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Recap of Basic Prob. Concepts o

e Joint probability dist. on multiple variables:

P(Xy, Xz, X5, X4, X5, Xg)
=P(X)P(X [ X)P(X5 | X1, X2)P(X4 | Xy, Xy X3)P (X5 | Xp, Xz, X3, X4 )P(Xg [ Xp, X5, X5, X4, X5)

o If Xi's are independent: (P(X;|-)= P(X)))
P(leXvast4vx5vX6)
=P(Xl)P(Xz)P(XQP(X4)P(X5)P(X6):HP(X.)

e If Xi's are conditionally independent (as described by a
GM), the joint can be factored to simpler products, e.g.,

) (x,)
@ @ P(X1, X0 X35, X4y X5 Xe)

@ @ = PX)P(XR)P(X5 | Xy, X2)P(X4 | X5)P(X5 | X3)P(Xe | X4, Xs5)
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Inference and Learning

e We now have compact representations of probability
distributions: Graphical Models

e A GM M describes a unique probability distribution P

e Typical tasks:

e Task 1: How do we answer queries about P?

We use inference as a name for the process of computing answers to such
queries

e Task 2: How do we estimate a plausible model M from data D?
i. We use learning as a name for the process of obtaining point estimate of M.

ii. But for Bayesian, they seek p(#M | D), which is actually an inference problem.

ili. When not all variables are observable, even computing point estimate of M
need to do inference to impute the missing data.

Inferential Query 1: sess
Likelihood 4

e Most of the queries one may ask involve evidence

e Evidence x, is an assignment of values to a set X, of nodes in the GM
over varialbe set X={X;, X,, ..., X.}

e Without loss of generality X,={X,,, ..., X,},
e Write X,;=X\X, as the set of hidden variables, X,, can be & or X

e Simplest query: compute probability of evidence

P(x,)= D> P(Xy,, X,) = 20 2P (Xgsee X X,)

e this is often referred to as computing the likelihood of x,
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Inferential Query 2:
Conditional Probability

\
e Often we are interested in the conditional probability

distribution of a variable given the evidence

P(Xp:%v) _ _ P(Xuxy)

P(Xy [ Xy =xy)= P(x,) _ZP(XH:XH’XV)

e this is the a posteriori belief in X, given evidence x,

e We usually query a subset Y of all hidden variables X, ={Y,Z}
and "don't care" about the remaining, Z:

P(Y|XV)ZZP(Y’Z:Z|XV)

e the process of summing out the "don't care" variables zis called
marginalization, and the resulting P(Y|x,) is called a marginal prob.

Applications of a posteriori Belief |:*

e Prediction: what is the probability of an outcome given the starting
?

condition ,
A D= B O>=—»_C >

e the query node is a descendent of the evidence

e Diagnosis: what is the probability of disease/fault given symptoms

?
CA O>=»_ 5 O>=>_C >
e the query node an ancestor of the evidence
e Learning under partial observation
o fill in the unobserved values under an "EM" setting (more later)
e The directionality of information flow between variables is not restricted by
the directionality of the edges in a GM

e probabilistic inference can combine evidence form all parts of the network
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Inferential Query 3:
Most Probable Assignment

e In this query we want to find the most probable joint
assignment (MPA) for some variables of interest

e Such reasoning is usually performed under some given
evidence x,, and ignoring (the values of) other variables Z:

Y"|x, =argmax, P(Y|x,)=argmax, > P(Y,Z=z]|x,)

e thisis the maximum a posteriori configuration of Y.

Eric Xing 7

Applications of MPA

e Classification

e find most likely label, given the evidence

e Explanation
e what is the most likely scenario, given the evidence

Cautionary note:

e The MPA of a variable depends on its "context"---the set

of variables been jointly queried X |y | P(xy)

e Example: 0o 0 035
e MPAOfX? o 1 005

e MPAOf (X, Y)? 7 0 03

1| 1 0.3
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Complexity of Inference

Thm:
Computing P(X,=x,x,) in an arbitrary GM is NP-hard

e Hardness does not mean we cannot solve inference

e Itimplies that we cannot find a general procedure that works efficiently
for arbitrary GMs

e For particular families of GMs, we can have provably efficient
procedures

Eric Xing 9

Approaches to inference

e Exact inference algorithms

e The sum-product algorithm
e The junction tree algorithm

e Approximate inference techniques

Stochastic simulation / sampling methods
Markov chain Monte Carlo methods

Variational algorithms (later lectures) N
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The Junction Tree Algorithm

e There are several inference algorithms; some of which
operate directly on (special) directed graph
e Forward-backward algorithm for HMM (we will see it later)
e Pealing algorithm for trees and phylogenies

e The junction tree algorithm is the most popular and general
inference algorithm, it operates on an undirected graph

e To understand the JT-algorithm, we need to understand how to compile
a directed graph into an undirected graph

[ X X ]

esce

[ X0
Moral Graph o

e Note that for both directed GMs and undirected GMs, the joint
probability is in a product form:

1
BN:P(X) = [P(X;IX,) MREF: P(X):§HV/C(XC)
i=ld ceC
e So let's convert local conditional probabilities into potentials; then
the second expression will be generic, but how does this operation
affect the directed graph?

e We can think of a conditional probability, e.g,. P(C|A,B) as a function of the three
variables A, B, and C (we get a real number of each configuration):

e P(C|A,B) e HA,B,C) = P(C|A,B)

e Problem: But a node and its parent are not generally in the same clique in a BN
e Solution: Marry the parents to obtain the "moral graph"
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Moral Graph (cont.)

e Define the potential on a clique as the product over all conditional
probabilities contained within the clique

e Now the product of potentials gives the right answer:

() ()
i %
P(Xy, X5, X5, X4, X5, X¢)

=P(X)P(X)P(X;5 [ X1, X2 )P(X4 | X3)P(Xs [ X5)P(X | X4, X5)
=w (X1, Xo Xy (X3, X g, Xg)w (X4, X5, Xg)

Note that here the
where (X1 Xg, X3) = P(X)P(X)P(X5 ] X1, X) interpretation of potential
(X X0 Xe) = P(X, | X2)P(Xx | X is ambivalent:
V(X5 X X5) = P(X, [ X5)P(X5 | X) it can be either marginals
W (X4, X5, Xg) =P(Xq | X4, X5) or conditionals
Eric Xing 13
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e Aclique tree is an (undirected) tree of cliques

e Consider cases in which two neighboring cliques V and W have an
overlap S (e.g., (X;, X,, X;) overlaps with (X5, X,, Xg) ),

y(V)  40) y(W)

CvoO—s+Cw

e Now we have an alternative representation of the joint in terms of
the potentials:
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Clique trees

e Aclique tree is an (undirected) tree of cliques

e The alternative representation of the joint in terms of the potentials:

P(XIY XZ' X3' X4Y X5' Xé)
= PX)P(X)P(X5 | Xy, X2)P(Xy | X3)P(X5 [ X)P(Xg [ X4 X5)
P(XSY X4’ X5) P(x4' X5' xﬁ)

P(X3) P(X4: Xs5)

= P(le sz X3)

N h ial i
PeeXeX p0aXeXy) |t SERRIRER R
PG PO Xs)

marginal of the attendant
- [Towe(Xe) set of variables

=y (X, X,, X

e Generally: P(X)

RIS
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Why this is useful?

e Propagation of probabilities

e Now suppose that some evidence has been "absorbed" (i.e., certain values of
some nodes have been observed). How do we propagate this effect to the rest of
the graph?

: @T’@ = :‘@‘:’Q

e What do we mean by propagate?

Can we adjust all the potentials {y}, {#} so that they still represent the correct
cluster marginals (or unnormalized equivalents) of their respective attendant

variables? @ @ @
o Utility?  P(X,|Xg=%)= D w(X; Xz X5)
Xz, X3

P(Xs I Xe = Xe) :¢(X3)
P(x) = Z‘/’(Xm X5:%)

Eric Xing X4 X5 16
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Local Consistency

e We have two ways of obtaining p(S) y(V) #(S) y (W)
o 0
P(S)=> w(V) P(S)=> wW) —
V\S wW\S D

and they must be the same

e The following update-rule ensures this:

e Forward update: b=>w W 7$Ww

V\S - ¢S
e Backward update g5 = Zl//\jv vy = ¢S* wy
WAS ¢S

e Two important identities can be proven

ZV/V :Zl/’w =g ‘//V‘/*/w ZV/VY:W _ W¥w
Vs w\s és ?s ?s
Local Consistency Invariant Joint

Eric Xing 17
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Message Passing Algorithm o
vv) K e 5= w, w®=§ww
P— ¢ —%V/w el

e This simple local message-passing algorithn on a clique tree
defines the general probability propagation algorithm for
directed graphs!

e Many interesting algorithms are special cases:
Forward-backward algorithm for hidden Markov models,
Kalman filter updates
Pealing algorithms for probabilistic trees

e The algorithm seems reasonable. Is it correct?

Eric Xing 18




A problem

!
e Consider the following graph and a corresponding clique tree

e Note that C appears in two non-neighboring cliques

e Question: with the previous message passage, can we ensure
that the probability associated with C in these two (non-
neighboring) cliques consistent?

e Answer: No. It is not true that in general local consistency
implies global consistency

e What else do we need to get such a guarantee?

[ X X ]

esce

= . [ X0
Triangulation o

e A triangulated graph is one in which no cycles with
four or more nodes exist in which there is no chord

e We triangulate a graph by adding chords:

AN

e Now we no longer have our global inconsistency
problem.

e A clique tree for a triangulated graph has the running
intersection property: If a node appears in two cliques,
it appears everywhere on the path between the cliques

e Thus local consistency implies global consistency

Eric Xing 20
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Junction trees c
. . . o]
e A clique tree for a triangulated graph is referred to as a junction tree
e Injunction trees, local consistency implies global consistency. Thus
the local message-passing algorithms is (provably) correct
e ltis also possible to show that only triangulated graphs have the
property that their clique trees are junctions. Thus if we want local
algorithms, we must triangulate
e Are we now all set? (B) Ca)
e How to triangulate?
e The complexity of building a G 0
JT depends on how we triangulate!!
e Consider this network: G e
it turns out that we will need to pay an O(24)
or O(2%) cost depending on how we triangulate! @ 0
Eric Xing 21
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How to triangulate 5

e A graph elimination algorithm

@ @D @ @ @ D @ D @ @ D _D @D _@ @
G HHAAY =7
@ @ @ & & .

moralization graph elimination

e Intermediate terms correspond to the cliques resulted from
elimination

e ‘“good” elimination orderings lead to small cliques and hence reduce
complexity (what will happen if we eliminate "e" first in the above graph?)

e finding the optimum ordering is NP-hard, but for many graph optimum or
near-optimum can often be heuristically found

Eric Xing 22
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From Elimination to Message
Passing

e Our algorithm so far answers only one query (e.g., on one node), do
we need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree

® @ ® @ ® @ @ @ @ @ P OO OO O
G
@ B S D S

Recall this:
o) 5) ' b =W
m,(a,C, V\S
= 2.p(ec,d)m,(e)m, (a,e) e’ WW

e Messages can be reused

Eric Xing 23

From Elimination to Message
Passing 2

e Our algorithm so far answers only one query (e.g., on one node), do
we need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree
e Another query ...

e Messages m,and m, are reused, others need to be recomputed

Eric Xing 24

12



[ X X ]
0000
H
Message-passing algorithms o
collect distribute
e Message update
e The Hugin update b= wy ‘//\:v:%;l//w
e The Shafer-Shenoy update
mHJ(Su) = Z\: V/CIHmkﬁl (Sk|)
. [ X X ]
A Sketch of the Junction Tree sels
Algorithm o2

e The algorithm

Moralize the graph (trivial)
Triangulate the graph (good heuristic exist, but actually NP hard)

1
2
3. Build a clique tree (e.g., using a maximum spanning tree algorithm
4

Propagation of probabilities --- a local message-passing protocol

e Results in marginal probabilities of all cliques --- solves all queries
in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique --- a
good elimination order often leads to small maximal clique, and
hence a good (i.e., thin) JT

Eric Xing 26
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Case study:

e Hidden Markov Model

=

Eric Xing 27

Recall definition of HMM

e Transition probabilities between
any two states @ @ @ G
p(ytJ:”ytIJ:l):ai,jv @ @ @ @

°" p(y,1yi, =1) ~ Multinomial(a,;,a,,.,...,a,,, ) Vie L.

e Start probabilities
p(y,) ~ Multinomial(z,, 7z,,..., 7, ).
e Emission probabilities associated with each state
p(x |y} =1) ~ Multinomial(b, ;,b, ..., b, ) Vie .
or in general: px |y =) ~f(|8)Vviel

Eric Xing 28




Probability of a parse

e Given a sequence X = Xj......x; @ @ @

and aparsey =y, ...... s Vi

o
e To find how likely is the parse: @ @ @ @

(given our HMM and the sequence)

p(x,y)  =pXq...... Xpr Y veeees Y1) (Joint probability)
=p(yy) PO YD) PO, Y1) P 1Y) < PO Yr0) PO V)
=pyy) PO YD) - PO 1Y) X PO 1Y) PO 1Y) - PO [ Y)

=p(Yy, - VY7) P X Y1y eeens +¥7)
det M Il def M i def MK 1%
Let =, =[1l=] . a,,, 2[Tl] . ad 5, Z[T[1&d
i1 = i1 k41
= ﬂ-hahv)& '..ayT—lvyT bh‘xi ”'bYT-XT

T T

e Marginal probability: p(x) = Zy p(x,y) = Zh Zyz...ZyN NI E I ECYEA)
t=2 t=1

e Posterior probability: p(y|x) = p(x,y)/ p(x)

[ X X ]
esce
. . [
Three main questions on HMMs o2

1. Evaluation

GIVEN an HMM M, and a sequence X,
FIND Prob (x | M)
ALGO. Forward
2. Decoding
GIVEN an HMM M, and a sequence X ,
FIND the sequence y of states that maximizes, e.g., P(y | x , M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward

3. Learning (next lecture)

GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence X,
FIND parameters 6 = (7, a;, ;) that maximize P(x | 6)
ALGO. Baum-Welch (EM)
Eric Xing 30
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The Forward Algorithm

|
e We want to calculate Ax), the likelihood of x, given the HMM

e Sum over all possible ways of generating x:

pe)=2 pxy)=2 > > m I 1a,  TTrCxIv)
t=1

t=2

e To avoid summing over an exponential number of paths y, define
K K def K
a(y; =)= =P(X;,.... X, Y; =1) (the forward probability)

e The recursion:

atk = p(x | ytk :l)zati—lai,k
P(X)=Za¥

Eric Xing 31

The Backward Algorithm

e We want to compute P(yf =1|x) ,

the posterior probability distribution on the
7t position, given x °

e We start by computing
Py =1,x)=P(Xp,o X0 v =1, X, 100 X7)
=P (X X Vi = D)PXisgreen Xp | Xpree X, Y6 =1)
=P (XX Y =DPXeqe X [ Ve =1)

...

Forward, a/‘ Backward’ ﬁ‘k = P(XHI ..... XT | ytk = 1)

. k i i
e The recursion: ﬂt = Zak'i p(XHl | ytl+1 = l)ﬂtlu
i

Eric Xing 32
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Shafer Shenoy for HMMs s
e Recap: Shafer-Shenoy algorithm
e Message from clique /to clique J:
/’liA)J = z l//C, H/’lk—)l (Skl)
Ci\S; k=]
e Clique marginal
p(C;) o Ve, H/Ukm (Sw)
k
Eric Xing 33
e00
0000
0000
o000
o0
Shafer Shenoy for HMMs (cont.) :
e A junction tree for the HMM
vy, %) v(y1.y2) v (Y2 y5) v(¥rayr)
O O—C O »» LD
@ @ @ @ = o) T ) T I
@ @ @ e <(y2) <(ys) <lyr)
O O ©
° Rightward pass v(ya X))  v(ysXs) v(yr Xr)
Hea (Yeor) = ZW(YU Yert) He 1ot (yt)/lm(YM) e (V) YV Yea) t (Vo)
s e = ="
:; p(ynl | y(),u( 1 >((yt)p(xx-1 | y(-l) ,U,T(}/M)E
= p(X[+1 | yt—l)zay‘.y, M >l(yl) &
This is exactly they‘forward algorithm! Vs Xe)
e Leftward pass ... Hracr ) VORI (i)
- O—= =1}
Hy 1H(yl):ZV/(yuyul),ulH\1(yu1)/ﬂ¢(YL<1) T =
Yiet My (V) [
= POt 1Y)t ()P i) i
This iy:élexactly the backward algorithm! .//(y,,'i,"x,,l)
Eric Xing 34
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Approaches to inference &
e Exact inference algorithms
e The elimination algorithm
e The junction tree algorithms
e Approximate inference techniques
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods
e Variational algorithms (later lectures) ~
e0o
o000
[ X XX
. . ::O
The motif detection problem o

Biological background: the transcriptional regulatory machinery

gene regulatory sequences
w
\I ¢ w 'S 2 4 L )
spacer DNA "5' wan =

general transcription
factors

’ gene regulatory RNA polymerase

proteins

TATA box

upstream | | startof

promoter transcription

Eric Xing 36
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In silico motif detection

57—~ TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT
57—~ ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG
57—~ CACATCCAACGAATCACCTCACCGTTATCGIGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT
57— TGCGAAéXKZZE;E?E}TTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

57—~ ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA RO1

57— ATTGATGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA HOMZ
57~ GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA RO3

1: AAAAGAGTCA

2: AAATGACTCA

. AAGTGAGTCA

- H . = _  AAAAGAGTCA
multiple alignment: A= - e
AAATGAGTCA

. GAATGAGTCA

M: AAAAGAGTCA

Eric Xing 37

A Generative Scheme

Locations: {X} Background

o

57~ ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG
57~ CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT
{Y} — 57- TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC

57 - ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA
57— ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA
57~ GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA

Eric Xing 38




The LOGOS motif model

[Xing, Wu, Jordan and Karp, JBCB 2004]

e An integrated LOcal and GIObal motif Sequence model

Eric Xing

The occurrences of motifs in DNA sequences are governed by
a global motif syntax model py(X)

All instances of a specific motif admit a local motif prior model
P(A, 01X)

Non-motif sequences are modeled by a background model
Po(Y-AIX)

39

The global hidden Markov model §§f
(HMM) :*

1st order Markov grammar

17

Eric Xing

@CC@@@@@@@@OCQ

40
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The background model

k-th order Markov background

T
6, 6, o0, 6, 0, 0,

C—0

Eric Xing
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The local prior model .
Hidden Markov Dicichlet-multinomial (HMDM)
[Xing, Jordan, Karp and Russell, NIPS 2002]
AAAAGAGTCA
AAATGACTCA
AAGTGAGTCA
AAAAGAGTCA
GGATGAGTCA
AAATGAGTCA
GAATGAGTCA
AAAAGAGTCA

Eric Xing
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. eeoeo
A modular Bayesian model for sels
motif detection o
O OO
eeele
A= : Locations: {X} Background
\
Joint posterior:
p(X,S,0]y)=p(X]6,y)p(d,S)
eoo
o000
eeoo
. 000
Inference in LOGOS model &
e Joint posterior: p(X 'S.0 | y) _ p(x | H,y) p(g, S)
e inference on motif locations
PO 1¥) =] > p(x]6,y)p(6:5)
0 S Xy
e state space to be summed (and integrated) over
R0, 2 x|, [
~ M0 x10"* for a1000bpsequencewith twomotif patternsof length15bp
e Approximate inference
e Stochastic approximation: Gibbs sampling
e Deterministic approximation: Variational inference

22



Variational Methods

\
e For a distribution p(X|d) associated with a complex graph,
computing the marginal (or conditional) probability of arbitrary
random variable(s) is intractable

e Variational methods
e formulating probabilistic inference as an optimization problem:

eo. 1" =argmax { F(f) }

a (tractable) probability distribution
or, solutions to certain probabilistic queries

[ X X ]

esce

. . [ X0
Exponential Family 2

e EXponential representation of graphical models:

P(X)= ;HWC(XC) = p(X]0)= exp{z 0,8, (Xo,) — A(é’)}

ceC

e Includes discrete models, Gaussian, Poisson, exponential,
and many others

E(X)= —Z 0,4, (Xp, ) isreferred to as the energy of state X

- p(X|8) =exp{-~ E(X) - A(8)}
= exp{— E(XH ’XE) - A(Q'XE)}

Eric Xing 46
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Example: the Boltzmann
distribution on atomic lattice

p(X)—expi Zeux,xj + Ze X }

Eric Xing

Lower bounds of exponential
functions o
_//
exp(x) = exp(u)(x — u+1)
exp(x)

Eric Xing 48
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[ X X ]
0000
s
Lower bounding likelihood e
Representing q(Xy) by exp{-E’(Xy)}:
Lemma: Every marginal distribution q(X,) defines a lower
bound of likelihood:
p(xe) = [ dx,, exp{-E'(x,,)}
(1 - A(XE) - (E(XH ) XE) - E’(XH ))),
where xc denotes observed variables (evidence).
Upgradeable to higher order bound [Leisink and Kappen, 2000]
[ X X ]
eecs
. . . [
Lower bounding likelihood o

Representing q(Xy) by exp{-E’(Xy)}:

Lemma: Every marginal distribution q(X,) defines a lower
bound of likelihood:

P(Xe) 2 C ~(E(Xy Xe)) ) + ] 8% 80X, ) l0g A (x,,)
=C—(E), -H,,

where x. denotes observed variables (evidence).

<E>q . expected energy <E>q +H, : Gibbs free energy

H, :entro
Eric Xing q py 50
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KL and variational (Gibbs) free
energy

e Kullback-Leibler Distance:

KLl p)= Y a(@)n qiz))

e “Boltzmann’s Law” (definition of “energy”):

()= expl-E(2)]

KL(all p)=> a(z)E(z)+ > a(z)Inq(z) +InC

Gibbs Free Energy G(Q);
minimized when q(Z) = p(2)

KL and Log Likelihood s

e Jensen’s inequality
£(6;x)=10g p(x|6)
= Iogz p(x,z|6)

o p(x.210)
ong(zlx) AL

p(x.2|0)

2 Xz log =2 = /(9;x)2<4(0;x,z)>q+Hq:L’(q)

e KL and Lower bound of likelihood
KL(glp)

£(6:%) = log p(x|0) = log XX 219 _ 5510 P.21O) Inp(D)
p(zx.0) 2 p(z]%.0) 0

) p(x210) a(z)
= 20@I o b In)

_ p(X Z|(9) q(z)
SLA@e T T LI@ NG = 200 = £(q)+KL(@| p)

e Setting q()=p(z|x) closes the gap (c.f. EM)

Eric Xing 52
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A variational representation of
probability distributions

q =argmax { —(E),—H, }

=argmin { (E) +H, }
qeQ q a
where Q is the equivalent sets of realizable distributions, e.g., all valid

parameterizations of exponential family distributions, marginal polytopes
[winright et al. 2003].

Difficulty: H, is intractable for general ¢
“solution”  approximate H,
and/or,

relax or tighten Q

Mean field methods i

e Optimize q(X,) in the space of tractable families

e I.e., subgraph of G, over which exact computation of H, is
feasible

e Tightening the optimization space

e exact objective: Hq
e tightened feasible set: Q—>T ((Tc<Q)

q = argmin <E>q +H

qeT a

Eric Xing 54
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Belief Propagation

\
¢ Do not optimize q(X,) explicitly, but focus on the set of beliefs

o eg.b={b,=1(x,,x;), b=1(x)}

e Relax the optimization problem

e approximate objective: Heorna =H (b, B)
o relaxed feasible set: M,={7>0| > z(x;) :1,21(,\//,)(/) =7(x;) }

b*:arggre]jwn {(E), +F(b) |

e The loopy BP algorithm:
o afixed point iteration procedure that tries to solve b*

Eric Xing 55

Mean Field Approximation

Eric Xing 56
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Cluster-based approx. to the
Gibbs free energy (Wiegerinck 2001, | 8¢
|
Exact:  G[q(X)] (intractable)
Clusters: G[{q.(X.)}]
o D

Mean field approx. to Gibbs free
energy o

e Given a disjoint clustering, {C,, ..., C}, of all variables
° et a() = Ta (X)),

e Mean-field free energy

Gy = ZZqu (Xc, )E(X)+ZZqi (Xc, )In q (Xc,)

X i i xg

g, Gy = 2a06)alx Boxx)+ 2T al )+ S a(x)Ina(x)  (naive mean fieid)

e Will never equal to the exact Gibbs free energy no matter what
clustering is used, but it does always define a lower bound of the
likelihood

e Optimize each g;(x,)'s.
e Variational calculus ...

e Do inference in each g;(x,) using any tractable algorithm
Eric Xing 58

29



The Generalized Mean Field
theorem

Theorem: The optimum GMF approximation to the
cluster marginal is isomorphic to the cluster posterior of
the original distribution given internal evidence and its
generalized mean fields:

qi*(XH,Ci) - p(XH,Ci | Xec ’<XH'MBi >qj¢i)

GMF algorithm: Iterate over each g

. . [ X X ]
A generalized mean field sels
al g 0 rlth m [xing et al. UAI 2003] :.

Eric Xing 60
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. . [ X X ]
A generalized mean field sels
al go rithm [xing et al. UAI 2003] oo
|
[ X X ]
eecs
[
Convergence theorem s

Theorem: The GMF algorithm is guaranteed to
converge to a local optimum, and provides a lower
bound for the likelihood of evidence (or partition
function) the model.

Eric Xing
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The naive mean field
approximation

e Approximate p(X) by fully factorized q(X)=P;q;(X;)

e For Boltzmann distribution p(X)=exp{X; - ; 9;;XX;+0j,X{}/Z :

} Q O
C)®<D
= pX X)), tj e Q Q

. <Xj>q resembles a “message” sent from node j to i
i

mean field equation:

ﬂ&hwﬁ%&+quwng

JEN;

={(X; > : ] € IV, }orms the “mean field” applied to X, from its neighborhood

Eric Xing 63

Generalized MF approximation to
Ising models o

ISP PO
823888 EY
5388 838L
GI35988

Cluster marginal of a square block C,:

a(Xc )ocexp{z HIJXIXJ+29|OX + Z ij '< >q(><C )}
i,jeCy ieCy Cy . jeMBy . «

k'eMBCy

Virtually a reparameterized Ising model of small size.

Eric Xing 64
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. . . (X X J
GMF approximation to Ising eecs
eo0o
models :
\
50338803
55335663
50338088
55338863
‘ Singlaton marginal error — . CPU time
0.8 % = I
n: .altraclwe .rEpulsl\rEI Z altra::hl lpuvsul
Attractive coupling: positively weighted
Eric Xing Repulsive coupling: negatively weighted 65
[ X X ]
eecs
eo00
Cluster-based MF (e.g., GMF) 2

e a general, iterative message passing algorithm

clustering completely defines approximation

e preserves dependencies
e flexible performance/cost trade-off
e clustering automatable

recovers model-specific structured VI algorithms, including:

o fHMM, LDA
e variational Bayesian learning algorithms

easily provides new structured VI approximations to complex
models

Eric Xing 66




Example 1: Latent Dirichlet
Allocation

\
e Blei, Jordan and Ng (2003)

e Generative model of documents (but broadly applicable e.g.
collaborative filtering, image retrieval, bioinformatics)

e Generative model:

e choose 8 ~ Dir(a)
e choose topic zn ~ Mult(89)
e choose word Wy, ~ p(Wn[Zn; 3)

Latent Dirichlet Allocation i

e Variational approximation

| 10 " ([) 'a(l>
9(0,2) = ¢,(0)¢.(2) ) L) = | ¢ )
= DII’(€| y= f(a”<z>))>< \9! <;i) {E‘j ——— \i-') C-:/ Nl u

Multi(z ¢ =#(, (in¢)) O o= Bow, exp{Eyllog(8:) 7]}

e Data set: i o+ 211:1 (D

15,000 documents
90,000 terms
2.1 million words
e Model:
100 factors
9 million parameters

e MCMC could be totally infeasible for this problem

Eric Xing 68
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Example 2: Sigmoid belief

network

- Singlaton marginal error - ::z CPU time
q % 100
000
0000
_ s
Example 3: Factorial HMM o
OO - e s e e e e e o)
SRONONOROKH OO000CO00
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Example 4: GMF approximation
to LOGOS

Q) -
D O
O

Approximate p(X,S,dy) with a tractable distribution q(X,S, &)

Variable partition:

XS, = {X} + {S.6}
) O--O-®

$EEE  9ooc

eleje)e

o Let

q(x ’ 8,9) = ql(x)qz(ei S)

GMF for DNA motif prediction

e GMF approximations: q(X,S,6) < q,(X)a,(6,9)

A (X)=p(X |y,0)
0,(6,8) = p(S)p(@| S, Avx)
e GMF algorithm

Compute expectation
of wrt
posterior of in

assuming is given
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YY)
o000
T
[ LX)
H H ( X J
Traces of GMF iterations .
_750 -800
5—1000 51000
2 _1250 2
o 0 _1200
(] Q
0 1500f . g
< ; T -1400
750t
) -1600
2000 20 40 60 0 2 4 6
FP-iteration step CPU time (S) , 4q*
A single round of Sequentialized multiple
FP-iteration random restarts
Eric Xing 73
i it | 355
GMF vs. Gibbs sampler on motif | 322
M [ X J
detection .
=i
@
; 0.8
o
Co0.4 . “—{._:
] ﬁh\'\-_p.--_ o~ ot ] = |
a 1000 ZQOOCP:!:;Olir;-IOEOB{":?:]O) 6000 7000
Eric Xing 74
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. . (X XJ
GMF vs. Gibbs sampler on motif | 332
detection o
Performance
.motif dete_ction error.
1 = G
g 08 _ -
Sos | I T |
30.4- ' :
o
o 2 3 4 5
Data sets
e Sampling time of Gibbs = 10x the time for GMF .
(X X ]
esce
00
Open Problem o

e Idea
e A(0) is convex

Epigraph of A(B) can be represented as a pointwise supremum of all affine

functions that are global under-estimators of A(0)

Variationally, compute A(0) using the following convex optimization:

A(0) = sup {(#, ) — A" (1)}

HERA

Investigate the form of the dual function A"(y)

e Important consequence
Solution also yields the marginal probabilities!

Martin Wainwright and Michael Jordan

IEEE Transactions on Signal Processing, 2006

Eric Xing
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