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Joint probability dist. on multiple variables:

If Xi's are independent: (P(Xi|·)= P(Xi))

If Xi's are conditionally independent (as described by a 
GM), the joint can be factored to simpler products, e.g., 
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Inference and Learning
We now have compact representations of probability 
distributions:  Graphical Models

A GM M describes a unique probability distribution P

Typical tasks:

Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such 
queries

Task 2: How do we estimate a plausible model M from data D?

i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(M |D), which is actually an inference problem.

iii. When not all variables are observable, even computing point estimate of M 
need to do inference to impute the missing data.
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Inferential Query 1: 
Likelihood

Most of the queries one may ask involve evidence

Evidence xv is an assignment of values to a set Xv of nodes in the GM 
over varialbe set X={X1, X2, …, Xn}

Without loss of generality Xv={Xk+1, … , Xn}, 

Write XH=X\Xv as the set of hidden variables, XH can be ∅ or X

Simplest query: compute probability of evidence

this is often referred to as computing the likelihood of  xv
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Often we are interested in the conditional probability 
distribution of a variable given the evidence

this is the a posteriori belief in XH, given evidence xv

We usually query a subset Y of all hidden variables XH={Y,Z}
and "don't care" about the remaining, Z:

the process of summing out the "don't care" variables z is called 
marginalization, and the resulting P(Y|xv) is called a marginal prob.
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Inferential Query 2: 
Conditional Probability
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Prediction: what is the probability of an outcome given the starting 
condition

the query node is a descendent of the evidence

Diagnosis: what is the probability of disease/fault given symptoms

the query node an ancestor of the evidence

Learning under partial observation
fill in the unobserved values under an "EM" setting (more later)

The directionality of information flow between variables is not restricted by 
the directionality of the edges in a GM

probabilistic inference can combine evidence form all parts of the network

A CB

A CB

?

?

Applications of a posteriori Belief
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In this query we want to find the most probable joint 
assignment (MPA) for some variables of interest

Such reasoning is usually performed under some given 
evidence xv, and ignoring (the values of) other variables Z:

this is the maximum a posteriori configuration of Y.
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Inferential Query 3: 
Most Probable Assignment
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x y P(x,y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3

Applications of MPA

Classification 
find most likely label, given the evidence

Explanation 
what is the most likely scenario, given the evidence

Cautionary note:

The MPA of a variable depends on its "context"---the set 
of variables been jointly queried
Example:

MPA of X ?
MPA of (X, Y) ?
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Thm:
Computing P(XH=xH| xv) in an arbitrary GM is NP-hard

Hardness does not mean we cannot solve inference

It implies that we cannot find a general procedure that works efficiently 
for arbitrary GMs
For particular families of GMs, we can have provably efficient 
procedures

Complexity of Inference
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Approaches to inference

Exact inference algorithms

The sum-product algorithm
The junction tree algorithm

Approximate inference techniques

Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
Variational algorithms (later lectures)
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The Junction Tree Algorithm
There are several inference algorithms; some of which 
operate directly on (special) directed graph

Forward-backward algorithm for HMM (we will see it later)
Pealing algorithm for trees and phylogenies

The junction tree algorithm is the most popular and general 
inference algorithm, it operates on an undirected graph

To understand the JT-algorithm, we need to understand how to compile 
a directed graph into an undirected graph
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Moral Graph
Note that for both directed GMs and undirected GMs, the joint 
probability is in a product form:

So let’s convert local conditional probabilities into potentials; then 
the second expression will be generic, but how does this operation 
affect the directed graph?

We can think of a conditional probability, e.g,. P(C|A,B) as a function of the three 
variables A, B, and C (we get a real number of each configuration):

Problem: But a node and its parent are not generally in the same clique in a BN
Solution: Marry the parents to obtain the "moral graph"  
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Moral Graph (cont.)
Define the potential on a clique as the product over all conditional 
probabilities contained within the clique
Now the product of potentials gives the right answer:
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Note that here the 
interpretation of potential 
is ambivalent: 
it can be either marginals
or conditionals
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Clique trees
A clique tree is an (undirected) tree of cliques

Consider cases in which two neighboring cliques V and W have an 
overlap S (e.g., (X1, X2, X3) overlaps with (X3, X4, X5) ),

Now we have an alternative representation of the joint in terms of 
the potentials:
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Clique trees
A clique tree is an (undirected) tree of cliques

The alternative representation of the joint in terms of the potentials:

Generally:
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Now each potential is 
isomorphic to the cluster 
marginal of the attendant 
set of variables
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Why this is useful?
Propagation of probabilities

Now suppose that some evidence has been "absorbed" (i.e., certain values of 
some nodes have been observed). How do we propagate this effect to the rest of 
the graph?

What do we mean by propagate?
Can we adjust all the potentials {ψ}, {φ} so that they still represent the correct 
cluster marginals (or unnormalized equivalents) of their respective attendant 
variables?

Utility? 
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Local Consistency
We have two ways of obtaining p(S)

and they must be the same

The following update-rule ensures this:

Forward update:

Backward update

Two important identities can be proven
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Message Passing Algorithm

This simple local message-passing algorithn on a clique tree 
defines the general probability propagation algorithm for 
directed graphs!

Many interesting algorithms are special cases:
Forward-backward algorithm for hidden Markov models,
Kalman filter updates
Pealing algorithms for probabilistic trees

The algorithm seems reasonable. Is it correct?
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A problem
Consider the following graph and a corresponding clique tree

Note that C appears in two non-neighboring cliques

Question: with the previous message passage, can we ensure 
that the probability associated with C in these two (non-
neighboring) cliques consistent?
Answer: No. It is not true that in general local consistency 
implies global consistency
What else do we need to get such a guarantee?

A B

C D

A,B B,D

A,C C,D
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Triangulation
A triangulated graph is one in which no cycles with 
four or more nodes exist in which there is no chord

We triangulate a graph by adding chords:

Now we no longer have our global inconsistency 
problem.

A clique tree for a triangulated graph has the running 
intersection property: If a node appears in two cliques, 
it appears everywhere on the path between the cliques

Thus local consistency implies global consistency

A B

C D

A B

C D

A,B,C

B,C,D
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Junction trees
A clique tree for a triangulated graph is referred to as a junction tree

In junction trees, local consistency implies global consistency. Thus 
the local message-passing algorithms is (provably) correct

It is also possible to show that only triangulated graphs have the 
property that their clique trees are junctions. Thus if we want local 
algorithms, we must triangulate

Are we now all set?
How to triangulate?
The complexity of building a 
JT depends on how we triangulate!!
Consider this network:
it turns out that we will need to pay an O(24) 
or O(26) cost depending on how we triangulate!

B A

DC

E F

G H
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moralization

B A

DC

E F

G H

B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

graph elimination

How to triangulate
A graph elimination algorithm

Intermediate terms correspond to the cliques resulted from 
elimination

“good” elimination orderings lead to small cliques and hence reduce 
complexity (what will happen if we eliminate "e" first in the above graph?)

finding the optimum ordering is NP-hard, but for many graph optimum or 
near-optimum can often be heuristically found 
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Our algorithm so far answers only one query (e.g., on one node), do 
we need to do a complete elimination for every such query? 
Elimination ≡ message passing on a clique tree

Messages can be reused
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E F
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fm
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From Elimination to Message 
Passing

Our algorithm so far answers only one query (e.g., on one node), do 
we need to do a complete elimination for every such query? 
Elimination ≡ message passing on a clique tree

Another query ...

Messages mf and mh are reused, others need to be recomputed
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Message-passing algorithms

Message update

The Hugin update

The Shafer-Shenoy update

collect distribute
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A Sketch of the Junction Tree 
Algorithm 

The algorithm

1. Moralize the graph (trivial)

2. Triangulate the graph (good heuristic exist, but actually NP hard)

3. Build a clique tree (e.g., using a maximum spanning tree algorithm   

4. Propagation of probabilities --- a local message-passing protocol

Results in marginal probabilities of all cliques --- solves all queries 
in a single run

A generic exact inference algorithm for any GM

Complexity: exponential in the size of the maximal clique --- a 
good elimination order often leads to small maximal clique, and 
hence a good (i.e., thin) JT
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Case study: 

Hidden Markov Model
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Recall definition of HMM
Transition probabilities between 
any two states

or

Start probabilities 

Emission probabilities associated with each state

or in general:
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Probability of a parse
Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
To find how likely is the parse:
(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

=

Marginal probability:

Posterior probability:
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Three main questions on HMMs
1. Evaluation

GIVEN an HMM M, and a sequence x,
FIND Prob (x | M)
ALGO. Forward

2. Decoding
GIVEN an HMM M, and a sequence x ,
FIND the sequence y of states that maximizes, e.g., P(y | x , M),    

or the most probable subsequence of states
ALGO. Viterbi, Forward-backward 

3. Learning (next lecture)
GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence x,
FIND parameters θ = (πi, aij, ηik) that maximize P(x | θ)
ALGO. Baum-Welch (EM)



16

Eric Xing 31

The Forward Algorithm
We want to calculate P(x), the likelihood of x, given the HMM

Sum over all possible ways of generating x:

To avoid summing over an exponential number of paths y, define

(the forward probability)

The recursion:
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The Backward Algorithm
We want to compute                      ,

the posterior probability distribution on the                   
t th position, given x

We start by computing

The recursion:
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Shafer Shenoy for HMMs
Recap: Shafer-Shenoy algorithm

Message from clique i to clique j :

Clique marginal 
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Shafer Shenoy for HMMs (cont.)
A junction tree for the HMM

Rightward pass

This is exactly the forward algorithm!

Leftward pass …

This is exactly the backward algorithm! 
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√

√

Approaches to inference

Exact inference algorithms

The elimination algorithm
The junction tree algorithms

Approximate inference techniques

Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
Variational algorithms (later lectures)
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Biological background: the transcriptional regulatory machinery

Transcription factor

motif

The motif detection problem
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…HIS75’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

…HIS75’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

5’- TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

…HIS7 

…ARO4

…ILV6

…THR4

…ARO1

…HOM2

…PRO3

1: AAAAGAGTCA
2: AAATGACTCA
. AAGTGAGTCA
. AAAAGAGTCA
. GGATGAGTCA
. AAATGAGTCA
. GAATGAGTCA
M: AAAAGAGTCA

A=multiple alignment:

In silico motif detection
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1: AAAAGAGTCA
2: AAATGACTCA
. AAGTGAGTCA
. AAAAGAGTCA
. GGATGAGTCA
. AAATGAGTCA
. GAATGAGTCA
M: AAAAGAGTCA

A= Locations: {X} Background

5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

{Y}=

A Generative Scheme
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The LOGOS motif model
[Xing, Wu, Jordan and Karp, JBCB 2004]

An integrated LOcal and GlObal motif Sequence model

The occurrences of motifs in DNA sequences are governed by 
a global motif syntax model pg(X)

All instances of a specific motif admit a local motif prior model 
pl(A, θ |X)

Non-motif sequences are modeled by a background model
pb(Y-A|X)

Eric Xing 40

A A A AAA A A A A A A A A A A AC G T AGA A A A G A G T C A A T

1st order Markov grammar

Y

b b c m1cb m1 m2 m3 m4 m5 m6 m7 m8 c c cX

The global hidden Markov model 
(HMM)
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b b c m1cb m1 m2 m3 m4 m5 m6 m7 m8 c c cX

A A A AAA A A A A A A A A A A AC G T AGA A A A G A G T C A A T

k-th order Markov background

Y

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ1

The background model

Eric Xing 42

S1

θ1

S2

θ2

S3

θ3

SL

θL

……

……

Am,1 Am,2 Am,3 Am,L
……

AAAAGAGTCA
AAAAGAGTCA
AAATGACTCA
AAGTGAGTCA
AAAAGAGTCA
GGATGAGTCA
AAATGAGTCA
GAATGAGTCA
AAAAGAGTCA

Hidden Markov Dicichlet-multinomial (HMDM) 
[Xing, Jordan, Karp and Russell, NIPS 2002]

The local prior model
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5’- ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG

5’- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT

5’- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

5’- ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA

5’- ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA

5’- GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

{y}=

1: AAAAGAGTCA
2: AAATGACTCA
. AAGTGAGTCA
. AAAAGAGTCA
. GGATGAGTCA
. AAATGAGTCA
. GAATGAGTCA
M: AAAAGAGTCA

A= Locations: {X} Background

X1 X2 X3 XT
…

…

S1

θ1

S2

θ2

S3

θ3

S4

θ4

),(),|()|,,( SpXpSXp θθθ yy =
Joint posterior: 

X1 X2 X3 XT
…

…

θ1

S1

θ2

S2

A modular Bayesian model for 
motif detection
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Joint posterior:

inference on motif locations

state space to be summed (and integrated) over

Approximate inference 
Stochastic approximation: Gibbs sampling
Deterministic approximation: Variational inference √

),(),|()|,,( SpXpSXp θθθ yy =

Inference in LOGOS model

15bplength  of patterns motif  with twosequence 1000bp afor  10~ 1200120×ℜ

∫∑ ∑
≠∀

=
θ

θθ
s x

t
tt

sppxp
'

),(),|()|( yxy

T
x

L
s

L kk ||||4 Ω×∑Ω×∑ℜ ×
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For a distribution p(X|θ) associated with a complex graph, 
computing the marginal (or conditional) probability of arbitrary
random variable(s) is intractable

Variational methods
formulating probabilistic inference as an optimization problem:

{ })(  maxarg* fFf
f S∈

=

queries ticprobabiliscertain   tosolutions or,
ondistributiy probabilit )(tractable a

:f

e.g.

Variational Methods
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Exponential representation of graphical models:

Includes discrete models, Gaussian, Poisson, exponential, 
and many others

⎭
⎬
⎫

⎩
⎨
⎧

−= ∑
α

αα α
φθ )()(exp)|( θθ Ap DXX

⇒

−= ∑ xXX
α

αα α
φθ      )()( state of theas  toreferred is energyE D

{ })()(exp)|( θθ AEp −−= XX

{ })(),(exp EEH AE xxX θ,−−=

Exponential Family

∏
∈

=
Cc

ccZ
P )()( XX ψ1

⇒
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⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+=
<

∑ ∑exp)(
ji i

iijiij XXX
Z

Xp 0
1 θθ

Example: the Boltzmann
distribution on atomic lattice
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4

8

-2 -1 0 1 2

))(exp()exp( 1+−≥ µµ xx )exp(x
( ))()()()exp()exp( 163

6
1 23 +−+−+−≥ µµµµ xxxx )exp(x

Lower bounds of exponential 
functions
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Lemma: Every marginal distribution q(XH) defines a lower 
bound of likelihood:

where xE denotes observed variables (evidence).

{ }
( )( ) , )(),()(  

)(exp)(

HEHE

HHE

EEA

Edp

xxxx

xxx

′−−−

′−≥ ∫
1

Upgradeable to higher order bound Upgradeable to higher order bound [Leisink and Kappen, 2000]

Representing q(XH) by exp{-E’(XH)}:

Lower bounding likelihood
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Lemma: Every marginal distribution q(XH) defines a lower 
bound of likelihood:

where xE denotes observed variables (evidence).

,

)(log)(),()(
)(

qq

HHHqEHE

HEC

qqdECp
H

+−=

+−≥ ∫ xxxxXx
X

Representing q(XH) by exp{-E’(XH)}:

,qq
HEC −−=

entropy  :   

energy expected  :

q

q

H

E energy free Gibbs  :  qq
HE +

Lower bounding likelihood
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Kullback-Leibler Distance:

“Boltzmann’s Law” (definition of “energy”):

∑≡
z zp

zqzqpqKL
)(
)(ln)()||(

KL and variational (Gibbs) free 
energy

[ ])(exp)( zE
C

zp −=
1

∑ ∑ ++≡
z z

CzqzqzEzqpqKL ln)(ln)()()()||(

Gibbs Free Energy         ; 
minimized when )()( ZpZq =

)(qG
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KL and Log Likelihood
Jensen’s inequality

KL and Lower bound of likelihood

Setting q()=p(z|x) closes the gap (c.f. EM) 

∑

∑

∑

≥

=

=

=

z

z

z

xzq
zxpxzq

xzq
zxpxzq

zxp
xpx

)|(
)|,(log)|(

)|(
)|,()|(log

)|,(log
)|(log);(

θ

θ

θ
θθl

)(),;();(     qHzxx qqc Lll =+≥⇒ θθ

∑∑

∑

∑

+=

=

===

zz

z

z

xzp
zqzq

zq
zxpzq

xzp
zq

zq
zxpzq

xzp
zxpzq

xzp
zxpxpx

),|(
)(log)(

)(
)|,(log)(

),|(
)(

)(
)|,(log)(

),|(
)|,(log)(

),|(
)|,(log)|(log);(

θ
θ

θ
θ

θ
θ

θ
θθθl

)||()();(     pqKLqx +=⇒ Ll θ

ln ( )p Dln ( )p D

L( )qL( )q

KL( || )q pKL( || )q p
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{ }

{ }qqQq

qqQq

HE

HEq

+=

−−=

∈

∈

  minarg

  maxarg

Difficulty: Hq is intractable for general q

“solution”: approximate Hq
and/or, 
relax or tighten Q

where Q is the equivalent sets of realizable distributions, e.g., all valid 
parameterizations of exponential family distributions, marginal polytopes
[winright et al. 2003].

A variational representation of 
probability distributions

Eric Xing 54

Optimize q(XH) in the space of tractable families

i.e., subgraph of Gp over which exact computation of Hq is  
feasible

Tightening the optimization space

exact objective:
tightened feasible set: 

qH
TQ →

qqq
HEq +=

∈
  minarg*

T

)( QT ⊆

Mean field methods
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Do not optimize q(XH) explicitly, but focus on the set of beliefs

e.g.,

Relax the optimization problem

approximate objective:
relaxed feasible set:

The loopy BP algorithm: 
a fixed point iteration procedure that tries to solve b*

{ })(  minarg* bFEb
bb o

+=
∈M

)}(   ),,({ , iijiji xbxxbb ττ ===

)(bFHq ≈

oMM → )( MM ⊇o

) ,( , ijiBetha bbHH =

{ }∑∑ ==≥=
ii x

jji
x

io xxxx )(),(,)(| ττττ 10M

Belief Propagation

Eric Xing 56

Mean Field ApproximationMean Field Approximation
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)]([ XqG

)}]([{ cc XqG

Exact:

Clusters:

(intractable)

Cluster-based approx. to the 
Gibbs free energy (Wiegerinck 2001, 

Xing et al 03,04)
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Mean field approx. to Gibbs free 
energy

Given a disjoint clustering, {C1, … , CI}, of all variables
Let 

Mean-field free energy

Will never equal to the exact Gibbs free energy no matter what 
clustering is used, but it does always define a lower bound of the 
likelihood 

Optimize each qi(xc)'s. 
Variational calculus …
Do inference in each qi(xc) using any tractable algorithm

),()( i
i

iqq CXX ∏=

( ) ( ) ( )∑∑∑∑∏ +=
i

CiCi
i i

Ci
iC

ii

iC

i
qqEqG

xx
xxxx ln)(MF

( ) ( ) ( ) ( ) ( )∑∑∑∑∑∑ ++=
< i x

ii
i

i
x

i
ji

ji
xx

ji
iiji

xqxqxxqxxxqxqG ln)()(       e.g., MF φφ (naïve mean field)
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),|()( ,,,,
*

ij
iiii qMBHCECHCHi pq

≠

= XxXX

Theorem: The optimum GMF approximation to the 
cluster marginal is isomorphic to the cluster posterior of 
the original distribution given internal evidence and its 
generalized mean fields:

GMF algorithm: Iterate over each qi

The Generalized Mean Field 
theorem

Eric Xing 60

[xing et al. UAI 2003]

A generalized mean field 
algorithm
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[xing et al. UAI 2003]

A generalized mean field 
algorithm

Eric Xing 62

Theorem: The GMF algorithm is guaranteed to 
converge to a local optimum, and provides a lower 
bound for the likelihood of evidence (or partition 
function) the model.

Convergence theorem
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Gibbs predictive distribution:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++= ∑
∈

−
ij

ijiijiiii AxXXxXp
N

θθ 0exp)|(

}):{|( iji jxXp N∈=

jx

jx

mean field equation:

}):{|(

exp)(

iji

j
iqjiijiiii

jXXp

AXXXXq

jq

i
j

N
N

∈〉〈=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++= ∑
∈

θθ 0
jqjX

}:{ ij jX
jq

N∈〉〈

Xi

Approximate p(X) by fully factorized q(X)=Piqi(Xi)

For Boltzmann distribution p(X)=exp{∑i < j qijXiXj+qioXi}/Z :

Xi

ℑxj〉qj resembles a “message” sent from node j to i 

{〈xj〉qj : j ∈ Ni} forms the “mean field” applied to Xi from its neighborhood}:{ iqj jX
j

N∈〉〈
jqjX

The naive mean field 
approximation
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Cluster marginal of a square block Ck:

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧
++∝ ∑ ∑∑

∈ ∈
∈

∈∈k
kMBCk

kMBjkCi kC
k

k
Cji

Xqjiij
Ci

iijiijC XXXXXXq
,

)(

'
,, '

exp)( θθθ 0

Virtually a reparameterized Ising model of small size.

Generalized MF approximation to 
Ising models
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GMF approximation to Ising
models

GMF2x2

GMF4x4

BP

Attractive coupling: positively weighted
Repulsive coupling: negatively weighted

Eric Xing 66

a general, iterative message passing algorithm 

clustering completely defines approximation

preserves dependencies 
flexible performance/cost trade-off
clustering automatable 

recovers model-specific structured VI algorithms, including:

fHMM, LDA 
variational Bayesian learning algorithms

easily provides new structured VI approximations to complex 
models

Cluster-based MF (e.g., GMF)
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Example 1: Latent Dirichlet 
Allocation

Blei, Jordan and Ng (2003)
Generative model of documents (but broadly applicable e.g. 
collaborative filtering, image retrieval, bioinformatics)
Generative model: 

choose
choose topic
choose word

N
M

wz

�

�

�

Eric Xing 68

Latent Dirichlet Allocation
Variational approximation

Data set:
15,000 documents 
90,000 terms
2.1 million words

Model:
100 factors
9 million parameters

MCMC could be totally infeasible for this problem

⇒
( )
( ))ln,(|Multi  

),(|Dir
)()(),(

θβφ

αγθ
θθ θ

w

z

fz
zf

zqqzq

=

×==

=
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GMFr

GMFb

BP

Example 2: Sigmoid belief 
network

Eric Xing 70

Example 3: Factorial HMM
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),()(),,( 21 SqXqSXq θθ =

X1 X2 X3 XT
…

…

S1

θ1

S2

θ2

S3

θ3

S4

θ4

Example 4: GMF approximation 
to LOGOS

Approximate p(X,S,θ|y) with a tractable distribution q(X,S,θ)

Variable partition:

{X,S,θ}    =        {X}    + {S,θ}

Let

X1 X2 X3 XT
…

…

θ1

S1

θ2

S2
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)~,|()(),(

)~,|()(

|
*
2

*
1

XYSpSpSq

yXpXq

Aθθ

θ

=

=

),()(),,( 21 SqXqSXq θθ ∝

S1

θ1

S2

θ2

S3

θ3

S4

θ4

Compute Bayesian 
est. of θ, w.r.t its 
local posterior in  

HMDM submodel
assuming A is given

X1 X2 X3 XT
…

…

Compute expectation 
of A w.r.t. local
posterior of x in 
HMM submodel

assuming θ is given

XY |
~A

θ~

GMF approximations:

GMF algorithm

GMF for DNA motif prediction
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A single round of 
FP-iteration

Sequentialized multiple 
random restarts

(s)

Traces of GMF iterations

Eric Xing 74

GMF vs. Gibbs sampler on motif 
detection
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Pr
ed
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n 
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r

Data sets

Sampling time of Gibbs = 10× the time for GMF

Performance:

GMF vs. Gibbs sampler on motif 
detection
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Open Problem
Idea: 

A(θ) is convex
Epigraph of A(θ) can be represented as a pointwise supremum of all affine 
functions that are global under-estimators of A(θ)

Variationally, compute A(θ) using the following convex optimization:

Investigate the form of the dual function A*(µ)

Important consequence
Solution also yields the marginal probabilities!

Martin Wainwright and Michael Jordan
IEEE Transactions on Signal Processing, 2006


