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ABSTRACT

The problem of multimodal data mining in a multimedia
database can be addressed as a structured prediction prob-
lem where we learn the mapping from an input to the struc-
tured and interdependent output variables. In this paper,
built upon the existing literature on the max margin based
learning, we develop a new max margin learning approach
called Enhanced Max Margin Learning (EMML) framework.
In addition, we apply EMML framework to developing an
effective and efficient solution to the multimodal data min-
ing problem in a multimedia database. The main contri-
butions include: (1) we have developed a new max mar-
gin learning approach — the enhanced max margin learning
framework that is much more efficient in learning with a
much faster convergence rate, which is verified in empirical
evaluations; (2) we have applied this EMML approach to
developing an effective and efficient solution to the multi-
modal data mining problem that is highly scalable in the
sense that the query response time is independent of the
database scale, allowing facilitating a multimodal data min-
ing querying to a very large scale multimedia database, and
excelling many existing multimodal data mining methods in
the literature that do not scale up at all; this advantage is
also supported through the complexity analysis as well as
empirical evaluations against a state-of-the-art multimodal
data mining method from the literature. While EMML is
a general framework, for the evaluation purpose, we apply
it to the Berkeley Drosophila embryo image database, and
report the performance comparison with a state-of-the-art
multimodal data mining method.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining,Image databases; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval—
Retrieval models; 1.5.1 [Pattern Recognition]: Models—
Structural; J.3 [Computer Applications]: Life and Med-
ical Sciences—Biology and genetics
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1. INTRODUCTION

Multimodal data mining in a multimedia database is a
challenging topic in data mining research. Multimedia data
may consist of data in different modalities, such as digital
images, audio, video, and text data. In this context, a multi-
media database refers to a data collection in which there are
multiple modalities of data such as text and imagery. In this
database system, the data in different modalities are related
to each other. For example, the text data are related to im-
ages as their annotation data. By multimodal data mining
in a multimedia database it is meant that the knowledge
discovery to the multimedia database is initiated by a query
that may also consist of multiple modalities of data such as
text and imagery. In this paper, we focus on a multimedia
database as an image database in which each image has a
few textual words given as annotation. We then address
the problem of multimodal data mining in such an image
database as the problem of retrieving similar data and/or
inferencing new patterns to a multimodal query from the
database.

Specifically, in the context of this paper, multimodal data
mining refers to two aspects of activities. The first is the
multimodal retrieval. This is the scenario where a mul-
timodal query consisting of either textual words alone, or
imagery alone, or in any combination is entered and an ex-
pected retrieved data modality is specified that can also be
text alone, or imagery alone, or in any combination; the re-
trieved data based on a pre-defined similarity criterion are
returned back to the user. The second is the multimodal in-
ferencing. While the retrieval based multimodal data mining
has its standard definition in terms of the semantic similarity
between the query and the retrieved data from the database,
the inferencing based mining depends on the specific applica-
tions. In this paper, we focus on the application of the fruit
fly image database mining. Consequently, the inferencing
based multimodal data mining may include many different
scenarios. A typical scenario is the across-stage multimodal
inferencing. There are many interesting questions a biologist
may want to ask in the fruit fly research given such a mul-
timodal mining capability. For example, given an embryo



image in stage 5, what is the corresponding image in stage
7 for an image-to-image three-stage inferencing? What is
the corresponding annotation for this image in stage 7 for
an image-to-word three-stage inferencing? The multimodal
mining technique we have developed in this paper also ad-
dresses this type of across-stage inferencing capability, in
addition to the multimodal retrieval capability.

In the image retrieval research area, one of the notorious
bottlenecks is the semantic gap [18]. Recently, it is reported
that this bottleneck may be reduced by the multimodal data
mining approaches [3, 11] which take advantage of the fact
that in many applications image data typically co-exist with
other modalities of information such as text. The synergy
between different modalities may be exploited to capture the
high level conceptual relationships.

To exploit the synergy among the multimodal data, the
relationships among these different modalities need to be
learned. For an image database, we need to learn the rela-
tionship between images and text. The learned relationship
between images and text can then be further used in mul-
timodal data mining. Without loss of generality, we start
with a special case of the multimodal data mining problem
— image annotation, where the input is an image query and
the expected output is the annotation words. We show later
that this approach is also valid to the general multimodal
data mining problem. The image annotation problem can
be formulated as a structured prediction problem where the
input (image) x and the output (annotation) y are struc-
tures. An image can be partitioned into blocks which form
a structure. The word space can be denoted by a vector
where each entry represents a word. Under this setting, the
learning task is therefore formulated as finding a function
f:X xY — R such that

y = arg I;lggf(x, y) (1)

is the desired output for any input x.

In this paper, built upon the existing literature on the
max margin learning, we propose a new max margin learn-
ing approach on the structured output space to learn the
above function. Like the existing max margin learning meth-
ods, the image annotation problem may be formulated as a
quadratic programming (QP) problem. The relationship be-
tween images and text is discovered once this QP problem
is solved. Unlike the existing max margin learning meth-
ods, the new max margin learning method is much more
efficient with a much faster convergence rate. Consequently,
we call this new max margin learning approach as Enhanced
Max Margin Learning (EMML). We further apply EMML
to solving the multimodal data mining problem effectively
and efficiently.

Note that the proposed approach is general that can be
applied to any structured prediction problems. For the eval-
uation purpose, we apply this approach to the Berkeley
Drosophila embryo image database. Extensive empirical
evaluations against a state-of-the-art method on this database
are reported.

2. RELATED WORK

Multimodal approaches have recently received the sub-
stantial attention since Barnard and Duygulu et al. started
their pioneering work on image annotation [3, 10]. Recently
there have been many studies [4, 17, 11, 7, 9, 23] on the

multimodal approaches.

The learning with structured output variables covers many
natural learning tasks including named entity recognition,
natural language parsing, and label sequence learning. There
have been many studies on the structured model which in-
clude conditional random fields [14], maximum entropy model
[15], graph model [8], semi-supervised learning [6] and max
margin approaches [13, 21, 20, 2]. The challenge of learning
with structured output variables is that the number of the
structures is exponential in terms of the size of the struc-
ture output space. Thus, the problem is intractable if we
treat each structure as a separate class. Consequently, the
multiclass approach is not well fitted into the learning with
structured output variables.

As an effective approach to this problem, the max margin
principle has received substantial attention since it was used
in the support vector machine (SVM) [22]. In addition, the
perceptron algorithm is also used to explore the max margin
classification [12]. Taskar et al. [19] reduce the number of the
constraints by considering the dual of the loss-augmented
problem. However, the number of the constraints in their
approach is still large for a large structured output space
and a large training set.

For learning with structured output variables, Tsochan-
taridis et al. [21] propose a cutting plane algorithm which
finds a small set of active constraints. One issue of this al-
gorithm is that it needs to compute the most violated con-
straint which would involve another optimization problem in
the output space. In EMML, instead of selecting the most
violated constraint, we arbitrarily select a constraint which
violates the optimality condition of the optimization prob-
lem. Thus, the selection of the constraints does not involve
any optimization problem. Osuna et al. [16] propose the de-
composition algorithm for the support vector machine. In
EMML, we generalize their idea to the scenario of learning
with structured output variables.

3. HIGHLIGHTSOF THISWORK

This work is based on the existing literature on max mar-
gin learning, and aims at solving for the problem of multi-
modal data mining in a multimedia database defined in this
paper. In comparison with the existing literature, the main
contributions of this work include: (1) we have developed
a new max margin learning approach — the enhanced max
margin learning framework that is much more efficient in
learning with a much faster convergence rate, which is veri-
fied in empirical evaluations; (2) we have applied this EMML
approach to developing an effective and efficient solution to
the multimodal data mining problem that is highly scalable
in the sense that the query response time is independent of
the database scale, allowing facilitating a multimodal data
mining querying to a very large scale multimedia database,
and excelling many existing multimodal data mining meth-
ods in the literature that do not scale up at all; this advan-
tage is also supported through the complexity analysis as
well as empirical evaluations against a state-of-the-art mul-
timodal data mining method from the literature.

4. LEARNINGINTHE STRUCTURED OUT-
PUT SPACE

Assume that the image database consists of a set of in-
stances S = {(I;, W;)},, where each instance consists of
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Figure 1: An illustration of the image partitioning
and the structured output word space

an image object I; and the corresponding annotation word
set W;. First we partition an image into a set of blocks.
Thus, an image can be represented by a set of sub-images.
The feature vector in the feature space for each block can
be computed from the selected feature representation. Con-
sequently, an image is represented as a set of feature vectors
in the feature space. A clustering algorithm is then applied
to the whole feature space to group similar feature vectors
together. The centroid of a cluster represents a visual rep-
resentative (we refer it to VRep in this paper) in the image
space. In Figure 1, there are two VReps, water and duck
in the water. The corresponding annotation word set can
be easily obtained for each VRep. Consequently, the image
database becomes the VRep-word pairs S = {(xi,y;) }ie1,
where n is the number of the clusters, x; is a VRep ob-
ject and y,; is the word annotation set corresponding to this
VRep object. Another simple method to obtain the VRep-
word pairs is that we randomly select some images from the
image database and each image is viewed as a VRep.

Suppose that there are W distinct annotation words. An
arbitrary subset of annotation words is represented by the
binary vector y whose length is W; the j-th component
y; = 1 if the j-th word occurs in this subset, and 0 oth-
erwise. All possible binary vectors form the word space ).
We use w; to denote the j-th word in the whole word set.
We use x to denote an arbitrary vector in the feature space.
Figure 1 shows an illustrative example in which the original
image is annotated by duck and water which are represented
by a binary vector. There are two VReps after the clustering
and each has a different annotation. In the word space, a
word may be related to other words. For example, duck and
water are related to each other because water is more likely
to occur when duck is one of the annotation words. Conse-
quently, the annotation word space is a structured output
space where the elements are interdependent.

The relationship between the input example VRep x and
an arbitrary output y is represented as the joint feature
mapping ®(x,¥), ® : X x Y — R? where d is the dimension
of the joint feature space. It can be expressed as a linear
combination of the joint feature mapping between x and all
the unit vectors. That is

D(x,y) = Zyﬁ(x&j)

where e; is the j-th unit vector. The score between x and y

can be expressed as a linear combination of each component
in the joint feature representation: f(x,y) = (o, ®(x,¥)).
Then the learning task is to find the optimal weight vector
a such that the prediction error is minimized for all the
training instances. That is

arg max f(x;,y)~y;,, i=1--,n
yey @)

where V; = {7| Z]Vil y; = Z]Vil Y} We use ®;(3) to de-
note ®(x;,y). To make the prediction to be the true output
y;, we must follow

a'®(y;) >a'®i(y), VyeVi\ly:}

where YV;\{y,} denotes the removal of the element y, from
the set Y;. In order to accommodate the prediction error
on the training examples, we introduce the slack variable &;.
The above constraint then becomes

a'®i(y,)>a'®i(y)—& & >0 VyeVi\y}

We measure the prediction error on the training instances
by the loss function which is the distance between the true
output y, and the prediction ¥ . The loss function measures
the goodness of the learning model. The standard zero-one
classification loss is not suitable for the structured output
space. We define the loss function I(y,y;) as the number
of the different entries in these two vectors. We include the
loss function in the constraints as is proposed by Taskar et
al. [19]
T Ta (o -
a Pi(y;) 2 a @i(y)+ Uy, y,) —&
We interpret moﬁ [®:(y,;)—Pi(¥)] as the margin of y, over
another y € V® . We then rewrite the above constraint as
rar ' [@i(y;) = ®i(¥)] > rapll(¥,y,) — &l Thus, minimiz-
ing ||| maximizes such margin.
The goal now is to solve the optimization problem

. 1, 2 L.
min > o +C;&- (2)

st ol Bi(y) 2 al Bi(y) + U5,y ~ &
vy e Vi\y,}, & >0, i=1,---,n

where r = 1,2 corresponds to the linear or quadratic slack
variable penalty. In this paper, we use the linear slack vari-
able penalty. For r = 2, we obtain similar results. C' > 0
is a constant that controls the tradeoff between the training
error minimization and the margin maximization.

Note that in the above formulation, we do not introduce
the relationships between different words in the word space.
However, the relationships between different words are im-
plicitly included in the VRep-word pairs because the related
words is more likely to occur together. Thus, Eq. (2) is in
fact a structured optimization problem.

41 EMML Framework

One can solve the optimization problem Eq. (2) in the
primal space — the space of the parameters a. In fact this
problem is intractable when the structured output space is
large because the number of the constraints is exponential
in terms of the size of the output space. As in the tradi-
tional support vector machine, the solution can be obtained
by solving this quadratic optimization problem in the dual
space — the space of the Lagrange multipliers. Vapnik [22]



and Boyd et al. [5] have an excellent review for the related
optimization problem.

The dual problem formulation has an important advan-
tage over the primal problem: it only depends on the inner
products in the joint feature representation defined by @,
allowing the use of a kernel function. We introduce the
Lagrange multiplier p; 3 for each constraint to form the La-
grangian. We define ®;y, 3 = ®;(y;) — ®:(¥) and the kernel
function K((x:,¥), (xj,¥)) = (®iy,.5, Psy,.5). The deriva-
tives of the Lagrangian over a and &; should be equal to
zero. Substituting these conditions into the Lagrangian, we
obtain the following Lagrange dual problem

1 _ 3 _
min §§ piy i3 K (%0, 9), (%5, 9)— Y _pisl(¥,5:) (3)
.7 7

)
7Y Y#Y;
Y#Y;

st > iy <C pig>0 i=1-,n

Y#Y;i

After this dual problem is solved, we have ¢ = 3°, ¢ 11,5 ®Piy, 5

For each training example, there are a number of con-
straints related to it. We use the subscript ¢ to represent the
part related to the i-th example in the matrix. For example,
let p; be the vector with entries ;3. We stack the p; to-
gether to form the vector p. That is g = [1 ' -+ pn ']7.
Similarly, let S; be the vector with entries I(y,y;). We stack
S together to form the vector S. That is S =[S --- S} ] .
The lengths of u and S are the same. We define A; as
the vector which has the same length as that of p, where
Ay =1land Ajy =0for j #i. Let A = [A1---A,].
Let matrix D represent the kernel matrix where each entry
is K((x:,¥),(x;,¥)). Let C be the vector where each entry
is constant C.

With the above notations we rewrite the Lagrange dual
problem as follows

min %/,LTDN —u's (4)
s.t. Ap=<C
p=0

where < and > represent the vector comparison defined as
entry-wise less than or equal to and greater than or equal
to, respectively.

Eq. (4) has the same number of the constraints as Eq. (2).
However, in Eq. (4) most of the constraints are lower bound
constraints (p = 0) which define the feasible region. Other
than these lower bound constraints, the rest constraints de-
termine the complexity of the optimization problem. There-
fore, the number of constraints is considered to be reduced
in Eq. (4). However, the challenge still exists to solve it ef-
ficiently since the number of the dual variables is still huge.
Osuna et al. [16] propose a decomposition algorithm for the
support vector machine learning over large data sets. We
generalize this idea to learning with the structured output
space. We decompose the constraints of the optimization
problem Eq. (2) into two sets: the working set B and the
nonactive set N. The Lagrange multipliers are also corre-
spondingly partitioned into two parts gy and p,. We are
interested in the subproblem defined only for the dual vari-

able set 1 when keeping p =0 as follows

min %/,LTD/,L —u's (5)
s.t. Ap=<C

It is clearly true that we can move those piy = 0, ps,5 €
pp to set un without changing the objective function. Fur-
thermore, we can move those ;3 € py satisfying certain
conditions to set up to form a new optimization subprob-
lem which yields a strict decrease in the objective function
in Eq. (4) when the new subproblem is optimized. This
property is guaranteed by the following theorem.

THEOREM 1. Given an optimal solution of the subprob-
lem defined on pup in Eq. (5), if the following conditions
hold true:

i, Z@,Lti,@ <C

i € pn, o Py 5—1(7y) <0 (6)

the operation of moving the Lagrange multiplier p; y satisfy-
ing Eq. (6) from set un to set wp generates a new optimiza-
tion subproblem that yields a strict decrease in the objective
function in Eq. (4) when the new subproblem in Eq.(5) is
optimized.

PROOF. Suppose that the current optimal solution is p.
Let § be a small positive number. Let o = pu+de,-, where e,
is the r-th unit vector and r = (i,y) denotes the Lagrange
multiplier satisfying condition Eq. (6). Thus, the objective
function becomes

1
W(i) = 5(p+oe) Dip+de)—(u+de)'S
= %(NTDN +de, Dp+6p' De, + 6%¢, De,)
—p'S—de’'S

= W(p)+ %(&JDN +6p De, + 62 e;rDeT-)
—8e’' S
= W(u)+de, Du—de, S+ %52efDeT

_ 1
= W) +o(a’ Py, 5 —13.y:) + 507 iy, 5l

Since a ' ®;y. 5 — I(¥,y;) < 0, for small enough &, we
have W(z) < W(p). For small enough §, the constraints
Ap < C is also valid. Therefore, when the new optimiza-
tion subproblem in Eq. (5) is optimized, there must be an
optimal solution no worse than p. [

In fact, the optimal solution is obtained when there is no
Lagrange multiplier satisfying the condition Eq. (6). This is
guaranteed by the following theorem.

THEOREM 2. The optimal solution of the optimization prob-
lem in Eq. (4) is achieved if and only if the condition Eq. (6)
does not hold true.

PrROOF. If the optimal solution fi is achieved, the condi-
tion Eq. (6) must not hold true. Otherwise, [ is not op-
timal according to the Theorem 1. To prove in the reverse



direction, we consider the Karush-Kuhn-Tucker (KKT) con-
ditions [5] of the optimization problem Eq. (4).

Dpu—-S+A'y—7=0
7 (C—Ap) =0
TrTu:0

=0

T =0

For the optimization problem Eq. (4), the KKT conditions
provide necessary and sufficient conditions for optimality.
One can check that the condition Eq. (6) violates the KKT
conditions. On the other hand, one can check that the KKT
conditions are satisfied when the condition Eq. (6) does not
hold true. Therefore, the optimal solution is achieved when
the condition Eq. (6) does not hold true. [J

The above theorems suggest the Enhanced Max Margin
Learning (EMML) algorithm listed in Algorithm 1. The
correctness (convergence) of EMML algorithm is provided
by Theorem 3.

Algorithm 1 EMML Algorithm

Input: n labeled examples, dual variable set u.
Output: Optimized p

1: procedure

Arbitrarily decompose p into two sets: up and pun.

3: Solve the subproblem in Eq. (5) defined by the vari-
ables in uB.

4: While there exists piy € pp such that p;y = 0,
move it to set pun.

5: While there exists iy € pn satisfying condition
Eq. (6), move it to set up. If no such p; 5 € un exists,
the iteration exits.

6: Goto Step 3.

7: end procedure

v

THEOREM 3. EMML algorithm converges to the global op-
timal solution in a finite number of iterations.

ProOF. This is the direct result from Theorems 1 and 2.
Step 3 in Algorithm 1 strictly decreases the objective func-
tion of Eq. (4) at each iteration and thus the algorithm does
not cycle. Since the objective function of Eq. (4) is convex
and quadratic, and the feasible solution region is bounded,
the objective function is bounded. Therefore, the algorithm
must converge to the global optimal solution in a finite num-
ber of iterations. [

Note that in Step 5, we only need find one dual variable
satisfying Eq. (6). We need examine all the dual variables
in the set g, only when no dual variable satisfies Eq. (6).
It is fast to examine the dual variables in the set p, even if
the number of the dual variables is large.

4.2 Comparison with other methods

In the max margin optimization problem Eq. (2), only
some of the constraints determine the optimal solution. We
call these constraints active constraints. Other constraints
are automatically met as long as these active constraints are
valid. EMML algorithm uses this fact to solve the optimiza-
tion problem by substantially reducing the number of the
dual variables in Eq. (3).

In the recent literature, there are also other methods at-
tempting to reduce the number of the constraints. Taskar
et al. [19] reduce the number of the constraints by consider-
ing the dual of the loss-augmented problem. However, the
number of the constraints in their approach is still large for
a large structured output space and a large training set.
They do not use the fact that only some of the constraints
are active in the optimization problem. Tsochantaridis et
al. [21] also propose a cutting plane algorithm which finds a
small set of active constraints. One issue of this algorithm is
that it needs to compute the most violated constraint which
would involve another optimization problem in the output
space. In EMML, instead of selecting the most violated con-
straint, we arbitrarily select a constraint which violates the
optimality condition of the optimization problem. Thus, the
selection of the constraint does not involve any optimization
problem. Therefore, EMML is much more efficient in learn-
ing with a much faster convergence rate.

5. MULTIMODAL DATA MINING

The solution to the Lagrange dual problem makes it pos-
sible to capture the semantic relationships among different
data modalities. We show that the developed EMML frame-
work can be used to solve for the general multimodal data
mining problem in all the scenarios. Specifically, given a
training data set, we immediately obtain the direct rela-
tionship between the VRep space and the word space using
the EMML framework in Algorithm 1. Given this obtained
direct relationship, we show below that all the multimodal
data mining scenarios concerned in this paper can be facili-
tated.

5.1 Image Annotation

Image annotation refers to generating annotation words
for a given image. First we partition the test image into
blocks and compute the feature vector in the feature space
for each block. We then compute the similarity between
feature vectors and the VReps in terms of the distance. We
return the top n most-relevant VReps. For each VRep, we
compute the score between this VRep and each word as the
function f in Eq. (1). Thus, for each of the top n most
relevant VReps, we have the ranking-list of words in terms
of the score. We then merge these n ranking-lists and sort
them to obtain the overall ranking-list of the whole word
space. Finally, we return the top m words as the annotation
result.

In this approach, the score between the VReps and the
words can be computed in advance. Thus, the computa-
tion complexity of image annotation is only related to the
number of the VReps. Under the assumption that all the im-
ages in the image database follow the same distribution, the
number of the VReps is independent of the database scale.
Therefore, the computation complexity in this approach is
O(1) which is independent of the database scale.

5.2 Word Query

Word query refers to generating corresponding images in
response to a query word. For a given word input, we com-
pute the score between each VRep and the word as the func-
tion f in Eq. (1). Thus, we return the top n most relevant
VReps. Since for each VRep, we compute the similarity
between this VRep and each image in the image database
in terms of the distance, for each of those top n most rele-
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Figure 2: An example of 3-stage image-to-image in-
ferencing.

vant VReps, we have the ranking-list of images in terms of
the distance. Then we merge these n ranking-lists and sort
them to obtain the overall ranking-list in the image space.
Finally, we return the top m images as the query result.

For each VRep, the similarity between this VRep and each
image in the image database can be computed in advance.
Similar to the analysis in Sec. 5.1, the computation com-
plexity is only related to the number of the VReps, which is
o(1).

5.3 Image Retrieval

Image retrieval refers to generating semantically similar
images to a query image. Given a query image, we annotate
it using the procedure in Sec. 5.1. In the image database,
for each annotation word j there are a subset of images S;
in which this annotation word appears. We then have the
union set S = U;.S; for all the annotation words of the query
image.

On the other hand, for each annotation word j of the
query image, the word query procedure in Sec. 5.2 is used
to obtain the related sorted image subset T} from the image
database. We then merge these subsets T; to form the sorted
image set 1" in terms of their scores. The final image retrieval
result is R=SNT.

In this approach, the synergy between the image space and
the word space is exploited to reduce the semantic gap based
on the developed learning approach. Since the complexity
of the retrieval methods in Secs. 5.1 and 5.2 are both O(1),
and since these retrievals are only returned for the top few
items, respectively, finding the intersection or the union is
O(1). Consequently, the overall complexity is also O(1).

5.4 Multimodal Image Retrieval

The general scenario of multimodal image retrieval is a
query as a combination of a series of images and a series of
words. Clearly, this retrieval is simply a linear combination
of the retrievals in Secs. 5.2 and 5.3 by merging the retrievals
together based on their corresponding scores. Since each
individual retrieval is O(1), the overall retrieval is also O(1).

5.5 Across-Stage I nferencing

For a fruit fly embryo image database such as the Berke-
ley Drosophila embryo image database which is used for our
experimental evaluations, we have embryo images classified
in advance into different stages of the embryo development
with separate sets of textual words as annotation to those
images in each of these stages. In general, images in different
stages may or may not have the direct semantic correspon-
dence (e.g., they all correspond to the same gene), not even
speaking that images in different stages may necessarily ex-
hibit any visual similarity. Figure 2 shows an example of a
pair of identified embryo images at stages 9-10 (Figure 2(a))
and stages 13-16 (Figure 2(b)), respectively, in which they

A corresponding
image at stage |
as retrieval

An image at
stage i as query
Identified
Mapping

Domain
Ontology

AN Annotation word
[}

A, Setatstagej

Annotation word/” £
setatstagei ' A

Figure 3: An illustrative diagram for image-to-
image across two stages inferencing

both correspond to the same gene as a result of the image-
to-image inferencing between the two stages'. However, it
is clear that they exhibit a very large visual dissimilarity.

Consequently, it is not appropriate to use any pure visual
feature based similarity retrieval method to identify such
image-to-image correspondence across stages. Furthermore,
we also expect to have the word-to-image and image-to-word
inferencing capabilities across different stages, in addition to
the image-to-image inferencing.

Given this consideration, this is exactly where the pro-
posed approach for multimodal data mining can be applied
to complement the existing pure retrieval based methods to
identify such correspondence. Typically in such a fruit fly
embryo image database, there are textual words for anno-
tation to the images in each stage. These annotation words
in one stage may or may not have the direct semantic cor-
respondence to the images in another stage. However, since
the data in all the stages are from the same fruit fly embryo
image database, the textual annotation words between two
different stages share a semantic relationship which can be
obtained by a domain ontology.

In order to apply our approach to this across-stage infer-
encing problem, we treat each stage as a separate multime-
dia database, and map the across-stage inferencing problem
to a retrieval based multimodal data mining problem by ap-
plying the approach to the two stages such that we take the
multimodal query as the data from one stage and pose the
query to the data in the other stage for the retrieval based
multimodal data mining. Figure 3 illustrates the diagram
of the two stages (state ¢ and state j where i # j) image-to-
image inferencing.

Clearly, in comparison with the retrieval based multi-
modal data mining analyzed in the previous sections, the
only additional complexity here in across-stage inferencing

The Berkeley Drosophila embryo image database is given
in such a way that images from several real stages are mixed
together to be considered as one “stage”. Thus, stages 9-10
are considered as one stage, and so are stages 13-16.



is the inferencing part using the domain ontology in the word
space. Typically this ontology is small in scale. In fact, in
our evaluations for the Berkeley Drosophila embryo image
database, this ontology is handcrafted and is implemented
as a look-up table for word matching through an efficient
hashing function. Thus, this part of the computation may
be ignored. Consequently, the complexity of the across-stage
inferencing based multimodal data mining is the same as
that of the retrieval based multimodal data mining which is
independent of database scale.

6. EMPIRICAL EVALUATIONS

While EMML is a general learning framework, and it can
also be applied to solve for a general multimodal data min-
ing problem in any application domains, for the evaluation
purpose, we apply it to the Berkeley Drosophila embryo im-
age database [1] for the multimodal data mining task de-
fined in this paper. We evaluate this approach’s perfor-
mance using this database for both the retrieval based and
the across-stage inferencing based multimodal data mining
scenarios. We compare this approach with a state-of-the-art
multimodal data mining method MBRM [11] for the mining
performance.

In this image database, there are in total 16 stages of the
embryo images archived in six different folders with each
folder containing two to four real stages of the images; there
are in total 36,628 images and 227 words in all the six folders;
not all the images have annotation words. For the retrieval
based multimodal data mining evaluations, we use the fifth
folder as the multimedia database, which corresponds to
stages 11 and 12. There are about 5,500 images that have
annotation words and there are 64 annotation words in this
folder. We split the whole folder’s images into two parts (one
third and two thirds), with the two thirds used in the train-
ing and the one third used in the evaluation testing. For
the across-stage inferencing based multimodal data mining
evaluations, we use the fourth and the fifth folders for the
two stages inferencing evaluations, and use the third, the
fourth and the fifth folders for the three stages inferencing
evaluations. Consequently, each folder here is considered as
a “stage” in the across-stage inferencing based multimodal
data mining evaluations. In each of the inferencing scenar-
ios, we use the same split as we do in the retrieval based
multimodal data mining evaluations for training and test-
ing.

In order to facilitate the across-stage inferencing capabil-
ities, we handcraft the ontology of the words involved in
the evaluations. This is simply implemented as a simple
look-up table indexed by an efficient hashing function. For
example, cardiac mesoderm primordium in the fourth folder
is considered as the same as circulatory system in the fifth
folder. With this simple ontology and word matching, the
proposed approach may be well applied to this across-stage
inferencing problem for the multimodal data mining.

The EMML algorithm is applied to obtain the model pa-
rameters. In the figures below, the horizonal axis denotes
the number of the top retrieval results. We investigate the
performance from top 2 to top 50 retrieval results. Fig-
ure 4 reports the precisions and recalls averaged over 1648
queries for image annotation in comparison with MBRM
model where the solid lines are for precisions and the dashed
lines are for recalls. Similarly, Figure 5 reports the precisions
and recalls averaged over 64 queries for word query in com-

Table 1: Comparison of scalability

Database Size | 50 | 100 | 150
EMML 1 1 1
MBRM 1] 22| 33

0244 —=— EMML 140
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Figure 4: Precisions and Recalls of image annotation
between EMML and MBRM (the solid lines are for
precisions and the dashed lines are for recalls)

parison with MBRM model. Figure 6 reports the precisions
and recalls averaged over 1648 queries for image retrieval in
comparison with MBRM model.

For the 2-stage inferencing, Figure 7 reports the precisions
and recalls averaged over 1648 queries for image-to-word in-
ferencing in comparison with MBRM model, and Figure 8
reports the precisions and recalls averaged over 64 queries
for word-to-image inferencing in comparison with MBRM
model. Figure 9 reports the precisions and recalls averaged
over 1648 queries for image-to-image inferencing in compari-
son with MBRM model. Finally, for the 3-stage inferencing,
Figure 10 reports precisions and recalls averaged over 1100
queries for image-to-image inferencing in comparison with
MBRM model.

In summary, there is no single winner for all the cases.
Overall, EMML outperforms MBRM substantially in the
scenarios of word query and image retrieval, and slightly
in the scenario of 2-stage word-to-image inferencing and
3-stage image-to-image inferencing. On the other hand,
MBRM has a slight better performance than EMML in the
scenario of 2-stage image-to-word inferencing. For all other
scenarios the two methods have a comparable performance.

In order to demonstrate the strong scalability of EMML
approach to multimodal data mining, we take image anno-
tation as a case study and compare the scalability between
EMML and MBRM. We randomly select three subsets of the
embryo image database in different scales (50, 100, 150 im-
ages, respectively), and apply both methods to the subsets
to measure the query response time. The query response
time is obtained by taking the average response time over
1648 queries. Since EMML is implemented in MATLAB
environment and MBRM is implemented in C in Linux en-
vironment, to ensure a fair comparison, we report the scala-
bility as the relative ratio of a response time to the baseline
response time for the respective methods. Here the baseline



response time is the response time to the smallest scale sub-
set (i.e., 50 images). Table 1 documents the scalability com-
parison. Clearly, MBRM exhibits a linear scalability w.r.t
the database size while that of EMML is constant. This is
consistent with the scalability analysis in Sec. 5.

In order to verify the fast learning advantage of EMML
in comparison with the existing max margin based learn-
ing literature, we have implemented one of the most re-
cently proposed max margin learning methods by Taskar
et al. [19]. For the reference purpose, in this paper we
call this method as TCKG. We have applied both EMML
and TCKG to a small data set randomly selected from the
whole Berkeley embryo database, consisting of 110 images
along with their annotation words. The reason we use this
small data set for the comparison is that we have found that
in MATLAB platform TCKG immediately runs out of mem-
ory when the data set is larger, due to the large number of
the constraints, which is typical for the existing max margin
learning methods. Under the environment of 2.2GHz CPU
and 1GB memory, TCKG takes about 14 hours to complete
the learning for such a small data set while EMML only
takes about 10 minutes. We have examined the number of
the constraints reduced in both methods during their exe-
cutions for this data set. EMML has reduced the number
of the constraints in a factor of 70 times more than that
reduced by TCKG. This explains why EMML is about 70
times faster than TCKG in learning for this data set.

7. CONCLUSION

We have developed a new max margin learning framework
— the enhanced max margin learning (EMML), and applied
it to developing an effective and efficient multimodal data
mining solution. EMML attempts to find a small set of
active constraints, and thus is more efficient in learning than
the existing max margin learning literature. Consequently,
it has a much faster convergence rate which is verified in
empirical evaluations. The multimodal data mining solution
based on EMML is highly scalable in the sense that the
query response time is independent of the database scale.
This advantage is also supported through the complexity
analysis as well as empirical evaluations. While EMML is
a general learning framework and can be used for general
multimodal data mining, for the evaluation purpose, we have
applied it to the Berkeley Drosophila embryo image database
and have reported the evaluations against a state-of-the-art
multimodal data mining method.
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