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Abstract

To understand the relationship between genomic variatioreng population and
complex diseases, it is essential to detect eQTLs whichsaecéted with phe-
notypic effects. However, detecting eQTLs remains a chghledue to complex
underlying mechanisms and the very large number of germtidrivolved com-

pared to the number of samples. Thus, to address the problengesirable to

take advantage of the structure of the data and prior infoaomabout genomic
locations such as conservation scores and transcriptiorfainding sites.

In this paper, we propose a novel regularized regressioroaph for detecting
eQTLs which takes into account related traits simultankoukile incorporating
many regulatory features. We first present a Bayesian nktfeora multi-task
learning problem that includes priors on SNPs, making isfiide to estimate the
significance of each covariate adaptively. Then we find theimiam a posteriori
(MAP) estimation of regression coefficients and estimat@ts of covariates
jointly. This optimization procedure is efficient since @rcbe achieved by us-
ing a projected gradient descent and a coordinate descecequre iteratively.
Experimental results on simulated and real yeast datasafsm that our model
outperforms previous methods for finding eQTLs.

1 Introduction

One of the fundamental problems in computational biologip isnderstand associations between
genomic variations and phenotypic effects. The most comgenetic variations are single nu-
cleotide polymorphisms (SNPs), and many association esuative been conducted to find SNPs
that cause phenotypic variations such as diseases or genession traits [1]. However, association
mapping of causal QTLs or eQTLs remains challenging as theti@n of complex traits is a result
of contributions of many genomic variations. In this papes,focus on two important problems to
detect eQTLs. First, we need to find methods to take advaifathe structure of data for finding
association SNPs from high dimensional eQTL datasets when N, wherep is the number of
SNPs andV is the sample size. Second, we need techniques to take adeawitprior biological
knowledge to improve the performance of detecting eQTLs.

To address the first problem, Lasso is a widely used techrfigqukigh-dimensional association
mapping problems, which can yield a sparse and easily irdtaiple solution via af, regularization
[2]. However, despite the success of Lasso, it is limiteddonsidering each trait separately. If we
have multiple related traits it would be beneficial to esteneQTLs jointly since we can share
information among related traits. For the second problem, F shows some prior knowledge on
SNPs in a genome including transcription factor bindingss{fTFBS), 5’ UTR and exon, which play
important roles for the regulation of genes. For exampldBJEontrols the transcription of DNA
sequences to mRNAs. Intuitively, if SNPs are located onghiegions, they are more likely to be
true eQTLs compared to those on regions without such anaosatince they are related to genes or
gene regulations. Thus, it would be desirable to penaligeession coefficients less corresponding



SNPs
Chromosome
Transcription factor binding site 5 UTR Exon Annotation
Figure 1: Examples of prior knowledge on SNPs including transcripfiactor binding sites, 5° UTR and
exon. Arrows represent SNPs and we indicate three genomaaions on the chromosome. Here association

SNPs are denoted by red arrows (best viewed in color), shthist SNPs on regions with regulatory features
are more likely to be associated with traits.

to SNPs having significant annotations such as TFBS in aaegat regression model. Again, the
widely used Lasso is limited to treating all SNPs equally.

This paper presents a novel regularized regression agproattedadaptive multi-task Lassdo
effectively incorporate both the relatedness among malgiene-expression traits and useful prior
knowledge for challenging eQTL detection. Although soméehuds have been developed for either
adaptive or multi-task learning, to the best of our knowkdapdaptive multi-task Lasso is the first
method that can consider prior information on SNPs and aask learning simultaneously in one
single framework. For example, Lirnet uses prior knowledge&SNPs such as conservation scores,
non-synonymous coding and UTR regions for a better searabksufciation mappings [3]. However,
Lirnet considers the average effects of SNPs on gene moblyEessuming that association SNPs are
shared in a module. This approach is different from mukktiearning where association SNPs are
found for each trait while considering group effects oveltiple traits. To find genetic markers that
affect correlated traits jointly, the graph-guided fusex$o [4] was proposed to consider networks
over multiple traits within an association analysis. Hoem\graph-guided fused Lasso does not
incorporate prior knowledge of genomic locations.

Unlike other methods, we define the adaptive multi-task aass finding a MAP estimate of a
Bayesian network, which provides an elegant Bayesiangntéation of our approach; the resultant
optimization problem is efficiently solved with an alteringt minimization procedure. Finally, we
present empirical results on both simulated and real ye@§t elatasets, which demonstrates the
advantages of adaptive multi-task Lasso over many othepetitars.

2 Problem Definition: Adaptive Multi-task Lasso

Let X;; € {0,1,2} denote the number of minor alleles at tjith SNP ofi-th individual for

i =1,...,Nandj = 1,...,p. We haveK related gene traits anti* represents the gene
expression level ok-th gene ofi-th individual fork = 1,..., K. In our setting, we assume
that the K traits are related to each other and we explore the relassdnea multi-task learning
framework. To achieve the relatedness among tasks via ggugifects [5], we can use any
clustering algorithms such as spectral clustering or hitiaal clustering. In association mapping
problems, these clusters can be viewed as clusters of gériels onsist of regulatory networks or
pathways [4]. We treat the problem of detecting eQTLs asealimegression problem. The general
setting includes one design mattik and multiple tasks (genes) fer=1,.. ., K,

Y= XBF+¢ (1)

wheree is a standard Gaussian noise. We further assumeXhat are standardized such that
> Xij/N =0and)_; X% /N = 1, and consider a model without an intercept.

Now, the open question is how we can devise an appropria¢eidg function ovef that could ef-
fectively consider the desirable group effects over mldtipaits and incorporate useful prior knowl-
edge, as we have stated. To explain the motivation of our wokprovide a useful baseline that
grounds the proposed approach, we first briefly review thedstal Lasso and multi-task Lasso.

2.1 Lasso and Multi-task Lasso
Lasso [2] is a technique for estimating the regression aneffis 3 and has been widely used
for association mapping problems. Mathematically, it eslthe/; -regularized least square problem,

. 1 P
B = argmin 5|1V — XBII3 + A3 415, @

Jj=1



where\ determines the degree of regularization of nonz&roThe scaling parametefs € [0, 1]

are usually fixed (e.g., unit ones) or set by cross-valigatichich can be very difficult whep is
large. Due to the singularity at the origin, theregularization (Lasso penalty) can yield a stable and
sparse solution, which is desirable for association mappinblems because in most cases we have
p > N and there exists only a small number of eQTLSs. It is worth noaitg that Lasso estimates
are posterior mode estimates under a multivariate indepdndplace prior fofs [2].

As we can see from problem (2), the standard Lasso does nimigiish the inputs and regression
coefficients from different tasks. In order to capture somesirdble properties (e.g., shared
structures or sparse patterns) among multiple related tés& multi-task Lasso was proposed [5],
which solves the problem,

K )4
1 ; ,
min 5 > IV = XB5E+AD 01612 (3)
k=1 j=1
where|| 5|2 = Zk(ﬁf)Q is the £o-norm. This model encourages group-wise sparsity across

related tasks via th& /¢, regularization. Again, the solution of Eq. (3) can be intetpd as a MAP
estimate under appropriate priors witkedscaling parameters.

Multi-task Lasso has been applied (with some extension®@tform association analysis [4]. How-
ever, as we have stated, the limitation of current appraaisttbat they do not incorporate the useful
prior knowledge. The proposed adaptive multi-task Lassdg e presented, is an extension of the
multi-task Lasso to perform joirgroup-wiseandwithin-groupfeature selection and incorporate the
useful prior knowledge for effective association analysis

2.2 Adaptive Multi-task Lasso

Now, we formally introduce the adaptive multi-task Lassar Elarity, we first define theparse
multi-task Lassowith fixed scaling parameters, which will be a sub-problemtled adaptive
multi-task Lasso, as we shall see. Specifically, sparsa-task Lasso solves the problem,

K P K P
min 2 37 IV = XG4 E + X0 D06 D185+ 20 D pillgle @
k=1 j=1 k=1 j=1
wheref andp are the scaling parameters for theand?; /¢>-norm, respectively. The regularization
parameters; and\s can be determined by cross or holdout validation. Obviquisly model sub-
sumes the standard Lasso and multi-task Lasso, and it hees ddivantages over previous models.
First, unlike the multi-task Lasso, which contains thé/s-norm only to achieve group-wise spar-
sity, the/;-norm in Eq. (4) can achieve sparsity among SMikin a group. This property is useful
when K tasks are not perfectly related and we need additional ispémseach block of| 3;2. In
section 4, we demonstrate the usefulness of the blendetaretion. The hierarchical penaliza-
tion [6] can achieve amoothshrinkage effect for variables within a group, but it canachieve
within-group sparsity. Second, unlike Lasso we induce grsparsity across multiple related traits.
Finally, as to be extended, unlike Lasso and multi-task dagsich treat3; equally or with a fixed
scaling parameter, we can adaptively penalize ggchiccording to prior knowledge on covariates
in such a way that SNPs having desirable features are lesdipsh(see Fig. 1 for details of prior
knowledge on SNPs).

To incorporate the prior knowledge as we have stated, weggeio automatically learn the scaling
parametersd, p) from data. To that end, we defideandp as mixtures of features gith SNP, i.e.

0; = wifl andp; = wifi, 5)
t t

Whereftj is t-th feature forj-th SNP. For examplﬁtj can be a conservation scorejeth SNP or one
if the SNP is located on TFBS, zero otherwise. To avoid sgaieues, we assume each feature is

standardized, i.e}_; f7 =1, Vt. Since we are interested in the relative contributions fdifferent

features, we further add the constraints thatw, = 1 and)_, »» = 1. These constraints can be
interpreted as a regularization on the feature weights0 andv > 0.

Although using the definitions (5) in problem (4) and joinglstimatings and feature weightgu, /)
can give a solution of adaptive multi-task learning, theutesit method would be lack of an el-
egant Bayesian interpretation, which is a desirable ptgpbeat can make the framework more

3



flexible and easily extensible. Recall that the Lasso °
estimates can be interpreted as MAP estimates under

Laplace priors. Similarly, to achieve a framework ‘Q

that enjoys an elegant Bayesian interpretation, we . »e °

define a Bayesian network and treat the adaptive . /o

multi-task learning problem as finding its MAP

estimate. Specifically, we build a Bayesian network °

as shown in Fig. 2 in order to compute the MAP_

estimate of3 under adaptive scaling parameter§jigure 2: Graphical model representation of
{6, p}. We define the conditional probability gf adaptive multi-task Lasso.

given scaling parameters as,

p K P
P10, 0) = g ] T] exp (~0:1851) x [T exp (~psl2)
Z(e7p)j:1k:1 j=1
where Z (0, p) is a normalization factor, an®(Y'| X, 3) ~ N(X}3,X), whereX is the identity
matrix. Although in principle we can treéitandp as random variables and define a fully Bayesian
approach, for simplicity, we defin@ and p as deterministic functions @ andv as in Eq. (5).
Extension to a fully Bayesian approach is our future work.

Now we define theadaptive multi-task Lassas finding the MAP estimation ¢f and simultane-
ously estimating the feature weiglits, /), which is equivalent to solving the optimization problem,

K P K P
1
min 5> |YF = X85+ D0 > 1871+ A2 3 pillBs e + log Z (6, p), (6)
T T k=1 j=1 k=1 j=1
wherew andv are related t@ andp through Eq. (5) and subject to the constraints as definedeabov

Remark 1 Although we can interpret problem (4) as a MAP estimates afnder appropriate priors when
scaling parameters0, p) are fixed, it does not enjoy an elegant Bayesian interpretaifi we perform joint
estimation ofs and the scaling paramete(s, v) because it ignores normalization factors of the approgriat
priors. Lee et al. [3] used this approach where a regularizedression model is optimized over scaling
parameters ang jointly. Therefore, their method does not have an elegayeBian interpretation. Moreover,
as we have stated, Lee et al. [3] did not consider groupingot$fover multiple traits.

Remark 2 Our method also differs from the adaptive Lasso [7] , trangd@rning with meta-priors [8] and
the Bayesian Lasso [9]. First, although both adaptive Laasd our method use adaptive parameters for
penalizing regression coefficients, we learn adaptive peaters from prior knowledge on covariates in a multi-
task setting while adaptive Lasso uses ordinary least sgsalutions for adaptive parameters in a single task
setting. Second, the method of transfer learning with rpeiars [8] is similar to our method in a sense that
both use prior knowledge with multiple related tasks. Havewe couple related tasks Wa/¢2 penalty while
they couple tasks via transferring hyper-parameters anthiegn. Thus we have group sparsity across tasks
as well as sparsity in each group but they cannot induce gspgusity across different tasks. Finally, the
Bayesian Lasso [9] does not have the grouping effects inipheiltraits and the priors used usually do not
consider domain knowledge.

3 Optimization: an Alternating Minimization Approach

Now, we solve the adaptive multi-task Lasso problem (6)stFsince the normalization factdris
hard to compute, we use its upper bound, as given by,

K—1

j=1

This integral result is due to normalization constanftlimensional multivariate Laplace distri-
bution [10, 11]. Using this upper bound, the learning prabis to minimize an upper bound of the
objective function in problem (6), which will be denoted By, w, v) henceforth. AlthougiC is
not joint convex ovep, w andv, it is convex overs given{w, v} and convex ovefw, v} givenp.

We use an alternating optimization procedure which (1) mipés the upper bound of problem (6)
over{w, v} by fixing 8; and (2) minimizesC over 3 by fixing {w, v} iteratively until convergence
[12]. Both sub-problems are convex and can be solved efflgieia a projected gradient descent
method and a coordinate descent method, respectively.



For the first step of optimizing overw andv, the sub-problemis to solve
ettty 232 (— 10205 +0,1851) + D= (=K log ps + 5 185112).
J J

whereP, £ {w : > we = 1, wy > 0,Vt} is a simplex ovet, likewise forP,. 6 andp are
functions ofw andv as defined in Eq. (5). This constrained problem is convex ande solved by
using a gradient descent algorithm combined with a praeainto a simplex sub-space, which can
be efficiently done [13]. Since andv are not coupled, we can learn each of them separately.

For the second sub-problem that optimizeever s given fixed feature weightgv, v), it is exactly
the optimization problem (4). We can solve it using a coaatBrdescent procedure, which has been
used to optimize the sparse group Lasso [14]. Our probleriffées@hnt from the sparse group Lasso
in the sense that the sparse group Lasso includes groupyewat multiple covariates for a single
trait, while adaptive multi-task Lasso considers groug&® over multiple traits. Here we solve
problem (4) using a modified version of the algorithm propldfee the sparse group Lasso.

As summarized in Algorithm 1, the general optimization mauare is as follows: for eacfy we
check the group sparsity condition thist= 0. If it is true, no update is needed f65. Otherwise,
we check whethef” = 0 for eachk. Ifitis true thats} = 0, no update is needed féf'; otherwise,

we optimize problem (4) oveﬁi’C with all other coefficients fixed. This one-dimensional opta-
tion problem can be eff|C|entIy solved by using a standarihdpétion method. This procedure is
continued until a convergence condition is met.

More specifically, we first obtain the optimal conditions fwoblem (4) by computing the subgra-
dient of its objective function with respectﬂj€ and set it to zero:

X7 (Y* = XB") + Napsgy + Mk =0, 8)
Whereg andh are sub-gradients of thg /¢5-norm and the/;-norm, respectively. Note thgg? =

Hﬁ L if B; # 0, otherwise|g; |2 < 1; andh} = sign(B}) if B} # 0, otherwiseh} € [~1,1].

Then, we check the group sparsity ti#at= 0. To do that, we sef; = 0 in Eq. (8), and we have,

K
XY =XTS "X, B) = Xopjigi+Mi0;h;, and||g;|]3 = 21 . Z X7YP = XY X8y — MR

-y A2Pj (= oy
According to subgradient conditions, we need to havg #hat satisfies théess thaninequality

llg;13 < 1; otherwise 3; will be non-zero. Since; is a function ofh;, it suffices to check whether
the minimal squaré,-norm of g; is less than 1. Therefore, we solve the minimization probdém

lg;113 w.r.t b, which gives the optimal; as,

ck Lok
I sl =t )
7 ch .

SiQ”(T]ej) otherwise

wherecf=XTY* - XT3 X, 3F. If the minimal||g,|]3 is less than 1, ther; is zero and no
update is needed; otherwise, we continue to the next stdpecking Whetheﬂfzo, vk, as follows.

Again, we start by assumingf’ is zero. By setting$¥ = 0 in Eg. (8), we have,

X7Y* = X7 X8 = M0;h;, and hy = " 9 — (XFYF - XN X,B).
r#j r#£j
According to the definition of the subgradieltgt, it needs to satisfy the condition th|abl§| < 1;
otherwiseﬂk will be non-zero. This checking step can be easily done.rAfte check, if we have
ﬁ’“ # 0, the problem (4) becomes an one-dimensional optimizatiohlpm with respect tqﬂk and

the solution can be obtained using existing optimizatigoathms (e.g. optimize function in the
R). We used majorize-minimize algorithm with gradient aagd15].

With the above two steps, we iteratively optimize /) by fixing 8 and optimizes3 by fixing feature
weights until convergence. Note that the parameterand s in Eq. (4), which determine sparsity
levels, are determined by cross or hold-out validation.
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L

Iterate this procedure until convergence;

for j <+ 1topdo

m Agﬁ SRy (e = X10;h%)? wherec; andh are computed as in Eq. (9);
275

if m < 1then g¥ =0, forallk =1,...K;
else fork «+ 1to K do
q ﬁeﬂxf(yk - XB*) + XTI Xx;85;
if g < 1then6j’.c =0;
elseSolve the following one-dimensional optimization problem
BE argmin LIV = XB*13 + 265185+ X2p;sll 85123

B

end
end

Algorithm 1: Optimization algorithm for Equation (4) with fixed scalingnameters.

4 Simulation Study

To confirm the behavior of our model, we run the adaptive makk Lasso and other methods on
our simulated dataset (p=100, K=10). We first randomly $€l66 SNPs from 114 yeast genotypes
from the yeast eQTL dataset [16]. Following the simulatibrdyg in Kim et al. [4], we assume that
some SNPs affect biological networks including multipkts, and true causal SNPs are selected
by the following procedure. Three sets of randomly selefbed SNPs are associated with three
trait clusters(1 — 3), (4 — 6), (7 — 10), respectively. One SNP is associated with two clusters
(1 —3) and(4 — 6), and one causal SNP is for all traits — 10). For all association SNPs we
set identical association strength fran® to 1. Traits are generated by* = X g* + ¢, for all

k =1,...,10 wheree follows the standard normal distribution. We make 10 fesguf; — f10),

of which six are continuous and four are discrete. For thétfirge continuous featureg,(— f3),

the feature value is drawn froe{N (2, 1)) if a SNP is associated with any traits; otherwise from
s(N(1,1)), wheres(z) = ﬁp(m) is the sigmoid function. For the other three continuousufiesst

(fa— fs), the value is drawn from(V (2, 0.5)) if a SNP is associated with any traits; otherwise from
s(N(1,0.5)). Finally, for the discrete featurég, — f10), the value is set te(2) with probability
0.8 if a SNP is associated with any traits; otherwise{b). We standardize all the features.
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Figure 3:Results of the3 matrix estimated by different methods. For visualizatioe, present normalized
absolute values of regression coefficients and darker ©dhoply stronger association with traits. For each
matrix, X-axis represents traits (1-10) and Y-axis repnes&NPs (1-100). Trug is shown in the left.

Fig. 3 shows the estimatetmatrix by various methods including AML (adaptive multskd_asso),
SML (sparse multi-task Lasso which is AML without adaptiveights), A+, /{5 (AML without
Lasso penalty), Single SNP [17], Lasso ahd{., (multi-task learning witt¢; /¢, norm). In this
figure, X-axis represents traits (1-10) and Y-axis repres&NPs (1-100). Note that regression
parameters (e.g\; and\; for AML) were determined by holdout validation, and we setasation
strength to 0.3. We also used hierarchical clustering wittoff criterion 0.8 prior to run AML,
SML, A+¢, /45 and/; /4, and Single SNP and Lasso were analyzed for each trait separa

We investigate the effect of Lasso penalty in our model by garmg the results of AML and
A+/(1 /0. While AML is slightly more efficient than A# //5 in finding association SNPs, both



work very well for this task. It is not surprising since hiarhical clustering reproduced true trait
clusters and tru¢ could be detected without considering single SNP levelstyain each group.
To further validate the effectiveness of Lasso penalty, weAML and A+{; /{5 without a priori
clustering step. Interestingly, AML could pick correct SiiRits associations due to Lasso penalty,
however, A+, /¢, failed to do so (see Fig. 5c¢,d for the comparison of perforteinWhile Lasso
penalty did not show significant contribution for this taskem we generated a priori clusters, it is
good to include it when the quality of a clustering is not guaeed. Comparing the results of AML
and SML in Fig. 3, we could observe that adaptive weights awetthe performance significantly.
Adaptive weights help not only reduce false positives s itcrease true positives.

Fig. 4 shows the learned feature weights.ofv is al-

most identical tav and not shown here). The results are
based on 100 simulations for each association strength
0.3, 0.5, 0.8 and 1, and half of error bar represents one 5 .,
standard deviation from the mean. We could observe that = oc

0.16

discrete featureg; — f1o have highest weights while low- 06

est weights are assigned fg — f3. These weights are

reasonable becauge— f3 are drawn from Gaussian with CET G h e f h fy T o
large standard deviation (STD: 1) compared to that of fea- Features

turesfy, — f (STD: 0.5). Also, discrete features are theg;
most important since they discriminate true association
SNPs with a high probability 0.8.

gure 4:Learned feature weights of.
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Figure 5:ROC curves of various methods as association strengthsv@)e.3, (b) 0.5 on clustered data, (c)
0.3, and (d) 0.5 on input dataset. (a,b) Results on clusttata] where correct groups of gene traits are found
using hierarchical clustering (cutoff = 0.8). (c,d) Resuh input dataset without using clustering algorithm.

We compare the sensitivity and specificity of our model wittheo methods. In Fig. 5, we generated
ROC curves for association strength of 0.3 and 0.5. Fig. $lagiw the results with a priori hierar-
chical clustering and Fig. 5c¢,d is with no such preprocegsiaps. Using hierarchical clustering we
could correctly find three clusters of gene traits at cudd§f In Fig. 5, when association strength
is small (i.e., 0.3), AML and A# /¢- significantly outperformed other methods. As association
strength increased, the performance of multi-task legrmiethods improved quickly while meth-
ods based on a single trait such as Lasso and Single SNP skyoaddl increase of performance.

We computed test errors on 100 simulated dataset using 3plesifor test and 84 samples for
training. On average, AML achieved the best test error e 27, and the order of other methods
in terms of test errors is: A #; /¢ (0.9506), SML (1.0436),; /¢~ (1.0578) and Lasso (1.1080).

5 Yeast eQTL dataset

We analyze the yeast eQTL dataset [16] that contains exprekvels of 5,637 genes and 2,956
SNPs. The genotype data include genetic variants of 114 gtains that are progenies of the
standard laboratory strain (BY) and a wild strain (RM). Wedi441 modules given by Lee et al.
[3] as groups of gene traits, and extracted unique 1,260 $Rs2,956 SNPs for our analysis. For
prior biological knowledge on SNPs used for adaptive miakk Lasso, we downloaded 12 features
from Saccharomyces Genome Database (http://www.yeastyeiorg) including 11 discrete and 1
continuous feature (conservation score). For a discret@ife, we set its value g8 = s(2) if the
feature is found on thith SNP,f{ = s(1) otherwise. For conservation score, we get= s(score.

All the features are then standardized.



Fig. 6 represents learned from the yeast eQTL dataset
(v is almost identical tay). The features are ncRNA(),
noncoding exonfz), SNRNA (f3), tRNA (fy), intron (f5),
binding site (), 5’ UTR intron (f), LTR retrotranspo- N
son (fs), ARS (fy), SnoRNA (f1o), transposable element
gene (f11) and conservation scorg (). Five discrete fea-
tures turn out to be important including ncRNA, snRNA,
binding site, 5’ UTR intron and snoRNA as well as one T ot T ot
continuous feature, i.e., conservation score. These re- " Feawres

sults agree with biological insights. For example, N"CRNAjgure 6:Learned weights af on the yeast
snRNA and snoRNA are potentially important for geneQTL dataset.

regulation since they are functional RNA molecules hav-

ing a variety of roles such as transcriptional regulatio8].[1Also, conservation score would be
significant since mutation in conserved region is moreilktelresult in phynotypic effects.

Il binding sites
five prime UTR intron
——conservation scores
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Figure 7:Plot of 121 SNPs on chromosome 1 and 2 vs the number of gereeaffoy the SNPs from the
yeast eQTL analysis (blue bar). Five significant prior kreige on SNPs are overlapped with the plot. For
the four discrete priors (ncRNA, snRNA, binding site, 5’ UTiRron) we set the value to 1 if annotated, 0
otherwise. Binding sites and regions with no associatéts taee denoted by long green and short blue arrows.

Fig. 7 shows the number of associated genes for SNPs on ckoon®ol and 2, superimposed on 5
significant features. We see that association mappingtsesete affected by both priors and data.
For example, genomic region indicated by blue arrow showakwassociation with traits, where
conservation score is low and no other annotations exisb Ak can see that three SNPs located on
binding sites affect a larger number of gene traits (seergae@ws). As an example of biological
analysis, we investigate these three association SNPs.tHfée SNPs are located on telomeres
(chr1:483, chrl:229090, chr2:9425 (chromosome:cootd)haand these genomic locations are in
cis to Abflp (autonomously replicating sequence bindingdal) binding sites. In biology, it is
known that Abflp acts as a global transcriptional regulatgeast [19]. Thus, the genomic regions
in telomeres would be good candidates for novel putativelel@spots that regulate the expression
levels of many genes. They were not reported as eQTL hotsp¥teert et al. [20].

6 Conclusions

In this paper, we proposed a novel regularized regressiatemeeferred to as adaptive multi-task
Lasso, which takes into account multiple traits simultarsipwhile weights of different covariates
are learned adaptively from prior knowledge and data. Quukition results support that our model
outperforms other methods via and ¢, /¢, penalty over multiple related genes, and especially
adaptively learned regularization significantly improtiee performance. In our experiments on the
yeast eQTL dataset, we could identify putative three eQTispts with biological supports where
SNPs are associated with a large number of genes.
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