

Three m	nain ques	stions on HMMs		
1. Evaluati	on			
GIVEN FIND ALGO.	an HMM <i>M</i> , Prob (x <i>M</i>) Forward	and a sequence x,		
2. Decodin	g			
GIVEN FIND ALGO.	an HMM M , and a sequence x , the sequence y of states that maximizes, e.g., P($y \mid x$, M), or the most probable subsequence of states Viterbi, Forward-backward			
3. Learning	g (next lecture)			
GIVEN		an HMM M , with unspecified transition/emission probs., and a sequence ${f x}$,		
FIND ALGO. Eric Xing	parameters θ = Baum-Welch (= $(\pi_i, a_{ij}, \eta_{ik})$ that maximize P(x θ) EM)	30	

