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Automatic identi"cation of sub-structures in multi-aligned sequences is of great importance
for e!ective and objective structural/functional domain annotation, phylogenetic treeing and
other molecular analyses. We present a segmentation algorithm that optimally partitions
a given multi-alignment into a set of potentially biologically signi"cant blocks, or segments.
This algorithm applies dynamic programming and progressive optimization to the statistical
pro"le of a multi-alignment in order to optimally demarcate relatively homogenous sub-
regions. Using this algorithm, a large multi-alignment of eukaryotic 16S rRNA was analyzed.
Three types of sequence patterns were identi"ed automatically and e$ciently: shared conser-
ved domain; shared variable motif; and rare signature sequence. Results were consistent with
the patterns identi"ed through independent phylogenetic and structural approaches. This
algorithm facilitates the automation of sequence-based molecular structural and evolutionary
analyses through statistical modeling and high performance computation.

( 2001 Academic Press
1. Introduction

The coding sequences of macromolecules with
complex biological functions usually contain al-
ternating invariant and variable regions (Ludwig
& Schleifer, 1994). The identi"cation and charac-
terization of these sub-molecular regions is
important for many types of sequence-based
molecular analyses, such as comparative struc-
tural prediction, supervised multiple sequence
alignment and phylogenetic tree construction
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(Felsenstein, 1982; Koonin et al., 1998; States
& Boguski, 1991).

Pattern extraction in biologically related se-
quences is traditionally done by manual inspec-
tion and curation of a multiple alignment of these
sequences, with some empirical expert knowledge
or comparison heuristics. Usually, this process is
not only time-consuming, but also often lacks
strict, consistent, and formal criteria for know-
ledge discovery. Some computer tools, such as
Prettybox (Westerman, 1998) and Genome
Channel (Mural et al., 1999), have been de-
veloped to assist in such a process. However,
most of the tools in fact only serve annotation or
( 2001 Academic Press
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visualization roles rather than doing active and
globally optimized pattern recognition based on
solid statistical reasoning (Stojanovic et al., 1999).
Multiple alignment remains a major technique to
unveil hidden structural details in the ortho-
logous gene sequences of di!erent species. In
recent years, multiple alignments in publicly
available databases [e.g. RDP, release 7.0
(Maidak et al., 1999)] have grown dramatically in
size and complexity, which makes empirical pat-
tern extraction from the entire alignment di$cult
and not even appropriate given the diversity
of sequences. More sensitive, consistent and
e$cient methods, based on formal information
retrieval rules and feature de"nitions, are needed
to meet this challenge.

To develop a formal description of sub-
molecular regions potentially having a unique
and stable property in a gene sequence, we hypo-
thesized the following: a sub-molecular entity
with distinguishable structural, functional or
evolutionary properties may possess unique stat-
istical features in a multi-alignment. Since a gene
usually contains multiple well-preserved domains
and is interspersed with less stable or even ran-
dom sequences, domain-speci"c statistical fea-
tures are expected to exhibit discontinuities at the
boundaries between di!erent regions and be rela-
tively more uniform within a region. Here, we
present a segmentation algorithm, based on
dynamic programming and progressive optim-
ization, that identi"es such discontinuities and
automatically partitions a multi-alignment into
a set of segments strictly characterized by the
statistical pro"le of its sequence composition.
Based on two simple pro"le measurements: the
degree of homogeneity of character composition
at each site, and the gap frequency therein, our
algorithm successfully found from a eukaryotic
16S rRNA multi-alignment, a segmentation
pattern consistent with the positions of evolu-
tionarily conserved and heterogeneous regions
independently determined through other ap-
proaches (Gutell, 1993). Quantitative analysis of
the resulting segments based on the distribution
of hamming distances of each sequence to the
consensus, and associated entropies (random-
ness), supports the assumption underlying our
segmentation algorithm of a non-random, near-
quantum distribution of statistical features in the
multi-alignment. Although still in the prototype
stage, we believe our algorithm to be a promising
step toward the automation of sequence-based
sub-molecular structural and evolutionary
analyses.

2. Methods and Algorithms

A multi-alignment can be viewed as a charac-
ter table that resembles the pixel matrix of
a graphical image except that the numerical
pixels are replaced by characters from a pre-
de"ned vocabulary set X"MA,G,C,T (or U),
} (gap)N (we can easily generalize this setting to
protein sequences by replacing the vocabulary set
with an amino acid species set). Each column in
this table represents a virtual (in case it corre-
sponds to a gap) or an actual nucleotide site
within the sequences being aligned. Each row
represents a sequence hosted by a particular spe-
cies. Analogous to the concepts used in image
processing (Kittler & Foglein, 1984), we de"ne
a segment S

i
of the multi-alignment to be an

ordered set of consecutive columns within the
multi-alignment table. The image-processing-
based segmentation technique presented below,
described in part in Xing et al. (1999), combines
column-wise statistical pro"le information like
that used in Gribskov et al. (1987) with a dynamic
programming approach often employed in align-
ment and model-"tting algorithms (Auger
& Lawrence, 1989; Gorodkin et al., 1997).

2.1. GENERAL DYNAMIC PROGRAMMING PROCEDURE

FOR OPTIMAL SEGMENTATION

For a given multi-alignment A and a pre-
de"ned parameter k which speci"es the total
number of segments to be produced after the
segmentation, associate any k-segmentation
S"SS

1
,2,S

k
T on A with a segmentation score

function:

I(S)"
k
+
a/1

Fa , (1)

where Fa is a segment-speci"c score function of
segment a (i.e. proportion of gaps, or other
measures of heterogeneity associated with the
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segment). An optimal segmentation S* can be
obtained by minimizing I (S):

S*"argmin
DSD"k

I(S). (2)

Since Fa is dependent on the choice of the
segment a and its delimitation, we can rewrite it
as F (Sa) or F(l

a
, r

a
), where Sa is the segment

delimited by l
a
as its left boundary and r

a
as the

right one, a3S1,2, kT. For any de"nition of
Fa (on a subinterval indexed by integer 1}N), the
minimum of I (S) can be found through a dy-
namic programming procedure (Bellman, 1957;
Mottl & Muchnik, 1998) which progressively
(from right to left) establishes the optimum right
boundary pro"les j*

l
(i) of the segment l for each

possible left boundary i, together with their asso-
ciated partial segmentation score:

Ui
l
"minA

k
+
a/l

FaB . (3)

This procedure will terminate when the left-
most possible boundary i"1 is reached. Follow-
ing is the outline of this procedure:

For l"k!1 to 1,
De"ne ¸

l
"Sl, l#1,2,N!(k!l )!1T as

a set of left boundaries of segment l.
For ∀i3¸

l
,N

De"ne Ri
l
"Si#1, i#2,N!(k!l )T as a set

of right boundaries of segment l whose left
boundary is i.

For ∀j3Ri
l
,N

Qi
l
( j)"F

l
(i, j)#Uj

l`1
, (4)

Ui
l
"minA

k
+
a/l

FaB"min
j3Ri

l

(Qi
l
( j)), (5)

j*
l
(i)"argAmin

j3Ri
l

(Qi
l
) ( j)B . (6)

The prodedure terminates when I(S*)"UI
1

is
obtained. The time complexity of the procedure is
O (kn2G), where G is the cost for the calculation
of Q in eqn (4). To further reduce the time cost,
one can spend n2 units of memory to store all
pre-calculated F (i, j) values rather than calculat-
ing them for each cycle. Once the optimal right
boundary pro"le j*

l
(i) of segment l for each pos-

sible left boundary i is produced, it is easy to
delimit the multi-aligned sequences such that
they form an optimal segmentation. Starting
from the leftmost segment, after assigning its left
boundary as 1, one can systematically look up in
the pro"le to retrieve the boundaries of all the
segments from left to right according to the fol-
lowing functions:

l
1
"1, r

1
"j*

1
(l
1
),

l
2
"r

1
#1, r

2
"j*

1
(l
2
),

2

la"ra~1
#1, ra"j*a (la), a3S1, 2,2, kT

The resulting "nal segmentation is

S*"SS
1
(1, j*

1
(1)), S

2
( j*

1
(1)#1, j*

2
( j*

1
(1)#1)),

2, S
k
( j*

k~1
#1, j*

k
( j*

k~1
#1))T.

2.2. OBJECTIVE FUNCTIONS FOR

DYNAMIC OPTIMIZATION

Depending on the desired features to be cap-
tured from segmentation, various types of seg-
ment-speci"c score functions F can be chosen
[based on the concept of pro"le analysis
(Gribskov et al., 1987)]. We used a set of objective
functions that measure the square error of several
column-wise alignment features:

F
G
(la, ra)"

ra
+
j/la

(ngap
j

!nN gapa )2, (7)

where ngap
j

" frequency of &&!'' at j-th column of
the multi-alignment,

nN gapa "

1
ra!la#1

ra
+
j/la

ngap
j

.

F
E
(la, ra)"

ra
+

a

(e
j
!eN a)2, (8)
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where e
j
"+

l3M!, A,G,C,UN n
j, l

log (n
j, l

), n
j, l
" fre-

quency of l at j-th column, eN a"(1/(ra!la#1))
+ ra

j"la
e
j
.

F
H

(la , ra)"
ra
+

j"la

(h
j
!hM a)2, (9)

where h
j
"+

l3M!, A,G,C,UN (n
j, l

)2, n
j, l
"frequency

of l at j-th column, hM a"(1/(ra!la#1)) + ra
j"la

h
j
.

Score functions F
G
, F

E
and F

H
measure the level

of non-uniformity of (1) the column-wise gap
frequency, (2) the column-wise entropy of the
character distribution, and (3) the degree of char-
acter heterogeneity in each column (as explained
in the appendix), respectively, across segment a.
Using one of the score functions F as an objective
function, the dynamic programming procedure
described in Section 2.1 leads to a segmentation of
the multi-alignment such that the property of in-
terest (column-wise gap frequency, entropy, etc.) is
as uniform as possible within each segment.

3. Hardware, Software and Dataset

The segmentation program was written in
C and implemented on Sun Ultra30 workstation.
Statistical analyses and plots were done using
Splus on PC. The multi-alignment used in this
paper was obtained from Ribosomal Database
Project (RDP, release 7.0) (Maidak et al., 1999)
by choosing a subset of 417 sequences out of the
complete multi-alignment of 2055 eukaryotic
small subunit 16S ribosomal RNA sequences (in
order to facilitate comparison with a smaller
earlier release). The &&sub-alignment'' is 6197
base-pair long. The rRNA multi-alignment
provided by RDP is achieved by a joint e!ort
FIG. 1. Segmentation of the rRNA multi-alignment using F
Gactual gap frequency pro"le of the multi-alignment. The black

resulting 100 segments.
of computer optimization and manual valida-
tion/modi"cation.

4. Experiments, Results and Discussions

4.1. SEGMENTATION

As shown in Fig. 1, a multi-alignment of
6197 bp]417 species, typical of a modern se-
quence database, is extremely complex and ir-
regular. Even with a plot of the complete pro"le
of a measure of interest, say, the gap frequency at
each column, it is still hard to accurately identify
structural details therefrom, let alone by directly
inspecting an alignment table of this size. We
performed a segmentation on this alignment us-
ing the objective function F

G
(setting k"100),

and superimposed the result on the gap pro"le
plot in Fig. 1. Segmentation using F

G
minimizes

the sum of square errors of column-wise gap
frequencies in each segment; in each resulting
segment, the frequencies of gap occurrence in the
columns therein are relatively uniform. Thus, the
gap-rich and gap-rare regions in the multi-align-
ment are separated in an optimal way for a given
pre-speci"ed total number of segments.

However, F
G

only captures the distribution of
gaps in the multi-alignment. It is often more
desirable to also consider the degree of homogen-
eity of the aligned sequences. An immediate alter-
native is to replace F

G
with F

E
, which traces the

entropy change of nucleotide occurrence at col-
umns along the multi-alignment. A segment with
low entropy across all columns corresponds to
a homogeneous fragment, and vice versa.
Another choice is to use F

H
, which, as brie#y

explained in the appendix, also re#ects the degree
as objective function. The gray plot at the background is the
plot represents the gN (average gap frequency) of each of the



FIG. 2. Segmentation result using F
H

as objective function (k"100). The gray line is the hM (average degree of homogeneity)
of consecutive segments along the multi-alignment, the black line is the gN (average gap frequency) in these segments.
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of sequence homogeneity (in here high homogen-
eity corresponds to high h value), but has a con-
venient 0}1 value range, and o!ers a more easily
seen connection to the underlining gap or nucleo-
tide frequency [see eqn (A.3)]. We performed
segmentation using both F

E
and F

H
and got

consistent results. For brevity, in this paper, we
present and discuss only the F

H
and F

G
results

(Fig. 2).
Since segmentation using F

H
(H-segmentation)

re#ects the #uctuation of the level of homogen-
eity of nucleotides at each site of the aligned
sequences, it naturally reveals regional conserva-
tion or variation of a particular gene in di!erent
organisms. As*for the sake of simplicity*we
did not explicitly encode the biological di!erence
between gap and other nucleotide characters in
F
H
, the resulting segments with high hM (which

implies the existence of a dominant character
type across all rows at each column) correspond
to either a segment with a predominant, rarely
interrupted, sequence pattern, or to one unani-
mously dominated by gaps in all columns. We
combined the results from cost functions F

H
and

F
G

to distinguish these two cases. Thus, the aver-
age gap frequency (gN ) of each segment resulting
from the H-segmentation was calculated (Fig. 2)
as an auxiliary measurement in addition to hM .

4.2. CLASSIFICATION OF SEGMENTS

For a character set of size 5 (MA, U, G, C, }N), if
all types of characters occur at random in each
column, gN within a segment would be &0.2, as
would hM . We de"ne three types of segments as
being of particular interest: (1) highly homogene-
ous and gap-rare segment (hM *0.8, gN )0.2);
(2) gap stretches (hM *0.8, gN *0.8); and (3) hetero-
geneous but still gap-rare segment (hM )0.4,
gN )0.2). Notice that &&heterogeneous gap stretch''
is not a segment pattern existing in practice. In
the 100 segments generated by H-segmentation
on the rRNA multiple alignment, 11 belong to
type 1, 31 are of type 2 and 8 of type 3 (Table 1).

Most type 1 segments have a length of
50}100 bp. High hM suggests that di!erent organ-
isms share a similar sequence in the segment [i.e.
hM "0.81 corresponds to a distribution of at least
90% of the sequences in the same pattern, see
eqn (A.3)]. Low gN means that the pattern is not
a gap stretch but a continuous nucleotide se-
quence. Together these are strong indications of
a conserved domain shared among multiple or-
ganisms. Type 2 segments cover about 60% of
the total length of the multi-alignment and range
from 5 to over 500 bp long. An overabundance of
gaps in some regions of a multi-alignment is
usually due to the introduction of stretches of
gaps into the sequences of the majority species
devoid of some rare patterns possessed by a few
co-aligned species in the corresponding region.
Therefore, such segments may harbor an uncom-
mon sequence pattern (i.e. signature pattern of
some species) or sequences that are &&shared'' in
a highly interrupted fashion among species repre-
sented in the alignment. Type 3 segments are
generally very short, and their biological mean-
ing is unclear. They may merely be the result of
suboptimal alignment, but may also represent
a novel class of sequence motifs whose exact
contexts vary from species to species and reside at
speci"c locations in the gene of all species. It
is possible that these short and heterogeneous
motifs may encode some special structural or



TABLE 1
Summary of three types of segments resulting from H-segmentation*

Segment
number
(a)

Boundary Average
homogeneity

(hM a )

Average
gap

frequency
(gN a )

Adjusted
consensus
length-

(¸)

Peak
Hamming
distance

H/¸ ratio? Normalized
entropy

Reference
i.d.

¹ype 1
2 39..83 0.843 0.246 36 0 0.000 0.583 1.1

27 988..1053 0.829 0.17 55 3 0.055 0.666 1.2
29 1060..1167 0.918 0.125 95 2 0.021 0.561 1.3
31 1326..1430 0.925 0.154 90 1 0.011 0.500 1.4
49 2063..2101 0.836 0.131 34 1 0.029 0.604 1.5
59 2596..2620 0.909 0.12 22 0 0.000 0.515 1.6
61 2627..2782 0.868 0.216 122 5 0.041 0.641 1.7
69 3557..3668 0.85 0.136 99 2 0.020 0.690 1.8
71 4081..4158 0.863 0.163 66 3 0.045 0.596 1.9
80 4609..4672 0.911 0.105 58 0 0.000 0.538 1.10
86 4887..4983 0.87 0.087 90 2 0.022 0.597 1.11

¹ype 2
17 531..767 0.983 0.991 237 2.1
33} 1444..1542 0.879 0.936
}34 1543..1688 0.988 0.994

245 2.2A

55 2317..2523 0.944 0.971 207 2.3
68 3115..3556 0.987 0.994 442 2.4
70 3669..4080 0.994 0.959 412 2.5
73 4180..4399 0.964 0.981 220 2.6
94} 5193..5593 0.987 0.993
}95 5594..5730 0.992 0.996

538 2.7A

97 5739..6157 0.995 0.998 419 2.8

Other 21 segments 5}128

¹ype 3
6 199..207 0.35 0.08 9 7 0.778 0.664 3.1

16 522..530 0.325 0.206 8 7 0.875 0.324 3.2
47 1976..1993 0.345 0.215 17 14 0.824 0.531 3.3
58 2591..2595 0.376 0.002 5 2 & 3 0.500 0.883 3.4
60 2621..2626 0.426 0.001 6 4 0.667 0.902 3.5
64 2816..2823 0.33 0.19 7 5 0.714 0.734 3.7
81 4673..4678 0.361 0.022 6 5 0.833 0.802 3.8
92 5119..5129 0.35 0.27 8 7 0.875 0.521 3.9

*Shaded row marks the marginal segments, those that are close to the respective thresholds of hM a and gN a .
-For type 1 and 3 segments, the consensus excludes the gaps and thus has a shorter length compared to the segment

originally from the multi-alignment. This is to avoid including gap counts in the calculation of hamming distance from each
sequence to the consensus. ¸ of type 2 segments is the original length.
?The ratio between the peak hamming distance and ¸.
AThe two adjacent gap segments (with slightly di!erent statistics) are fused together.
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functional entities present in di!erent organisms,
but have a lesser degree of conservation at the
sequence level (probably due to alternative im-
plementations of a common function in di!erent
organisms).

Altogether, 50 of the 100 segments fall into
these three types, and they cover 75.9% of
the total length of the multi-alignment. These are
the regions that are unambiguously aligned in
the multi-alignment, and do not tend to contain
a mixture of gaps and nucleotides across di!erent
species. The remaining 50 segments have inter-
mediate hM and gN values, and only cover a small
portion of the multi-alignment. These are the
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regions where gaps are mixed with broken se-
quences and somehow have a uniform degree of
randomness across columns. They are likely to be
the heterogeneous regions, only present in some
species, and in di!erent forms, which makes them
di$cult to match across species in both context
and position.

4.3. EFFECT OF GRANULARITY OF SEGMENTATION

The granularity of the segmentation can be
changed by choosing di!erent values of k in
eqn (1}3). We segmented with k"25, 50, 75 and
100. The CPU time increased linearly with k as
expected, at a modest rate (t+ 3.35k#173 s). In
general, changes in granularity did not perturb
the overall pattern of segmentation on a signi"-
cant scale. Type 2 segments are especially stable.
Some rearrangements, such as split or boundary
adjustment, did occur in a few segments as the
granularity increased. These segments tended to
have high hM but intermediate gN values in the
coarse-grain segmentation. We found that long
homogenous sequence stretches interleaved with
some short heterogeneous fragments can be
further dissected under "ner granularity. The
successive unfolding of "ner structures of
multi-alignment with increasing segmentation
granularity suggests that "ner-grain segmenta-
tion produces a higher resolution of the details of
the sequences and is preferred if the linear in-
crease of time-cost and memory demand (to store
internal states in the loop) is tolerable. Neverthe-
less, once identi"ed, a good portion of the types
1 and 2 segments were well preserved with chang-
ing granularity, and nearly no type 3 segments
changed their boundaries during further "ne-
grained segmentation. Therefore, with a reason-
able choice of k, our segmentation can identify
segments with potentially biologically meaning-
ful properties with a high degree of robustness
and consistency.

4.4. SEGMENTATION OF A DIFFERENT VERSION OF

MULTI-ALIGNMENT OF THE SAME SET OF SEQUENCE

Our segmentation software has undergone sev-
eral upgrades after its initial development, and so
has the multi-alignment we analysed. In addition
to any changes of alignment technique imple-
mented and applied to a given multi-alignment,
the continuous addition of new sequences into
the database also results in frequent updates of
the multi-alignment of the same set of sequences
over time. The trend is to put all available se-
quences of a gene into a single huge alignment
(although the validity of such a practice is
arguable).

When we "rst applied our software to analyse
rRNA sequences, the entire collection in RDP of
eukaryotic 16S rRNA contained 437 sequences in
a multi-alignment 4036 bp long (release 6.0). The
release 7.0 used in this paper contained 417 of the
437 sequences (others are missing for unknown
reasons) plus a few thousands more (which we did
not include), in a new multi-alignment of 6197 bp
for this subset (chunked from the originally
&8000 bp-long multiple alignment of the entire
sequence set, and with columns consisting entire-
ly of gaps removed). We compared the segmenta-
tion patterns of these two di!erent versions of
multi-alignment in Fig. 3 (k"70 for release 6
and k"100 for release 7 to ensure comparable
granularity). For direct comparison, segments
were mapped onto the original rRNA sequence
of the Cryptococcus neoformans (1805 bp). The
position and length of type 1 segments were con-
sistent in both multi-alignments, except for two
of the marginal type 1 segments (2nd and 7th) in
version 6, which were either unrecognized or split
into smaller strict type 1 segments in the later
version. A few new type 1 segments showed up in
the later version as well. This suggests that the
conserved sequence domains are stably captured
through alignment upgrades. Although most of
the type 2 segments in release 6 remain in release
7, the later version has signi"cantly more/longer
type 2 segments, meaning that the new multi-
alignment contains more gap stretches. This is
consistent with our previous speculation that
type 2 segments are created to accommodate rare
sequence patterns, more likely in the new release
containing a much greater total number of se-
quences. We observed fewer type 3 segments
in version 7, which seems to imply that some
of them were alignment artifacts in the older
version, eliminated in the later (presumably
improved) version of the multi-alignment. But
this does not exclude the possibility that some of
them may still be special unconserved motifs, as
will be discussed later.



FIG. 4. The distribution of the hamming distances of each
sequence to the consensus in two types of segments. Upper:
distance distribution for a type 3 segment; lower: distance
distribution for a type 1 segment.
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4.5. A CLOSE LOOK AT DEGREE OF SEQUENCE

HOMOLOGY WITHIN A SEGMENT

To verify that types 1 and 3 segments represent
homogeneous and heterogeneous sequence seg-
ments, respectively, we studied the distributions
of the sequence patterns within segments. To
avoid the undesirable over-determination (and
thus lack of statistical abstraction) often encoun-
tered in brute force classi"cation of a limited
number of samples using a high-dimensional de-
scriptor (i.e. sequence context), we performed
a simple classi"cation of sequences within each
segment according to their hamming distances to
the consensus sequence. The physical meaning of
this distance regarding the di!erence between
two sequences is as following: for any pair of se-
quences having distance d1 and d2, respectively,
to the consensus, the number of nucleotide sites
(D) they could di!er satis"es the following in-
equality:

Dd1!d2D)D)Dd1#d2D . (10)

Therefore, all sequences with hamming dis-
tance d to the consensus can di!er at most by
min(2d, ¸) nucleotides, where ¸ is the length of
the sequences. To quantitatively measure the im-
purity of sequence patterns in terms of this dis-
tance, the entropy associated with the partition of
sequences incurred by the distance is calculated,
and normalized with the maximal possible en-
tropy of the segment, log

2
¸, for easy comparison

of di!erent length segments.
The distributions of d of the 417 sequences

aligned in a type 1 and a type 3 segment are
shown in Fig. 4. For the type 1 segment, the
distance distribution peaks at a small d (com-
pared to the length of the segment), and as a re-
sult of peaked distribution, has a relatively small
normalized entropy (Table 1). This suggests that
a majority of the multi-aligned sequences di!er
very little within the segment, consistent with the
prediction based on the hM value. On the other
hand, for a type 3 segment, either the distribution
is scattered (resulting in larger normalized en-
tropy) or/and the peak shifts toward ¸, the maxi-
mal possible hamming distance for a sequence
within the segment. This distribution revealed
that most of the sequences are grossly di!erent
from one another in a type 3 segment, agreeing
with our inference that they cover either uncon-
served or poorly aligned regions.

4.6. MAPPING OF SEGMENTS ON SECONDARY

STRUCTURE

To further explore the biological implication of
the three types of segments, we mapped them
onto the secondary structure of the Cryptococcus
neoformans small subunit rRNA (Gutell, 1993)
[Fig. 5(a)]. Ten of the 11 type 1 segments corre-
sponded well to phylogenetically and structurally
conserved regions independently identi"ed using
comparative analysis for higher-order structures
conserved among species (Gutell, 1994; Gutell
et al., 1994), many of which are core domains
forming the backbone of the molecule or in-
volved in important secondary and tertiary struc-
ture interactions [Fig. 5(b)]. Many of the most
conserved nucleotide sites labeled by Gutell et al.
were covered in the type 1 segments. However,
some regions, such as the 5@ and 3@ ends of the
molecule, although also labeled with many con-
served sites, did not match type 1 segments.
A close inspection of the original multi-alignment
showed that the 5@ end region contains frequently
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alternating (short) runs of gaps and sequences,
which suggest that as the sequence collection
grows bigger, more variations were revealed. In-
terestingly, one of the type 1 segments (i.d. 1.5),
corresponds to a region labeled highly variable
[Fig. 5(b)]. It is possible that this is a &&new''
conserved domain that will be increasingly ap-
parent as more sequence entries are considered
for comparison. In contrast to type 1 segments,
type 3 segments all correspond to short sequence
patches residing at the periphery or within the
variable regions. However, some of these seg-
ments are involved in the formation of the most
stable thermodynamic foldings [Fig. 5(a), in-
dicated by thick tick marks] (Konings & Gutell,
1995), suggesting that they may be indeed func-
tionally essential to the RNA molecule although
contextually heterogeneous. Type 2 segments
(gap stretches) mostly fall into the most variable
regions, except at both ends of the molecule.
The two runs of gaps near the 3@ end of
the molecule are about 540 and 400 bp long
(notice that entire length of the molecule is
1805 bp), suggesting that some species may con-
tain unique signature motifs near this location
that could not be aligned against each other (and
thus are juxtaposed together to cause the long
gap runs).

In summary, although no manual map-
ping/cross-validation, secondary structure com-
parison and expert knowledge of phylogenetic
property was involved, the information obtained
through a pure statistical segmentation approach
about the domain location and degree of conser-
vation, was remarkably consistent with that
obtained by human analysis.

5. Biological Applications

The statistical-pro"le-based segmentation
technique presented in this paper can serve as a
robust, general-purpose automatic knowledge
discovery tool to analyse the structure of large,
unwieldy multi-alignments containing a large
number of sequences. Such alignments are di$-
cult, if possible, to inspect manually.

Unlike a simple alignment display tool such as
PrettyBox (Westerman, 1998), which marks out
the &&conserved box'' simply by highlighting
the nucleotides in the aligned sequences that
agree with the consensus, this method infers all
the conserved segments along with other seg-
ments using statistical properties of character
composition and distribution based on global
optimization. This process involves little arti"cial
modeling and arbitrary parameterization and is
extremely e$cient. As updates of multi-align-
ments of various genes are becoming more fre-
quently available and ever bigger, our method
provides an important alternative to the manual
approach as a fast and reliable domain identi"er.

One of the most important applications of the
segmentation algorithm presented herein is to
identify di!erent types of sequence motifs (i.e.
orthologous functional domains, signature motifs
and non-orthologous functional motifs) from
aligned gene sequences. Such an application is
useful for functional annotation and the design of
organism-speci"c gene ampli"ers. Furthermore,
the results of segmentation of multi-aligned
sequences can be fed back to the aligner for
auto-readjustment of the alignment. At present,
multi-alignment is best done using a hybrid ap-
proach involving both machine calculation and
manual local readjustment (Schuler et al., 1991;
States & Boguski, 1991). Algorithms can be de-
signed to mimic such a process by iteratively
incorporating segmentation knowledge to re-
adjust and optimize local alignment (i.e. locally
realign all sequences in the gap-rare segments to
improve homogeneity, or selectively adjust poor-
ly aligned sequences in such segments using ad-
jacent gap-rich segments as relaxation bu!er).
Another potential application of segmentation is
in phylogenetic treeing. Sequence regions with
di!erent degrees of variability re#ect evolution-
ary history at di!erent scales and stages (Ludwig
& Schleifer, 1994). It would be informative to
distinguish di!erent regions through segmenta-
tion, and use them during di!erent stages of tree
construction, or constitute a proper weighting
scheme for the distance measurement (indeed,
one of the main pitfalls of current treeing tech-
niques is that the selection of quali"ed alignment
sections and the removal of ambiguous or noisy
segments are routinely done manually via eye
inspection). It might be useful to construct mul-
tiple trees based on sequences in individual seg-
ments, and then to aggregate these trees, derived
from di!erent parts of the molecule.
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Before proceeding to the conclusion, we
address some of the pitfalls in our algorithm.
(1) Some segments may slightly su!er a &&bound-
ary e!ect'' (i.e. a long type 1 segment may contain
a short patch of heterogeneous sequence at the
boundary), which arises due to the bu!ering
e!ect of the long segment with a uniform target
statistical measure that can absorb the perturba-
tion of small variations at the boundary. (2) Some
special alignment patterns, such as a juxtaposi-
tion of very short and alternating gap-rich (gap-
rare) segments with comparable gap (nucleotide)
frequencies, may confuse the segmentor. This
pattern could be falsely determined as a single
long segment because in terms of character
homogeneity, it is &&uniform'' (gap is taken as one
of the characters). As a result, some small motifs
may be missed. However, these problems did not
seem to seriously a!ect the performance of the
segmentor and can be cured by cross-validation
between results from di!erent objective functions
and by using greater granularity to improve
resolution.

6. Conclusion

We described a segmentation algorithm that
can e$ciently partition a multiple alignment into
a set of biologically sensible segments based on
its statistical pro"le using dynamic programming
and progressive optimization. Using this algo-
rithm, a multiple alignment can be segmented
into sub-regions each with a uniform level of
statistical measurement (i.e. gap frequency or
character homogeneity). In the performance test
on a large eukaryotic 16S rRNA multiple align-
ment, our algorithm enabled automatic discovery
of the following structures from the aligned se-
quences with good accuracy: (1) Highly conser-
ved motifs with a shared context among a large
number of species. (2) Unique signature motif
present only in the sequences of a small number
of species. (3) Motifs adapted by a large number
of species in the same region of the molecule but
displaying variable sequence context among spe-
cies. This algorithm potentially leads to an e$-
cient and fully automated way of extracting
structural details from large datasets, thus facili-
tating faster and better signature discovery,
domain annotation, multiple alignment
optimization and high-resolution phylogenetic
treeing.
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FIG. A1. Geometric illustration of the Character homo-
geneity function (A.1) in a three-dimensional Euclidean
space, in which each dimension represents a character type
&&n

l
''. The shaded area corresponds to the convex polygon

de"ned by function (A.2). The lengths of the red arrows
correspond to speci"c values of h de"ned in eqn (A.1).
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APPENDIX

Homogeneity Measurement

We used h as a homogeneity measurement of
each column in eqn (9). Here is an empirical
explanation through a simple geometric approach:

Regarding h, we have the following equalities:

h"+
l|X

n2
l
, where X"M!, A,G,C,UN, (A.1)

+
l3X

n
l
"1, where n

l
*0 for ∀l. (A.2)

Suppose C"DXD, eqn (A.2) de"nes a convex poly-
gon in C-dimensional Euclidean space, and h cor-
responds to the distance from the origin to any
point in it (Fig. A1). Obviously, the distance to
the geometrical center Mn

l
"1/C, ∀lN of the poly-

gon gives h
min

. In terms of character distribution
in a column of multiple alignment, this means
that each type of character contributes equally,
causing maximal heterogeneity. As the point
moves away from the center to any of the axis,
h increases monotonically until it reaches an ex-
treme point Mn

i
"1, n

l
"0, ∀lOiN of the convex

polygon, where h is maximized. This situation
corresponds to the minimal possible heterogen-
eity of characters in a column: all characters
belong to the same type &&i''. In reality, if there
exists a predominant character &&i'' in a column,
h and n

i
has the following relationship:

h"+
l3?

n2
l
"n2

i
# +

l3?!i

n2
l

)n2
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l3?!i
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i
#1.

As an intuitive exempli"cation, this means,
an h score of 0.8 roughly corresponds to the case
in which a predominant character type &&i'' occurs
in at least 90% of the rows for a column.



FIG. 3. Comparison of H-segmentation results for two di!erent versions of multi-alignments of a same set of rRNA
sequences. Three types of segments, type 1 (red bar for strict and magenta bar for marginal segment), type 2 (blue down
triangle for major gaps segments ('200 bp) and blue for short ones ((150 bp)), and type 3 (green up triangle, were marked
on the sequence of Cryptococcus neoformans small subunit rRNA (1806bp, a member of the aligned sequence set) at the
original locations where they reside.

FIG. 5. The mapping of the type 1 (red and magenta shade), type 2 (blue arrows, only for major segments) and type 3 (green
shade) segments identi"ed by H-segmentation to the secondary structure of the Cryptococcus neoformans small subunit rRNA.
(a) Full structure, with the most stable thermodynamic foldings indicated by thick tick marks. (b) A structure
diagram with phylogenetically conserved and variable structure labeled out. Both structure diagrams were originally from
Gutell (1993).
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