provide an alternative approach to clustering which have
had significant practical successes [12, 17]. SC generally makes use of the top eigenvectors of an affinity
matrix to transform the original clustering problem into one in a lower-dimensional eigenspace. While this
procedure can be interpreted as an optimization procedure, it is generally not the case that the cost function
bears a direct relationship to the clustering problem. Thus comparisons between SC and the centroid-based
algorithms tend to be somewhat indirect.



There is an analogy between spectral clustering and the normalized cut (NC) problem [2, 12], a graph-
theoretic problem of bisection. This problem is specified in terms of a ratio between intra-cluster and
inter-cluster similarities of vertices, and this would seem to have a natural relationship to data clustering.
Is NC the right criterion function for clustering?

In this paper, we build upon recent work of Gu et. al. [5], who pointed out a connection between SC
and the normalized k-cut (k-NC) of a graph, a generalization of conventional NC on bisection to k-section.
They formulate a graph-theoretic model for general k-way clustering based on optimizing the normalized
k-cut, which amounts to a constrained quadratic optimization problem for which an SC algorithm (e.g., as
described in [10]) can be thought of as a spectral relaxation. Although it is generally believed that spectral
relaxations work well in practice, Guattery and Miller [6] present graphs for which spectral partitioning
yields poor separators. Motivated by recent success of semidefinite programming (SDP) as a powerful tool
for approximating difficult graph optimization problems such as Max-Cut and graph partitioning [4, 3, §],
we have developed an SDP relaxation for normalized k-cut, which yields a tighter relaxation of £-NC than
that of a spectral relaxation. With this improved tool in hand, we can then ask whether improvement in
normalized cuts yield improvements in clustering.

2 Preliminaries: graph partition

Let G(V, E, A) be a weighted undirected graph with nodes V = {1,...,n}, edges E and nonnegative weights
a;j, for (i,j) € E (a;; = 0 if there is no edge between node i and j; also a; = 0,Vi). We refer to the
symmetric matrix A = {a;;} as the affinity matriz. We equip the space of n x n matrices with the trace
inner product Ae B = tr AB; let A > (0 denote positive semidefiniteness (A = B denotes A— B = 0); and let
A > 0 denote elementwise non-negativity of A. The linear operator Diag(a) forms a diagonal matrix from
the vector a, and its adjoint operator diag(A) yields a vector containing the diagonal elements of A. We
denote by e the vector containing k ones.

A classical graph partition (GP) problem involves partitioning the nodes into k disjoint subsets (S, ..., Sk)
of specified sizes mi > mo > ... > my, Zle mj = m, S0 as to minimize the total weight of the edges connecting
nodes in distinct subsets of the partition. This problem is well known to be NP hard.

A k-way node partition can be represented by an indicator matriz X € R*** with the columns, xT; =
(1 @aj...Tn;)", being the indicator vector for the set S;, Vj:

- 1 ifiESj
”3“_{0; if ¢S S

For each partition X, the total weight of the edges connecting nodes within cluster .S; to its complement
S; is, w(S;, S;) = %azf(D — A)x;, where D = Diag(Ae,,) is the weighted degree matriz. The total cut of a
k-way partition is therefore Cj, = 3°, 221(D — A)z; = $trX'LX, where L £ D — A is the Laplacian matriz
associated with G. Thus classical GP amounts to minimizing Cj subject to constraint (1).

3 Clustering and graph partition: the normalized cut problem

A pairwise metric-based clustering problem can be formulated as a graph partition problem. Let V(G) map
to an n-item dataset, with A = (a;;) the affinity matriz, i.e., a;j, 1 # j, 4,5 = 1,...,n, encode a nonnegative
“similarity measure” for points i and j. A legitimate objective of data clustering is to partition the data
such that the sum of pairwise affinities of points from different clusters is minimized. But to prevent trivial
solutions, we “normalize” the cut of each cluster with the total weighted degree of nodes in this cluster, such
that the weight of a normalized k-cut can be defined as:

 w(5.8) 12D - A,
NG = Z w(S;, V) 52 z!Dx;

= %tr Diag((zi Dz:) ", ..., (zh Dxy) N (XY(D — A)X)

= %tr [(X'DX) Y X'LX)]. 2)



Note that from the 2nd to the 3rd line of the above equations, we use the fact that X!DX is a diagonal
matrix whose inversion is just the elementwise inversion.
According to Eq. 1, k-way clusterings are in one-to-one correspondence with the set

Fr={X:Xep =en, X'e,>c, z;j =1{0,1}},

where ¢ is the minimum size of each cluster. Thus, a clustering problem based on k-NC can be modeled as
the following optimization problem

* 1 . t —1 t
NC; = 3 Jnin tr(X'DX) " (X'LX). (NC)

NC is NP-hard even for k = 2 [12]. The difficulty lies in the nonlinear structure of the objective, and the
combinatorial nature of the feasible set.

Generalizing the probabilistic analysis by Melia and Shi on 2-NC [9], we can interpret the weight of the
k-NC as

which corresponds to the total conditional probabilities of escaping from each of the clusters via a single
random walk started within the respective clusters. Thus k-NC directly relates to the concept of low
conductivity sets and mixing time of Markov random walk, suggesting that the k-NC criteria is well founded
for clustering.

3.1 k-NC as a quadratic optimization problem

Defining S = Diag(sy,...,sz) = (X!DX)'/?, Y = D'/2XS~'", W = D~'/?AD~'/?  the following optimiza-
tion problem is equivalent to k-NC, with a somewhat simpler objective function.

max %trYtWY
s.t. Y'Y = I, (a)
(D2y;); €{0,5,'},Vi, 5 (b)

Y Sey, = diag(D'/?) (c)
SYtdiag(D'/?) > ¢ (d)

S = Diag(s1,...,s:) € R (e)

Constraint (a) is due to our definition of ¥; (b) is to ensure that D~1/2y; is a column vector whose
elements can take only two discrete values (zero or a positive constant originating from the binary assignment
of X); (c) corresponds to the membership exclusivity condition for X in Fy; (d) corresponds to the minimum
size condition of each cluster in Fj; and (e) comes from the definition of the normalization matrix. Note
that this is not a convex optimization problem because W may not be positive semidefinite.

3.2 Spectral clustering and k-way normalized cut

Oune form of the k-way spectral clustering algorithm, described in [10], uses the truncated eigenvector basis
of W (top k eigenvectors) to re-represent the original data (known as embedding) for subsequent clustering
using standard methods such as K-means. Although one may simply view the embedding step as the best
rank k approximation of W in terms of squared error, perhaps a better way to justify the use of the W
matrix is via its connection to the k-NC.

Consider the following weak relaxation of (P), which drops all but the first constraint,

max %trYtWY
(P0) ;
t Y'Y =1,



Clearly, the optimal solution of (P0) is attained at Y = Uy, whose columns u;, i = 1,...,k are eigen-
vectors corresponding to the (ordered) top k largest eigenvalues of W, and NCj (P0) ==k — >, Ae(W).
This is exactly what is achieved by the embedding procedure in [10]. Thus this form of SC can be regarded
as solving a spectral relazation of (P). The subsequent unit-ball projection of the embedded points and the
K-means procedure can be regarded as recovering the feasible solution of the k-NC problem, but with a
somewhat indirect cost function—the distortion measure of the points in the k-eigenfeature space.

4 Semidefinite relaxations for NC

Although the eigenvalue relaxation (P0) yields a globally optimum approximation to k-NC, it corresponds
to a rather loose relaxation. In this section we seek a tighter relaxation using semidefinite programming
(SDP).

4.1 Semidefinite programming

Semi-definite programming (SDP) refers to the problem of optimizing a convex function over the convex
cone of symmetric and positive semidefinite matrices, subject to linear equality constraints [14]. A canonical
(primal) SDP has the form:

min CeX
(SDP) s.t. Aje X =0b; fori=1,...,m
X>0

Because of the convexity of the objective function and the feasible space, SDP problems have a single
global optimum. With the development of efficient, general purpose solvers based on interior-point methods
(e.g., Sedumi [13]), SDP has become a powerful tool in solving difficult combinatorial optimization problems.

4.2 SDP relaxation

We now derive the semidefinite model for the normalized k-cut problem, following a strategy similar to that
described in [8]. The basic idea is to linearize tr YIWY by tr WZ, where Z corresponds to YYt. Let us
define the set Tj:

Tr:={Z: 3X € Fj, such that Z =YY" where Y = D'/2X(XTDX)"1/?}.

Thus P reads .
NC; = max{itr WZ : Z e conv(Ty)}.

Note that due to linearization of the objective, our feasible set can be rewritten as the convex hull of
the original set 7. One of the difficulties of this optimization problem is approximating the convex hull of
Tr by outer approximations that can be handled efficiently. To derive these relaxations, we introduce the
following sets, all of which contain 7.

First, note that since Y'Y = I}, we can optimize over

O := conv{YY" : Y'YV = I }.
The following lemma provides an equivalent description of this set in terms of Z.
Lemma 1 (Overton and Womersley [11])
Ov=A{7Z :Z=Z"tvx Z=k, I =7 >0}

This orthonormal outer approximation is not directly useful for the general classical GP problem as
described in §2, because for a general GP, the indicator matrix X is not orthonormal due to the size
constraint, i.e, X*X = Diag(m,,...,m;) = M. But for a special case of GP, the equi-partition, where
M = mlI, O can be used directly as a constraint set for, say, #X, which is widely used for SDP
relaxation of graph equi-partition [8].

The following lemma leads to a second outer approximation.



Lemma 2 Z = YY? satisfies transportation constraints: Z diag(D'/?) = diag(D'/?).
Proof. According to the definition of Y,

YY'diag(D'/?) = () D'’X(X'DX)'/*(X'DX)'/?X'D'?D' e,
= D'?X(X!'DX)~!'X'diag(D)
= D'?X(X'DX) '#' Dy, ... xtDay]
= D'?X(X'DX) Y X'DX)ey
= DY?Xe;
= D'?e, = diag(D'/?)

Note that from the 2nd to the 3rd line, and from the 3rd to the 4th line, the equalities can be varified
using the properties of X as a cluster indicator matrix (i.e. Eq. (1)). [ |
Thus, we have the following linear submanifold of matrices that contains 7y,

£:={Z : Z diag(D'/?) = diag(D'/?)}.

This linear constraint is unique to k-NC, implicitly capturing the fact that Y is a “normalized” indicator
matrix even though we do not explicitly know the value of the normalization factor (i.e., (X!DX)™1). A
simple counterpart in the equipartition case is Xe, = me, [8], but for general GP, no obvious analogy can
be drawn.

Finally, since X > 0, D > 0, it is obvious that 7y is contained in the nonnegative orthant

N:={Z : Z>0}.

From Lemma 1, the eigenvalue bound attained by SC in (P0) can be reformulated as a SDP relaxation
of the k-NC problem as follows.

Theorem 3 Eigenvalue bound of k-NC is an SDP relaxation
1
NCL(PO) = k- max{ﬁtr WZ . Ze O}
1 - _
= min{itr LZ : Ze€O, L=1,-W} (4)

This formulation appears very similar to an SDP rendition of the Donath-Hoffman bound for graph
equipartition [8]. But note that for &-NC, what enters the cost function is the “rescaled” Laplacian L, rather
than the original graph Laplacian.

Imposing the additional conditions Z € £ and Z € A still leads to a tractable relaxation, but will give a
stronger bound. Thus we arrive at the following strengthened SDP relaxation of the k-NC problem.

Theorem 4 For a clustering problem defined by (G, A), we have NCy(P0) < NCy(P1) < NC},, where
NC(P1) is defined as

min str LZ
s.t. 7 diag(D'/?) = diag(D'/2) (1)
(P1) Z >0 elementwise (2)
tr Z =k (3)
Z=0, Z=2" (4)
I—-Z%0 (5)

Comparing to the SDP relaxations of the classical GP or Max-Cut problem [4, 8], constraints (1), (3) and
(5) are specific to k-NC. (P1) can be straightforwardly cast into the canonical SDP format of a standard
SDP solver such as Sedumi.



5 Finding a Closest Feasible Solution

Due to the relaxation, the optimal solution of problems (P0) or (P1) are in general not feasible for (P).
Thus we need to recover from the approximate solution a closest feasible solution, X, to the original k-NC
problem. This process is often referred to as rounding. We use the following rounding scheme in this paper.

e From Z = Y'Y" obtain Y’ via SVD (Y” is usually full rank rather than rank k).
e Based on condition (b) in (P), rescale Y': Y" = D~/2Y",

e Treat each row in Y" as a point in R™; clustering them with restarts using any standard algorithm (e.g.,
K-means); pick the X with the lowest NC}, value.

This rounding scheme, which we refer to as “rank-n KM rounding” (and “rank-k rounding” if only &
eigenvectors of Z are used), is related to the randomized projection heuristic studied by [4] in their work on
Max-Cut. In this approach, the label (-1 or +1) of each vector is chosen according to whether the vector is
above or below a randomly chosen hyperplane passing through the origin. In [3] this scheme is generalized
to max k-cut.

A majority of the spectral clustering methods adopt a K-means clustering procedure on row-rescaled, top
k eigenvectors in Y derived from (P0). In particular, the rescaling projects all row-associated points onto a
k-dimensional unit ball, therefore the K-means actually finds clustering with minimal intra-cluster angular
spread. This rounding scheme distinguishes SC from the k-NC problem because a different cost function
(i.e., not NCy) is used to determine the optimal rounding. As a result, despite the similarity of SC and NC,
they may be aiming at capturing different objectives.

Recently, [1] showed that the distortion measure of a weighted K-means applied on the relaxed solution
matrix Y’ corresponds to a difference measure between the subspaces spanned by the relaxed solution Y’ and

. . / 1/2 . S . .
a feasible solution ¥ = [Dt1 D Lk] where X = [z1,...,x] is a feasible indicator matrix obtained
zi Dz 7z Dy 7 ’ ’
via K-means from Y’ '
1 It t)12
e = §||YY -YY*'%
. 1/2 2
= min STl
[t ] =25

where d; denotes the ith diagonal element of D. This cost function for K-means is similar to the one we
use, except that each “point-to-centroid” distance is now weighted by the “degree” of the point, d;. Note
that although the foregoing e defines a good measure of rounding error, it is not necessarily coincide with
minimal deviation from optimal normalized cut, but nevertheless provide a good heuristic of moving close
to it.

6 Experimental results

In this section, we study normalized k-cut defined on high-dimensional real datasets of various natures,
whose cluster structures are not directly visible and likely to be ambiguous. Human labels are available
for all dataset, and we use them as a gold standard for clustering. We collected six real datasets, two
from the Whitehead Institute microarray database of cancer samples (the “Lung Carcinomas” set and the
“multi-cancer dataset”), two from the Reuters-21578 collection (subsampled from the four smallest, and
four largest categories, respectively, with feature vectors based on word counts), a protein dataset from
http://www.nersc.gov/~cding/protein/, and the soybean dataset from the UCI repository. The first four
datasets are very high-dimensional (>5000), and we use a simple unsupervised filtering procedure described

in [15] to reduce the total features to 1000.

IBecause Y’ is defined up to a rotation matrix, a common difference measure is thus to compare the orthogonal projection
operators on the subspaces, i.e., the Frobenius norm between Y'Y’? and Yy Y;.



6.1 Optimizing normalized k-cut

We generate k-NC problems by constructing the affinity matrix A using a Gaussian kernel, a;; = exp{fd?j/a},
where d;; is Euclidean distance. We let o = r - ¢, where ¢ = %ZZ min; d;; is the mean nearest-neighbor
distance, and r is an integer called the affinity window. It is easier empirically to choose r (than o), as it
roughly translates to a “sensitivity range” of neighboring points 2.

Table 1 summarizes the results of £-NC on the six datasets using SDP and spectral relaxations. We
show the lower bounds of NC} computed from both relaxations, as well as the NC}, attained by the feasible
solutions yielded by the SDP and the spectral methods, with several different rounding schemes. Due to
the NP-hardness of the problems, we can not compute the NC} of graphs for evaluation, but the ratio f/b
between the feasible cut and the lower bound straddles the optimal value. Consistent with Theorem 4, the
SDP bound is tighter than the spectral bound, and except for random-projection rounding, SDP almost
always leads to better (tie for soybean) feasible NC}, values than that of the spectral methods. For SDP
relaxation, the K-means-based roundings are far better than the random-projection rounding, and it seems
that rounding using the rank-n relaxed solution is slightly better than that of rank-k.

For spectral relaxation, even when we round to the best feasible NC}, after K-means, the result is not
much better than the one attained by a standard SC methods, suggesting that the SC algorithm is in fact
very close to solving a k-NC with spectral relaxation.

Table 1: Performance on k-NC. (KM: K-means; rp: random projection; SC: spectral clustering)

SDP relaxation Spectral relaxation
rank-n  rp rank-n KM rank-k KM rank-k KM SC
rounding rounding rounding rounding
dataset | size| k | r |lower-b| feas. X f/b feas. X f/b feas. X f/b lower-b| feas. X f/b feas. X f/b
cancerl | 120 4 1 1.923 2.070 1.077 1.960 1.019 1.961 1.020 1.826 2.024 1.108 2.032 1.113
cancer2| 122| 12| 2 6.955 9.887 1.422 7.820 1.124 7.905 1.137 6.279 8.316 1.324 8.456 1.347
reutersl| 111| 4 | 2 | 2.667 | 2.725 1.022 2.681 1.005 2.683 1.006 2.597 | 2.705 1.042 2.705 1.042
reuters2| 120 4 1 1.850 1.908 1.031 1.860 1.005 1.860 1.005 1.793 1.900 1.060 1.900 1.060
protein [ 116 6 2 4.408 4.625 1.049 4.466 1.013 4.491 1.019 4.240 4.499 1.061 4.519 1.066
soybean| 47 4 10( 0.112 0.141 1.259 0.121 1.080 0.121 1.080 0.100 0.121 1.210 0.121 1.210

6.2 Clustering based on normalized k-cut

Now we examine whether the feasible solutions to normalized k-cut found by relaxed optimization agree well
with the cluster labels of the datapoints, and whether a better value of NC} suggests better agreement.
Table 2 summarizes the consistency measures (as defined in [16]) between the feasible X and the sample
labels for the six datasets. We also give the K-means results for reference. Comparing the rank-n KM
rounding for SDP and the SC column, we see that the results are quite similar, with SDP slightly better in
some cases, with SC slightly better in others, and with parity in several cases. Overall, we do not find that
a better value of NC} translates into a higher consistency with the label.

Table 2: Performance for data clustering.

SDP relaxation Spectral relaxation K-means
dataset | rank-n rp rank-n KM rank-k KM| rank-k KM SC
rounding rounding rounding rounding

cancerl| 0.5213 0.7558 0.7465 0.7962 0.7959 0.7752
cancer2| 0.5159 0.7548 0.7305 0.7309 0.7112 0.6608
reutersl| 0.6785 0.6200 0.6346 0.6272 0.6272 0.6189
reuters2| 0.6799 0.7016 0.7016 0.6693 0.6693 0.6829
protein | 0.5440 0.6530 0.6404 0.6291 0.6459 0.6150
soybean| 0.5681 0.9014 0.9014 0.9014 0.9014 0.7910

2In the following experiment, we pick r based on multiple trials that finds a range that gives stable feasible solutions.



7 Discussion

We have presented an SDP relaxation for the normalized k-cut problem. We show that the SDP relaxation
gives a tighter lower bound in theory than that of spectral relaxation; moreover, this is borne out in practice.
Modulo computational issues, the SDP relaxation may prove to be a useful approach to solving normalized
k-cut problems.

We do not find a compelling relationship between improvement in normalized k-cut values, and improve-
ment in clustering performance. This shows that although both the SDP approach and the SC approach
can be viewed as relaxations of normalized k-cut, their clustering performance is not explained entirely in
terms of their performance on the partitioning problem. Thus, while the normalized k-cut criterion is useful
in terms of formulating clustering problems as optimization problems, there may be other criteria that more
directly capture the underlying clustering criterion of spectral clustering and explain its success.

A promising application of the SDP formulation of the normalized k-cut problem is that it provides a
principle framework for incorporating side-information (e.g., small amount of (dis)similarity constraints as
studied in [16]) during optimization to achieve a transduction effect, which is not directly achievable in the
spectral clustering paradigm ®. Currently, we are exploring this direction, and its combination with the
metric learning approach.
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