

Learning Graphical Models

The goal:
Given set of independent samples (assignments of random variables), find the best (the most likely?) graphical model (both the graph and the CPDs)

$(B, E, A, C, R)=(T, F, F, T, F)$
$(B, E, A, C, R)=(T, F, T, T, F)$
(B,E,A,C,R)=(F,T,T,T,F)

Learning Graphical Models

- Scenarios:
- completely observed GMs
- directed
- undirected
$\sqrt{ }$
$\sqrt{2}$
- partially observed GMs
- directed $\sqrt{ }$
- undirected (an open research topic)
- Estimation principles:
- Maximal likelihood estimation (MLE)
- Bayesian estimation
- Maximal conditional likelihood
- Maximal "Margin"
- We use learning as a name for the process of estimating the parameters, and in some cases, the topology of the network, from data.

- The data:

$$
\left\{\left(z^{(1)}, x^{(1)}\right),\left(z^{(2)}, x^{(2)}\right),\left(z^{(3)}, x^{(3)}\right), \ldots\left(z^{(N)}, x^{(N)}\right)\right\}
$$

\qquad

The basic idea underlying MLE

- Likelihood
(for now let's assume that the structure is given):

$$
L(\boldsymbol{\theta} \mid X)=p(X \mid \boldsymbol{\theta})=p\left(X_{1} \mid \theta_{1}\right) p\left(X_{2} \mid \theta_{2}\right) p\left(X_{3} \mid X_{3}, X_{3} ; \theta_{3}\right)
$$

- Log-Likelihood:
$l(\boldsymbol{\theta} \mid X)=\log p(X \mid \boldsymbol{\theta})=\log p\left(X_{1} \mid \theta_{1}\right)+\log p\left(X_{2} \mid \theta_{2}\right)+\log p\left(X_{3} \mid X_{3}, X_{3}, \theta_{3}\right)$
- Data log-likelihood

$$
\begin{aligned}
& l(\boldsymbol{\theta} \mid D A T A)=\log \prod_{n} p\left(X_{n} \mid \boldsymbol{\theta}\right) \\
& \quad=\sum_{n} \log p\left(X_{n, 1} \mid \theta_{1}\right)+\sum_{n} \log p\left(X_{n, 2} \mid \theta_{2}\right)+\sum_{n} \log p\left(X_{n, 3} \mid X_{n, 1} X_{n, 2}, \theta_{3}\right)
\end{aligned}
$$

- MLE

$$
\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}_{M L E}=\arg \max l(\boldsymbol{\theta} \mid D A T A)
$$

$\theta_{1}^{*}=\arg \max \sum \log p\left(X_{n, 1} \mid \theta_{1}\right), \quad \theta_{2}^{*}=\arg \max \sum \log p\left(X_{n, 2} \mid \theta_{2}\right), \quad \theta_{3}^{*}=\arg \max \sum \log p\left(X_{n, 3} \mid X_{n, 1} X_{n, 2}, \theta_{3}\right)$

Example 1: conditional Gaussian

- The completely observed model:
- Z is a class indicator vector

where $Z^{m}=[0,1]$, and $\sum Z^{m}=1$
and a datum is in class i w.p. π_{i}
$p\left(z^{i}=1 \mid \pi\right)=\pi_{i}=\pi_{1}^{z^{1}} \times \pi_{2}^{z^{2}} \times \ldots \times \pi_{M}^{z^{M}} \quad \begin{aligned} & \text { All except one } \\ & \text { of these terms } \\ & \text { will be one }\end{aligned}$

$$
p(z)=\prod \pi_{m}^{z^{m}}
$$

- X is a conditional Gaussian variable with a class-specific mean

$$
\begin{gathered}
p\left(x \mid z^{m}=1, \mu, \sigma\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(x-\mu_{m}\right)^{2}\right\} \\
p(x \mid z, \mu, \sigma)=\prod_{m} N\left(x \mid \mu_{m}, \sigma\right)^{z^{m}}
\end{gathered}
$$

Eric Xing \qquad

Example 1: conditional Gaussian

- Data log-likelihood

$$
\begin{aligned}
& l(\theta \mid D)=\log \prod_{n} p\left(z_{n}, x_{n}\right)=\log \prod_{n} p\left(z_{n} \mid \pi\right) p\left(x_{n} \mid z_{n}, \mu, \sigma\right) \\
& \quad=\sum_{n} \log p\left(z_{n} \mid \pi\right)+\sum_{n} \log p\left(x_{n} \mid z_{n}, \mu, \sigma\right) \\
& \quad=\sum_{n}^{n} \log \prod_{m} \pi_{m}^{z_{m}^{m}}+\sum_{n} \log \prod_{m} N\left(x_{n} \mid \mu_{m}, \sigma\right)^{z_{n}^{m}} \\
& \quad=\sum_{n} \sum_{m} z_{n}^{m} \log \pi_{m}-\sum_{n} \sum_{m} z_{n}^{m} \frac{1}{2 \sigma^{2}}\left(x_{n}-\mu_{m}\right)^{2}+C
\end{aligned}
$$

- MLE

$$
\begin{aligned}
& \pi_{m}^{*}=\arg \max l(\boldsymbol{\theta} \mid D), \quad \Rightarrow \frac{\partial}{\partial \pi_{m}} l(\boldsymbol{\theta} \mid D)=0, \forall m, \quad \text { s.t. } \sum_{\mathrm{m}} \pi_{m}=1 \\
& \Rightarrow \pi_{m}^{*}=\sum_{n} z_{n}^{m} / N=n_{m} / N \quad \\
& \quad \begin{array}{l}
\text { the fraction of } \\
\text { samples of class } m
\end{array} \\
& \mu_{m}^{*}=\arg \max l(\boldsymbol{\theta} \mid D), \Rightarrow \mu_{m}^{*}=\frac{\sum_{n} z_{n}^{m} x_{n}}{\sum_{n} z_{n}^{m}}=\frac{\sum_{n} z_{n}^{m} x_{n}}{n_{m}} \quad \begin{array}{l}
\text { the average of } \\
\text { samples of class } m
\end{array}
\end{aligned}
$$

Example 2: HMM: two scenarios

- Supervised learning: estimation when the "right answer" is known
- Examples:

GIVEN: a genomic region $x=x_{1} \ldots x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
- Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition
GIVEN: $\quad 10,000$ rolls of the casino player, but we don't see when he changes dice

- QUESTION: Update the parameters θ of the model to maximize $P(x \mid \theta)$ --- Maximal likelihood (ML) estimation

Recall definition of HMM

- 0
- Transition probabilities between any two states

$$
p\left(y_{t}^{j}=1 \mid y_{t-1}^{i}=1\right)=a_{i, j}
$$

or $p\left(y_{t} \mid y_{t-1}^{i}=1\right) \sim \operatorname{Multinomial}\left(a_{i, 1}, a_{i, 2}, \ldots, a_{i, M}\right), \forall i \in \mathbb{I}$.

- Start probabilities

$$
p\left(y_{1}\right) \sim \operatorname{Multinomial}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{M}\right) .
$$

- Emission probabilities associated with each state

$$
p\left(x_{t} \mid y_{t}^{i}=1\right) \sim \operatorname{Multinomial}\left(b_{i, 1}, b_{i, 2}, \ldots, b_{i, K}\right), \forall i \in \mathbb{I} .
$$

or in general: $\quad p\left(x_{t} \mid y_{t}^{i}=1\right) \sim \mathrm{f}\left(\cdot \mid \theta_{i}\right), \forall i \in \mathbb{I}$.

Supervised ML estimation

- Given $x=x_{1} \ldots x_{N}$ for which the true state path $y=y_{1} \ldots y_{N}$ is known,
- Define:

$$
\begin{array}{ll}
A_{i j} & =\# \text { times state transition } i \rightarrow j \text { occurs in } \mathbf{y} \\
B_{i k} & =\# \text { times state } i \text { in } \mathbf{y} \text { emits } k \text { in } \mathbf{x}
\end{array}
$$

- We can show that the maximum likelihood parameters θ are:

$$
\begin{aligned}
& a_{i j}^{M L}=\frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=2}^{T} y_{n, t-1}^{i} y_{n, t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n, t-1}^{i}}=\frac{A_{i j}}{\sum_{j^{\prime}} A_{i j^{\prime}}} \\
& b_{i k}^{M L}=\frac{\#(i \rightarrow k)}{\#(i \rightarrow \bullet)}=\frac{\sum_{n} \sum_{t=1}^{T} y_{n, t}^{i} x_{n, t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n, t}^{i}}=\frac{B_{i k}}{\sum_{k^{\prime}} B_{i k^{\prime}}}
\end{aligned}
$$

- What if \mathbf{x} is continuous? We can treat $\left\{\left(x_{n, t}, y_{n, t}\right): t=1: T, n=1: N\right\}$ as $N_{\times} \boldsymbol{T}$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Supervised ML estimation, ctd.

- Intuition:
- When we know the underlying states, the best estimate of θ is the average frequency of transitions \& emissions that occur in the training data
- Drawback:
- Given little data, there may be overfitting:
- $P(x \mid \theta)$ is maximized, but θ is unreasonable

0 probabilities - VERY BAD

- Example:
- Given 10 casino rolls, we observe

$$
\begin{aligned}
& \mathrm{x}=\mathbf{2}, \mathbf{1}, \mathbf{5}, \mathbf{6}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{6}, \mathbf{2}, \mathbf{3} \\
& \mathbf{y}=\mathrm{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathbf{F}, \mathrm{~F}, \mathrm{~F} \\
& \mathrm{a}_{\mathrm{FF}}=1 ; \quad \mathrm{a}_{\mathrm{FL}}=0 \\
& \mathrm{~b}_{\mathrm{F} 1}=\mathrm{b}_{\mathrm{F} 3}=.2 ; \\
& \mathrm{b}_{\mathrm{F} 2}=.3 ; \mathrm{b}_{\mathrm{F} 4}=0 ; \mathrm{b}_{\mathrm{F} 5}=\mathrm{b}_{\mathrm{F} 6}=.1
\end{aligned}
$$

- Then:

Pseudocounts

- Solution for small training sets:
- Add pseudocounts
$A_{i j} \quad=\#$ times state transition $i \rightarrow j$ occurs in $\mathbf{y}+R_{i j}$
$B_{i k} \quad=\#$ times state i in \mathbf{y} emits k in $\mathbf{x}+S_{i k}$
- $R_{i j}, S_{i j}$ are pseudocounts representing our prior belief
- Total pseudocounts: $R_{i}=\Sigma_{j} R_{i j}, S_{i}=\Sigma_{k} S_{i k}$,
- --- "strength" of prior belief,
- --- total number of imaginary instances in the prior
- Larger total pseudocounts \Rightarrow strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --- smoothing
- This is equivalent to Bayesian est. under a uniform prior with "parameter strength" equals to the pseudocounts

MLE for general BNs

- If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the loglikelihood function decomposes into a sum of local terms, one per node:

$$
\begin{aligned}
\ell(\theta ; D) & =\log p(D \mid \theta) \\
& =\log \prod_{n}\left(\prod_{i} p\left(x_{n, i} \mid \mathbf{x}_{\pi_{i}}, \theta_{i}\right)\right) \\
& =\sum_{i}\left(\sum_{n} \log p\left(x_{n, i} \mid \mathbf{x}_{\pi_{i}}, \theta_{i}\right)\right)
\end{aligned}
$$

Example: A directed model

- Consider the distribution defined by the directed acyclic GM:

$$
p(x \mid \theta)=p\left(x_{1} \mid \theta_{1}\right) p\left(x_{2} \mid x_{1}, \theta_{1}\right) p\left(x_{3} \mid x_{1}, \theta_{3}\right) p\left(x_{4} \mid x_{2}, x_{3}, \theta_{1}\right)
$$

- This is exactly like learning four separate small BNs, each of which consists of a node and its parents.

MLE for BNs with tabular CPDs

- Assume each CPD is represented as a table (multinomial) where

$$
\theta_{i j k} \stackrel{\operatorname{def}}{=} p\left(X_{i}=j \mid X_{\pi_{i}}=k\right)
$$

- Note that in case of multiple parents, $\mathbf{X}_{\pi_{i}}$ will have a composite
state, and the CPD will be a high-dimensional table
- The sufficient statistics are counts of family configurations

$$
n_{i j k} \stackrel{\text { def }}{=} \sum_{n} x_{n, i}^{j} x_{n, \pi_{i}}^{k}
$$

- The log-likelihood is

$$
\ell(\theta ; \boldsymbol{D})=\log \prod_{i, j, k} \theta_{i j k}^{n_{j k}}=\sum_{i, j, k} n_{i j k} \log \theta_{i j k}
$$

- Using a Lagrange multiplier to enforce $\sum_{j} \theta_{i j k}=1$, we get:

$$
\theta_{i j k}^{M L}=\frac{n_{i j k}}{\sum_{i, j^{\prime}, k} n_{i j^{\prime} k}}
$$

Information Theoretic Interpretation of ML

$$
\begin{aligned}
\ell\left(\theta_{G}, G ; D\right) & =\log p\left(D \mid \theta_{G}, G\right) \\
& =\log \prod_{n}\left(\prod_{i} p\left(x_{n, i} \mid \mathbf{x}_{n, \pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}\right)\right) \\
& =\sum_{i}\left(\sum_{n} \log p\left(x_{n, i} \mid \mathbf{x}_{n, \pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}\right)\right) \\
& =M \sum_{i}\left(\sum_{x_{i}, x_{i+i}(G)} \frac{\operatorname{count}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}\right)}{M} \log p\left(x_{i} \mid \mathbf{x}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}\right)\right) \\
& =M \sum_{i}\left(\sum_{x_{i}, x_{i /(G)}} \hat{p}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}\right) \log p\left(x_{i} \mid \mathbf{x}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}\right)\right)
\end{aligned}
$$

From sum over data points to sum over count of variable states

Information Theoretic Interpretation of ML (con'd)

$$
\begin{aligned}
\ell\left(\theta_{G}, G ; D\right) & =\log \hat{p}\left(D \mid \theta_{G}, G\right) \\
& =M \sum_{i}\left(\sum_{x_{i}, x_{i}(G)} \hat{p}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}\right) \log \hat{p}\left(x_{i} \mid \mathbf{x}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}\right)\right) \\
& =M \sum_{i}\left(\sum_{x_{i}, x_{i / i}(G)} \hat{p}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}\right) \log \frac{\hat{p}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}\right)}{\hat{p}\left(\mathbf{x}_{\pi_{i}(G)}\right)} \frac{\hat{p}\left(x_{i}\right)}{\hat{p}\left(x_{i}\right)}\right) \\
& =M \sum_{i}\left(\sum_{x_{i}, x_{\pi_{i}(G)}} \hat{p}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}\right) \log \frac{\hat{p}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}, \theta_{i \mid \pi_{i}(G)}\right)}{\hat{p}\left(\mathbf{x}_{\pi_{i}(G)}\right) \hat{p}\left(x_{i}\right)}\right)-M \sum_{i}\left(\sum_{x_{i}} \hat{p}\left(x_{i}\right) \log p\left(x_{i}\right)\right) \\
& =M \sum_{i} \hat{I}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}\right)-M \sum_{i} \hat{H}\left(x_{i}\right)
\end{aligned}
$$

Decomposable score and a function of the graph structure

- How many graphs over n nodes? $O\left(2^{n^{2}}\right)$
- How many trees over n nodes?
$O(n!)$
- But it turns out that we can find exact solution of an optimal tree (under MLE)!
- Trick: in a tree each node has only one parent!
- Chow-liu algorithm

Chow-Liu tree learning algorithm

- Objection function:

$$
\begin{aligned}
\ell\left(\theta_{G}, G ; D\right) & =\log \hat{p}\left(D \mid \theta_{G}, G\right) \\
& =M \sum_{i} \hat{I}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}\right)-M \sum_{i} \hat{H}\left(x_{i}\right)
\end{aligned} \Rightarrow C(G)=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}\right)
$$

- Chow-Liu:
- For each pair of variable x_{i} and x_{j}
- Compute empirical distribution: $\hat{p}\left(X_{i}, X_{j}\right)=\frac{\operatorname{count}\left(x_{i}, x_{j}\right)}{M}$
- Compute mutual information: $\hat{I}\left(X_{i}, X_{j}\right)=\sum_{x_{i}, x_{j}} \hat{p}\left(x_{i}, x_{j}\right) \log \frac{\hat{p}\left(x_{i}, x_{j}\right)}{\hat{p}\left(x_{i}\right) \hat{p}\left(x_{j}\right)}$
- Define a graph with node x_{1}, \ldots, x_{n}
- Edge ($1, \mathrm{j})$ gets weight $\hat{I}\left(X_{i}, X_{j}\right)$

Chow-Liu algorithm (con'd)

- Objection function:

$$
\begin{aligned}
\ell\left(\theta_{G}, G ; D\right) & =\log \hat{p}\left(D \mid \theta_{G}, G\right) \\
& =M \sum_{i} \hat{I}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}\right)-M \sum_{i} \hat{H}\left(x_{i}\right)
\end{aligned} \Rightarrow C(G)=M \sum_{i} \hat{I}\left(x_{i}, \mathbf{x}_{\pi_{i}(G)}\right)
$$

- Chow-Liu:

Optimal tree BN

- Compute maximum weight spanning tree
- Direction in BN: pick any node as root, do breadth-first-search to define directions
- I-equivalence:

$C(G)=I(A, B)+I(A, C)+I(C, D)+I(C, E)$

Structure Learning for general graphs

- Theorem:
- The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) $d \geq 2$
- Most structure learning approaches use heuristics
- Exploit score decomposition
- Two heuristics that exploit decomposition in different ways
- Greedy search through space of node-orders
- Local search of graph structures

Order search versus graph search

- Order search advantages
- For fixed order, optimal BN -more "global"optimization
- Space of orders much smaller than space of graphs
- Graph search advantages
- Not restricted to k parents
- Especially if exploiting CPD structure, such as CSI
- Cheaper per iteration
- Finer moves within a graph

Bayesian model averaging

- Probabilistic statements of Θ is conditioned on the values of the observed variables $\mathbf{A}_{\text {obs }}$ and prior $p(\mid \chi)$

$(A, B, C, D, E, \ldots)=(T, F, F, T, F, \ldots)$
$\mathbf{A}=(A, B, C, D, E, \ldots)=(T, F, T, T, F, \ldots)$
$(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \ldots)=(\mathrm{F}, \mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{F}, \ldots)$

$$
\Theta_{\text {Bayes }}=\int \Theta p(\Theta \mid \mathbf{A}, \chi) d \Theta
$$

Learning partially observed GMs

- The data:
$\left\{\left(x^{(1)}\right),\left(x^{(2)}\right),\left(x^{(3)}\right), \ldots\left(x^{(N)}\right)\right\}$

Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components:

$$
p\left(x_{n} \mid \mu, \Sigma\right)=\sum_{k} \underbrace{\pi_{k} N(x, \mid}_{\text {mixture proportion mixture component }} \underbrace{}_{\left.\mu_{k}, \Sigma_{k}\right)}
$$

- This model can be used for unsupervised clustering.
- This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components:
- Z is a latent class indicator vector:

$$
p\left(z_{n}\right)=\operatorname{multi}\left(z_{n}: \pi\right)=\prod_{k}\left(\pi_{k}\right)^{z_{n}^{k}}
$$

- X is a conditional Gaussian variable with a class-specific mean/covariance

$$
p\left(x_{n} \mid z_{n}^{k}=1, \mu, \Sigma\right)=\frac{1}{(2 \pi)^{m / 2}\left|\Sigma_{k}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(x_{n}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{n}-\mu_{k}\right)\right\}
$$

- The likelihood of a sample:

$$
\begin{aligned}
p\left(x_{n} \mid \mu, \Sigma\right) & =\sum_{k} p\left(z^{k}=1 \mid \pi\right) p\left(x, \mid z^{k}=1, \mu, \Sigma\right) \quad \text { mixture proportion } \\
& =\sum_{z_{n}} \prod_{k}\left(\left(\pi_{k}\right)^{z_{n}^{k}} N\left(x_{n}: \mu_{k}, \Sigma_{k}\right)^{z_{n}^{k}}\right)=\sum_{k} \pi_{k} N\left(x, \mid \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Why is Learning Harder?

- In fully observed iid settings, the log likelihood decomposes into a sum of local terms (at least for directed models).

$$
\boldsymbol{\ell}_{c}(\theta ; D)=\log p(x, z \mid \theta)=\log p\left(z \mid \theta_{z}\right)+\log p\left(x \mid z, \theta_{x}\right)
$$

- With latent variables, all the parameters become coupled together via marginalization

29

Toward the EM algorithm

- Recall MLE for completely observed data
- Data log-likelihood

$$
\begin{aligned}
\ell(\theta ; D) & =\log \prod_{n} p\left(z_{n}, x_{n}\right)=\log \prod_{n} p\left(z_{n} \mid \pi\right) p\left(x_{n} \mid z_{n}, \mu, \sigma\right) \\
& =\sum_{n} \log \prod_{k}^{2_{k}^{k}}+\sum_{n} \log \prod_{k} N\left(x_{n} ; \mu_{k}, \sigma\right)^{2_{n}^{k}} \\
& =\sum_{n} \sum_{k} z_{n}^{k} \log \pi_{k}-\sum_{n} \sum_{k} z_{n}^{k} \frac{1}{2 \sigma^{2}}\left(x_{n}-\mu_{k}\right)^{2}+C
\end{aligned}
$$

- MLE $\hat{\pi}_{k, M L E}=\arg \max _{\pi} \ell(\theta ; D)$,

$$
\hat{\mu}_{k, M L E}=\arg _{\max }^{\mu}{ }_{\mu} \boldsymbol{\ell}(\boldsymbol{\theta} ; D)
$$

$$
\hat{\sigma}_{K, \text { MLE }}=\arg _{\max }^{\sigma}{ }_{\sigma} \ell(\boldsymbol{\theta} ; D)
$$

$\Rightarrow \hat{\mu}_{k, M L E}=\frac{\sum_{n} z_{n}^{k} x_{n}}{\sum_{n} z_{n}^{k}}$

- What if we do not know z_{n} ?

Expectation-Maximization

- Start
- "Guess" the centroid μ_{k} and coveriance Σ_{k} of each of the K clusters
- Loop

(a)

(f)

(c)

(g)

(d)

(h)

(e)

(i)

Example: Gaussian mixture model

- A mixture of K Gaussians:
- Z is a latent class indicator vector

$$
p\left(z_{n}\right)=\operatorname{multi}\left(z_{n}: \pi\right)=\prod\left(\pi_{k}\right)^{z_{n}^{k}}
$$

- X is a conditional Gaussian variable with class-specific mean/covariance

$$
p\left(x_{n} \mid z_{n}^{k}=1, \mu, \Sigma\right)=\frac{1}{(2 \pi)^{m / 2}\left|\Sigma_{k}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(x_{n}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{n}-\mu_{k}\right)\right\}
$$

- The likelihood of a sample:

$$
\begin{aligned}
p\left(x_{n} \mid \mu, \Sigma\right) & =\sum_{k} p\left(z^{k}=1 \mid \pi\right) p\left(x, \mid z^{k}=1, \mu, \Sigma\right) \\
& =\sum_{z_{n}} \prod_{k}\left(\left(\pi_{k}\right)^{z_{n}^{k}} N\left(x_{n}: \mu_{k}, \Sigma_{k}\right)^{z_{n}^{k}}\right)=\sum_{k} \pi_{k} N\left(x, \mid \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

- The expected complete log likelihood

$$
\begin{aligned}
\left\langle\ell_{c}(\boldsymbol{\theta} ; \boldsymbol{x}, \boldsymbol{z})\right\rangle & =\sum_{n}\left\langle\log p\left(z_{n} \mid \pi\right)\right\rangle_{p(z \mid x)}+\sum_{n}\left\langle\log p\left(x_{n} \mid z_{n}, \mu, \Sigma\right)\right\rangle_{p(z \mid x)} \\
& =\sum_{n} \sum_{k}\left\langle z_{n}^{k}\right\rangle \log \pi_{k}-\frac{1}{2} \sum_{n} \sum_{k}\left\langle z_{n}^{k}\right\rangle\left(\left(x_{n}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x_{n}-\mu_{k}\right)+\log \left|\Sigma_{k}\right|+C\right)
\end{aligned}
$$

E-step

- We maximize $\left\langle/_{c}(\theta)\right\rangle$ iteratively using the following iterative procedure:
- Expectation step: computing the expected value of the sufficient statistics of the hidden variables (i.e., z) given current est. of the parameters (i.e., π and μ).
$\tau_{n}^{k(t)}=\left\langle z_{n}^{k}\right\rangle_{q^{(t)}}=p\left(z_{n}^{k}=1 \mid x, \mu^{(t)}, \Sigma^{(t)}\right)=\frac{\pi_{k}^{(t)} N\left(x_{n}, \mid \mu_{k}^{(t)}, \Sigma_{k}^{(t)}\right)}{\sum \pi_{i}^{(t)} N\left(x_{n}, \mid \mu_{i}^{(t)}, \Sigma_{i}^{(t)}\right)}$
- Here we are essentially doing inference
- We maximize $\left\langle/_{c}(\theta)\right\rangle$ iteratively using the following iterative procudure:
- Maximization step: compute the parameters under current results of the expected value of the hidden variables

$$
\begin{aligned}
& \pi_{k}^{*}=\arg \max \left\langle I_{c}(\boldsymbol{\theta})\right\rangle, \quad \Rightarrow \frac{\partial}{\partial \pi_{k}}\left\langle I_{c}(\boldsymbol{\theta})\right\rangle=0, \forall k, \quad \text { s.t. } \sum_{\mathrm{k}} \pi_{k}=1 \\
& \Rightarrow \pi_{k}^{*}=\sum_{n}\left\langle z_{n}^{k}\right\rangle_{q^{(t)}} / N=\sum_{n} \tau_{n}^{k_{n}^{(t)}} / N^{=}=\left\langle n_{k}\right\rangle / N \\
& \mu_{k}^{*}=\arg \max \langle/(\theta)\rangle, \quad \Rightarrow \mu_{k}^{(t+1)}=\frac{\sum_{n} n_{n}^{k_{n}^{(t)} x_{n}}}{\sum_{n} \tau_{n}^{k(t)}} \\
& \Sigma_{k}^{*}=\arg \max \langle/(\theta)\rangle, \quad \Rightarrow \Sigma_{k}^{(++1)}=\frac{\sum_{n} \tau_{n}^{k(t)}\left(x_{n}-\mu_{k}^{(++1)}\right)\left(x_{n}-\mu_{k}^{(++1)}\right)^{\top}}{\sum_{n} \tau_{n}^{k+1}} \\
& \begin{array}{l}
\text { Fact: } \\
\frac{\partial \log \left|\mathrm{A}^{-1}\right|}{\partial \mathrm{A}^{-1}}=\mathrm{A}^{T} \\
\frac{\partial \mathbf{x}^{T} \mathrm{~A} \mathbf{x}}{\partial \mathrm{~A}}=\mathbf{x x}^{T}
\end{array}
\end{aligned}
$$

- This is isomorphic to MLE except that the variables that are hidden are replaced by their expectations (in general they will by replaced by their
Eric Xing corresponding "sufficient statistics")

Theory underlying EM

- What are we doing?
- Recall that according to MLE, we intend to learn the model parameter that would have maximize the likelihood of the data.
- But we do not observe z, so computing

$$
\ell_{c}(\theta ; D)=\log \sum_{z} p(x, z \mid \theta)=\log \sum_{z} p\left(z \mid \theta_{z}\right) p\left(x \mid z, \theta_{x}\right)
$$

is difficult!

- What shall we do?

Complete \& Incomplete Log Likelihoods

- Complete log likelihood

Let X denote the observable variable(s), and Z denote the latent variable(s).
If Z could be observed, then

$$
\boldsymbol{\ell}_{c}(\theta ; x, z) \stackrel{\text { def }}{=} \log p(x, z \mid \theta)
$$

- Usually, optimizing $\ell_{\mathrm{c}}()$ given both z and x is straightforward (c.f. MLE for fully observed models).
- Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of factors, the parameter for each factor can be estimated separately.
- But given that Z is not observed, $\ell_{c}()$ is a random quantity, cannot be maximized directly.
- Incomplete log likelihood

With z unobserved, our objective becomes the log of a marginal probability:

$$
\begin{aligned}
& \ell_{c}(\theta ; x)=\log p(x \mid \theta)=\log \sum_{z} p(x, z \mid \theta) \\
& \text { ive won't decouple }
\end{aligned}
$$

Expected Complete Log Likelihood

- For any distribution $q(z)$, define expected complete log likelihood:

$$
\left\langle\ell_{c}(\theta ; x, z)\right\rangle_{q} \stackrel{\text { def }}{=} \sum_{z} q(z \mid x, \theta) \log p(x, z \mid \theta)
$$

- A deterministic function of θ
- Linear in $\ell_{\mathrm{c}}()$--- inherit its factorizabiility
- Does maximizing this surrogate yield a maximizer of the likelihood?
- Jensen's inequality

$$
\begin{aligned}
& \text { Jensen's inequality } \\
& \begin{array}{rlrl}
\ell(\theta ; x) & =\log p(x \mid \theta) \\
& =\log \sum_{z} p(x, z \mid \theta) \\
& =\log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)} & & \\
& \geq \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)} & & \Rightarrow
\end{array} \\
&
\end{aligned}
$$

Lower Bounds and Free Energy

-
- For fixed data x, define a functional called the free energy:

$$
F(q, \theta) \stackrel{\operatorname{def}}{=} \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)} \leq \boldsymbol{\ell}(\theta ; x)
$$

- The EM algorithm is coordinate-ascent on F :
- E-step:

$$
q^{t+1}=\arg \max _{q} F\left(q, \theta^{+}\right)
$$

- M-step:

$$
\theta^{t+1}=\arg \max _{\theta} F\left(q^{t+1}, \theta^{t}\right)
$$

E-step: maximization of expected

 ℓ_{c} w.r.t. q- Claim:

$$
q^{t+1}=\arg \max _{q} F\left(q, \theta^{\dagger}\right)=p\left(\boldsymbol{z} \mid X, \theta^{\dagger}\right)
$$

- This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).
- Proof (easy): this setting attains the bound $\mathbb{A} \theta, x) \geq \mathcal{F} q, \theta)$

$$
\begin{aligned}
F\left(p\left(z \mid x, \theta^{+}\right), \theta^{+}\right) & =\sum_{z} p\left(z \mid x, \theta^{+}\right) \log \frac{p\left(x, z \mid \theta^{+}\right)}{p\left(z \mid x, \theta^{+}\right)} \\
& =\sum_{z} q(z \mid x) \log p\left(x \mid \theta^{+}\right) \\
& =\log p\left(x \mid \theta^{+}\right)=\ell\left(\theta^{+} ; x\right)
\end{aligned}
$$

- Can also show this result using variational calculus or the fact that $\ell(\theta ; x)-F(q, \theta)=\operatorname{KL}(q \| p(z \mid x, \theta))$

E-step \equiv plug in posterior expectation of latent variables

- Without loss of generality: assume that $p(x, z \mid \theta)$ is a generalized exponential family distribution:

$$
p(x, z \mid \theta)=\frac{1}{Z(\theta)} h(x, z) \exp \left\{\sum_{i} \theta_{i} f_{i}(x, z)\right\}
$$

- Special cases: if $p(X \mid Z)$ are GLIMs, then $f_{i}(x, z)=\eta_{i}^{\top}(z) \xi_{i}(x)$
- The expected complete log likelihood under $q^{t+1}=p\left(z \mid x, \theta^{+}\right)$ is

$$
\begin{aligned}
\left\langle\ell_{c}\left(\theta^{+} ; x, z\right)\right\rangle_{q^{++1}} & =\sum_{z} q\left(z \mid x, \theta^{+}\right) \log p\left(x, z \mid \theta^{+}\right)-\boldsymbol{A}(\theta) \\
& =\sum_{i} \theta_{i}^{\dagger}\left\langle f_{i}(x, z)\right\rangle_{q\left(z \mid x, \theta^{+}\right)}-A(\theta) \\
& =\sum_{i}^{p \sim \operatorname{LLM}} \theta_{i} \theta_{i}^{+}\left\langle\eta_{i}(z)\right\rangle_{q\left(z \mid x, \theta^{+}\right)} \xi_{i}(x)-A(\theta)
\end{aligned}
$$

M-step: maximization of expected ℓ_{c} w.r.t. θ

- Note that the free energy breaks into two terms:

$$
\begin{aligned}
F(q, \theta) & =\sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)} \\
& =\sum_{z} q(z \mid x) \log p(x, z \mid \theta)-\sum_{z} q(z \mid x) \log q(z \mid x) \\
& =\left\langle\ell_{c}(\theta ; x, z)\right\rangle_{q}+H_{q}
\end{aligned}
$$

- The first term is the expected complete log likelihood (energy) and the second term, which does not depend on θ, is the entropy.
- Thus, in the M-step, maximizing with respect to θ for fixed q we only need to consider the first term:
$\theta^{t+1}=\arg \max _{\theta}\left\langle\boldsymbol{\ell}_{c}(\theta ; \boldsymbol{x}, \boldsymbol{z})\right\rangle_{q^{t+1}}=\arg \max _{\theta} \sum_{z} q(\boldsymbol{z} \mid \boldsymbol{x}) \log p(x, z \mid \theta)$
- Under optimal $q^{\dagger+1}$, this is equivalent to solving a standard MLE of fully observed model $p(x, z \mid \theta)$, with the sufficient statistics involving z replaced by their expectations w.r.t. $p(z \mid x, \theta)$.

Example: HMM

- Supervised learning: estimation when the "right answer" is known
- Examples:

GIVEN: a genomic region $x=x_{1} \ldots x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
- Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don't see when he changes dice

- QUESTION: Update the parameters θ of the model to maximize $P(x \mid \theta)$ --- Maximal likelihood (ML) estimation

The Baum Welch algorithm

- The complete log likelihood

$$
\ell_{c}(\boldsymbol{\theta} ; \mathbf{x}, \mathbf{y})=\log p(\mathbf{x}, \mathbf{y})=\log \prod_{n}\left(p\left(y_{n, 1}\right) \prod_{t=2}^{T} p\left(y_{n, t} \mid y_{n, t-1}\right) \prod_{t=1}^{T} p\left(x_{n, t} \mid x_{n, t}\right)\right)
$$

- The expected complete log likelihood

- EM
- The E step

$$
\begin{aligned}
& \gamma_{n, t}^{i}=\left\langle y_{n, t}^{i}\right\rangle=p\left(y_{n, t}^{i}=1 \mid \mathbf{x}_{n}\right) \\
& \xi_{n, t}^{i, j}=\left\langle y_{n, t-1}^{i} y_{n, t}^{j}\right\rangle=p\left(y_{n, t-1}^{i}=1, y_{n, t}^{j}=1 \mid \mathbf{x}_{n}\right)
\end{aligned}
$$

- The M step ("symbolically" identical to MLE)

$$
\pi_{i}^{M L}=\frac{\sum_{n} \gamma_{n, 1}^{i}}{N} \quad a_{i j}^{M L}=\frac{\sum_{n} \sum_{t=2}^{T} \xi_{n, t}^{i, j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n, t}^{i}} \quad b_{i k}^{M L}=\frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n, t}^{i} \chi_{n, t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n, t}^{i}}
$$

Eric Xing

Unsupervised ML estimation

- Given $x=x_{1} \ldots x_{N}$ for which the true state path $y=y_{1} \ldots y_{N}$ is unknown,
- EXPECTATION MAXIMIZATION

0. Starting with our best guess of a model M, parameters θ.
1. Estimate $A_{i j}, B_{i k}$ in the training data

- How? $A_{j j}=\sum_{n, t}\left\langle y_{n, t-1}^{\prime} y_{n, t}^{j}\right\rangle \quad B_{i k}=\sum_{n, t}\left\langle y_{n, t}^{i}\right\rangle x_{n, t}^{k}$,

2. Update θ according to $A_{i j}, B_{i k}$

- Now a "supervised learning" problem

3. Repeat $1 \& 2$, until convergence

This is called the Baum-Welch Algorithm
We can get to a provably more (or equally) likely parameter set θ each iteration

EM for general BNs

while not converged
\% E-step
for each node i
$E S S_{i}=0 \quad$ \% reset expected sufficient statistics
for each data sample n
do inference with $X_{n, H}$
for each node i

$$
E S S_{i}+=\left\langle S S_{i}\left(x_{n, i}, x_{n, \pi_{i}}\right)\right\rangle_{p\left(x_{n, H \mid} \mid x_{n,-H}\right)}
$$

\% M-step
for each node i

$$
\theta_{i}:=\operatorname{MLE}\left(E S S_{i}\right)
$$

Summary: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:

1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
2. Using this "complete" data, find the maximum likelihood parameter estimates.

- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:
- E-step:
$q^{t+1}=\arg \max _{q} F\left(q, \theta^{\dagger}\right)$
- M-step:
$\theta^{t+1}=\arg \max _{\theta}^{q} F\left(q^{t+1}, \theta^{\dagger}\right)$
- In the M-step we optimize a lower bound on the likelihood. In the Estep we close the gap, making bound=likelihood.

Learning completely observed undirected GMs

- The data:
$\left.\left\{\left(z^{(1)}, x^{(1)}\right),\left(z^{(2)}\right) x^{(2)}\right),\left(z^{(3)}, x^{(3)}\right), \ldots\left(z^{(N)}, x^{(N)}\right)\right\}$

MLE for undirected graphical models

- For directed graphical models, the log-likelihood decomposes into a sum of terms, one per family (node plus parents).
- For undirected graphical models, the log-likelihood does not decompose, because the normalization constant Z is a function of all the parameters

$$
P\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{c \in C} \psi_{c}\left(\mathbf{x}_{c}\right) \quad Z=\sum_{x_{1}, \ldots, x_{n}} \prod_{c \in C} \psi_{c}\left(\mathbf{x}_{c}\right)
$$

- In general, we will need to do inference (i.e., marginalization) to learn parameters for undirected models, even in the fully observed case.

Feature-based Clique Potentials

- So far we have discussed the most general form of an undirected graphical model in which cliques are parameterized by general potential functions $\psi_{\mathrm{c}}\left(\mathbf{x}_{\mathrm{c}}\right)$.

$$
P\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{c \in C} \psi_{c}\left(\mathbf{x}_{c}\right)
$$

- But for large cliques these general potentials are exponentially costly for inference and have exponential numbers of parameters that we must learn from limited data.
- One solution: change the graphical model to make cliques smaller. But this changes the dependencies, and may force us to make more independence assumptions than we would like.
- Another solution: keep the same graphical model, but use a less general parameterization of the clique potentials.
- This is the idea behind feature-based models.

Features

- Consider a clique \mathbf{x}_{c} of random variables in a UGM, e.g. three consecutive characters $c_{1} c_{2} c_{3}$ in a string of English text.
- How would we build a model of $p\left(c_{1} c_{2} c_{3}\right)$?
- If we use a single clique function over $c_{1} c_{2} c_{3}$, the full joint clique potential would be huge: $26^{3}-1$ parameters.
- However, we often know that some particular joint settings of the variables in a clique are quite likely or quite unlikely. e.g. ing, ate, ion, ?ed, qu?, jkx, zzz,...
- A "feature" is a function which is vacuous over all joint settings except a few particular ones on which it is high or low.
- For example, we might have $f_{\text {ing }}\left(c_{1} c_{2} c_{3}\right)$ which is 1 if the string is 'ing' and 0 otherwise, and similar features for '?ed', etc.
- We can also define features when the inputs are continuous. Then the idea of a cell on which it is active disappears, but we might still have a compact parameterization of the feature.

Features as Micropotentials

- By exponentiating them, each feature function can be made into a "micropotential". We can multiply these micropotentials together to get a clique potential.
- Example: a clique potential $\psi\left(c_{1} c_{2} c_{3}\right)$ could be expressed as:

$$
\begin{aligned}
\psi_{c}\left(c_{1}, c_{2}, c_{3}\right) & =e^{\theta_{\text {ing }} f_{\text {ing }}} \times e^{\theta_{\text {2ed }} f_{\text {Ped }}} \times \ldots \\
& =\exp \left\{\sum_{k=1}^{K} \theta_{k} f_{k}\left(c_{1}, c_{2}, c_{3}\right)\right\}
\end{aligned}
$$

- This is still a potential over 26^{3} possible settings, but only uses K parameters if there are K features.
- By having one indicator function per combination of \mathbf{x}_{c}, we recover the standard tabular potential.

Combining Features

- Each feature has a weight θ_{k} which represents the numerical strength of the feature and whether it increases or decreases the probability of the clique.
- The marginal over the clique is a generalized exponential family distribution, actually, a GLIM:

$$
p\left(c_{1}, c_{2}, c_{3}\right) \propto \exp \left\{\begin{array}{l}
\theta_{\text {ing }} f_{\text {ing }}\left(c_{1}, c_{2}, c_{3}\right)+\theta_{\text {2ed }} f_{\text {zed }}\left(c_{1}, c_{2}, c_{3}\right)+ \\
\theta_{\text {qui }} f_{\text {qui }}\left(c_{1}, c_{2}, c_{3}\right)+\theta_{\text {zzz }} f_{\text {zuz }}\left(c_{1}, c_{2}, c_{3}\right)+\cdots
\end{array}\right\}
$$

- In general, the features may be overlapping, unconstrained indicators or any function of any subset of the clique variables:

$$
\psi_{c}\left(\mathbf{x}_{c}\right) \stackrel{\text { def }}{=} \exp \left\{\sum_{i \in I_{c}} \theta_{k} f_{k}\left(\mathbf{x}_{c_{i}}\right)\right\}
$$

- How can we combine feature into a probability model?

Feature Based Model

- We can multiply these clique potentials as usual:

$$
p(\mathbf{x})=\frac{1}{Z(\theta)} \prod_{c} \psi_{c}\left(\mathbf{x}_{c}\right)=\frac{1}{Z(\theta)} \exp \left\{\sum_{c} \sum_{i \in I_{c}} \theta_{k} f_{k}\left(\mathbf{x}_{c_{c}}\right)\right\}
$$

- However, in general we can forget about associating features with cliques and just use a simplified form:

$$
p(\mathbf{x})=\frac{1}{Z(\theta)} \exp \left\{\sum_{i} \theta_{i} f_{i}\left(\mathbf{x}_{c_{i}}\right)\right\}
$$

- This is just our friend the exponential family model, with the features as sufficient statistics
- Scaled likelihood function

$$
\begin{aligned}
\tilde{\ell}(\theta ; \boldsymbol{D}) & =\ell(\theta ; \boldsymbol{D}) / N=\frac{1}{N} \sum_{n} \log p\left(x_{n} \mid \theta\right) \\
& =\sum_{x} \tilde{p}(x) \log p(x \mid \theta) \\
& =\sum_{x} \tilde{p}(x) \sum_{i} \theta_{i} f_{i}(x)-\log Z(\theta)
\end{aligned}
$$

- Instead of optimizing this objective directly, we attack its lower bound
- The logarithm has a linear upper bound...
$\log Z(\theta) \leq \mu Z(\theta)-\log \mu-1$
- This bound holds for all μ, in particular, for $\mu=Z^{-1}\left(\theta^{(t)}\right)$
- Thus we have

$$
\tilde{\ell}(\theta ; D) \geq \sum_{x} \tilde{p}(x) \sum_{i} \theta_{i} f_{i}(x)-\frac{Z(\theta)}{Z\left(\theta^{(t)}\right)}-\log Z\left(\theta^{(t)}\right)+1
$$

Generalized Iterative Scaling (GIS)

- Lower bound of scaled loglikelihood

$$
\tilde{\ell}(\theta ; D) \geq \sum_{x} \tilde{p}(x) \sum_{i} \theta_{i} f_{i}(x)-\frac{Z(\theta)}{Z\left(\theta^{(t)}\right)}-\log Z\left(\theta^{(t)}\right)+1
$$

- Define $\Delta \theta_{i}^{(t)} \stackrel{\text { def }}{=} \theta_{i}-\theta_{i}^{(t)}$

$$
\tilde{\ell}(\theta ; D) \geq \sum_{x} \tilde{p}(x) \sum_{i} \theta_{i} f_{i}(x)-\frac{1}{Z\left(\theta^{(t)}\right)} \sum_{x} \exp \left\{\sum_{i} \theta_{i} f_{i}(x)\right\}-\log Z\left(\theta^{(t)}\right)+1
$$

- Relax again
- Assume $f_{i}(x) \geq 0, \quad \sum_{i} f_{i}(x)=1$
- Convexity of exponential: $\exp \left(\sum_{i} \pi_{i} x_{i}\right) \leq \sum_{i} \pi_{i} \exp \left(x_{i}\right)$
- We have:
$\tilde{\ell}(\theta ; \boldsymbol{D}) \geq \sum_{i} \theta_{i} \sum_{x} \tilde{p}(x) f_{i}(x)-\sum_{x} p\left(x \mid \theta^{(t)}\right) \sum_{i} f_{i}(x) \exp \left(\Delta \theta_{i}^{(t)}\right)-\log Z\left(\theta^{(t)}\right)+1 \stackrel{\text { def }}{=} \Lambda(\theta)$
Eric Xing

GIS

- Lower bound of scaled loglikelihood
$\tilde{\ell}(\theta ; D) \geq \sum_{i} \theta_{i} \sum_{x} \tilde{p}(x) f_{i}(x)-\sum_{x} p\left(x \mid \theta^{(t)}\right) \sum_{i} f_{i}(x) \exp \left(\Delta \theta_{i}^{(t)}\right)-\log Z\left(\theta^{(t)}\right)+1 \stackrel{\text { def }}{=} \Lambda(\theta)$
- Take derivative: $\frac{\partial \Lambda}{\partial \theta_{i}}=\sum_{x} \tilde{p}(x) f_{i}(x)-\exp \left(\Delta \theta_{i}^{(t)}\right) \sum_{x} p\left(x \mid \theta^{(f)}\right) f_{i}(x)$
- Set to zero

$$
e^{\Delta \theta_{i}^{(t)}}=\frac{\sum_{x} \tilde{p}(x) f_{i}(x)}{\sum_{x} p\left(x \mid \theta^{(t)}\right) f_{i}(x)}=\frac{\sum_{x} \tilde{p}(x) f_{i}(x)}{\sum_{x} p^{(t)}(x) f_{i}(x)} Z\left(\theta^{(t)}\right)
$$

- where $p^{(t)}(x)$ is the unnormalized version of $p\left(x \mid \theta^{(t)}\right)$
- Update

$$
\theta_{i}^{(t+1)}=\theta_{i}^{(t)}+\Delta \theta_{i}^{(t)} \Rightarrow p^{(t+1)}(x)=p^{(t)}(x) e^{\left.\Delta \theta_{i}^{(t)}\right)_{i}(x)}
$$

$$
\begin{aligned}
p^{(t+1)}(x) & =\frac{p^{(t)}(x)}{Z\left(\theta^{(t)}\right)} \prod_{i}\left(\frac{\sum_{x} \tilde{p}(x) f_{i}(x)}{\sum_{x} p^{(t)}(x) f_{i}(x)} Z\left(\theta^{(t)}\right)\right)^{f_{i}(x)} \\
& =\frac{p^{(t)}(x)}{Z\left(\theta^{(t)}\right)} \prod_{i}\left(\frac{\sum_{x} \tilde{p}(x) f_{i}(x)}{\sum_{x} p^{(t)}(x) f_{i}(x)}\right)^{f_{i}(x)}\left(Z\left(\theta^{(t)}\right)\right)_{i}^{\sum_{i}(x)} \\
& =p^{(t)}(x) \prod_{i}\left(\frac{\sum_{x} \tilde{p}(x) f_{i}(x)}{\sum_{x} p^{(t)}(x) f_{i}(x)}\right)^{f_{i}(x)}
\end{aligned}
$$

Alternative Learning Strategy

- Recall that in CRF
- We predict based on:

$$
y^{*} \left\lvert\, x=\arg \max _{y} p_{\theta}(y \mid x)=\frac{1}{Z(\theta, x)} \exp \left\{\sum_{c} \theta_{c} f_{c}\left(x, y_{c}\right)\right\}\right.
$$

- And we learn based on:

$$
\theta_{c}^{*} \left\lvert\,\left\{y_{n}, x_{n}\right\}=\arg \max _{\theta_{c}} \prod_{n} p_{\theta}\left(y_{n} \mid x_{n}\right)=\prod_{n} \frac{1}{Z\left(\theta, x_{n}\right)} \exp \left\{\sum_{c} \theta_{c} f_{c}\left(x_{n}, y_{n, c}\right)\right\}\right.
$$

- MaxMargin:
- We predict based on:

$$
y^{*} \mid x=\arg \max _{y} \sum_{c} \theta_{c} f_{c}\left(x, y_{c}\right)=\arg \max _{y} w^{T} F(x, y)
$$

- And we learn based on:

$$
w^{*} \mid\left\{y_{n}, x_{n}\right\}=\arg \max _{w}\left(\max _{y_{n}^{\prime} \neq y_{n}, \forall n} w^{T}\left(F\left(y_{n}, x_{n}\right)-F\left(y_{n}^{\prime}, x_{n}\right)\right)\right)
$$

Max-Margin Learning

$\max \frac{1}{2}\|w\|-\sum_{n} \xi_{n}$
s.t. $\quad w^{T}\left(F\left(y_{n}, x_{n}\right)-F\left(y_{n}^{\prime}, x_{n}\right)\right) \geq \xi_{n}+\Delta\left(y_{n}^{\prime}, y_{n}\right) \quad \forall n, y_{n}^{\prime} \in \mathscr{Y}_{n} \backslash y_{n}$

$$
\xi_{n} \geq 0
$$

- Solutions:
- Convex optimization (akin to SVM) with exponentially many constrains
- Many algorithms and heuristics exist
- Interior-point methods
- Iterative active-support elimination
- Inference based on GM

Eric Xing

Open Problems

- Unsupervised CRF learning and MaxMargin Learning
- We want to recognize a pattern that is maximally different from the rest!

- What does margin or conditional likelihood mean in these cases? Given only $\left\{X_{n}\right\}$, how can we define the cost function?

$$
\begin{aligned}
p_{\theta}(y \mid x) & =\frac{1}{Z(\theta, x)} \exp \left\{\sum_{c} \theta_{c} f_{c}\left(x, y_{c}\right)\right\} \\
\text { margin } & =w^{T}\left(F\left(y_{n}, x_{n}\right)-F\left(y_{n}^{\prime}, x_{n}\right)\right)
\end{aligned}
$$

- Algorithmic challenge

