
Normalization

10-810 /02-710
Computational Genomics



Gene Expression Analysis
Computational Computational BiologicalBiological

experiment experiment 
selectionselection

array design, array design, 
number of repeatsnumber of repeatsExperimental Design

diff. expressed diff. expressed 
genesgenes

normalization, miss. normalization, miss. 
value estimationvalue estimationData Analysis

functional functional 
assignment, assignment, 
response response 
programsprograms

clustering, clustering, 
classificationclassificationPattern Recognition

Model regulatory regulatory 
networksnetworks

information fusioninformation fusion



Experiment design

A number of computational issues should be addressed:

• Selecting short subsequences for oligo arrays to minimize 
cross hybridizations

• Determining the number of replicates for each sample

• Sampling rates for time series experiments



Typical experiment: replicates

healthy cancer

Technical replicates:  same sample using multiple arrays

Dye swap: reverse the color code between arrays

Clinical replicates: samples from different individuals

Many experiments have all three kinds of replicates



Data analysis

• Normalization

• Combining results from replicates

• Identifying differentially expressed genes

• Dealing with missing values

• Static vs. time series
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Normalizing across arrays

• Consider the following two sets of 
values: 



Lets put them together …



The first step in the analysis of microarray data in a given 
experiment is to normalize between the different arrays.

• Simple assumption: mRNA quantity is the same for all arrays

• Where n and T are the total number of genes and arrays, 
respectfully. Mj is known as the sample mean 

• Next we transform each value to make all arrays have the same 
mean:

Normalizing between arrays
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Normalizing the mean



Variance normalization

• In many cases normalizing the mean is not enough.

• We may further assume that the variance should be the same for each array
• Implicitly we assume that the expression distribution is the same for all arrays

(though different genes may change in each of the arrays)  

• Here Vj is the sample variance.
• Next, we transform each value as follows:
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Normalizing mean and variance



Typical experiment: ratios

healthy cancer

• In many experiments we are interested in the ratio between two 
samples

• For example

- Cancer vs. healthy

- Progression of disease (ratio to time point 0)



Transformation

• While ratios are useful, they are not symmetric.

• If R = 2*G then R/G = 2 while G/R = ½
• This makes it hard to visualize the different changes

• Instead, we use a log transform, and focus on the log ratio: 

• Empirical studies have also shown that in microarray experiments the log 
ratio of (most) genes tends to be normally distributed
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Normalizing between array: Locally 
weighted linear regression

• Normalizing the mean and the variance works well if the variance is 
independent of the measured value.

• However, this is not the case in gene expression.
• For microarrays it turns out that the variance is value dependent.



Locally weighted linear regression

• Instead of computing a single mean and variance for each array, we can 
compute different means and variances for different expression values.

• Given two arrays, R and G we plot on the x axis the (log) of their intensity 
and on the y axis their ratio

• We are interested in normalizing the average (log) expression ratio for the 
different intensity values  



Computing local mean and 
variance

• Setting

may work, however, it requires that many genes have the same x value, 
which is usually not the case

• Instead, we can use a weighted sum where the weight is propotional to 
the distance of the point from x:
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Determining the weights

• There are a number of ways to determine the weights
• Here we will use a Gaussian centered at x, such that

σ2 is a parameter that should be selected by the user
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Locally weighted regression: 
Results

Original values normalized  
values



Other normalization methods

• If you are not comfortable with the equal mRNA assumption, there
are other possible normalization methods:

• We can use genes known as ‘house keeping genes’. These genes 
are assumed to be expressed at similar levels regardless of the 
condition the cell is in.

• Alternatively, we can use ‘controls’ . These are sequences that are 
manually inserted into the sample with known quantities (this is 
mainly useful for oligo arrays).



Using spike controls
• Suppose we have m raw measurements of spiked controls per 
chip and T chip experiments altogether
• We need to construct a model over these observations
that disentangles the experiment dependent scaling and the
underlying (supposedly fixed) control levels
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We can try to learn the parameters of a model that attempts to 
disentangles the experiment dependent scaling and the underlying
(fixed) control levels :

Here:
• xi

j is the j’th measurement for control i
• mi is the fixed control amount
• rj is the unknown experiment dependent scaling
• ei

j is random multiplicative noise

Determining the underlying 
expression
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Log-transform all the variables

After the transformation we can express the model in the simple form
Observation = Model + noise

Log transform
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Noise model

• We make some additional assumptions about the model

• Noise (ε) is independent across controls / experiments
• The noise is Gaussian (original multiplicative noise is log-normal)
• The noise variance does not depend on the experiment but may 

depend on the specific spiked control
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Maximum likelihood estimate

• Maximum likelihood estimate (MLE) is a general and powerful 
techniques for fitting parameters of a probabilistic model.

• Given a parametric model (for example, Gaussian noise) and 
observed data, we look for the set of parameters (in our case, mean 
and variance) that maximize the likelihood of the model.

• If we observe data D, then we look for parameters that will maximize 
p(D | M) where M is the model we assume



Maximum likelihood estimate: 
Example

• Assume a uniform distribution model X~U(0,N). 

• For such a model we have 1 parameter to fit (N)
• We now observe the values: 

1.2, 0.5, 3.4, 2.4, 1.5, 0.8, 2.2, 3.2

what value should we use for N?
• Recall that in a uniform model, p(x) = 1/N for 0<x<N and p(x) = 0 for x>N 

• The likelihood of the data given N is thus:
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Maximum likelihood estimate: 
Example

1.2, 0.5, 3.4, 2.4, 1.5, 0.8, 2.2, 3.2

• Recall that in a uniform model, p(x) = 1/N for 0<x<N and p(x) = 0 for x>N 
• The likelihood of the data given N is thus:

• It is easy to see that to maximize this value we must pick an N that is at 
least as large as the maximum value we observed.

• On the other hand, the larger N the smaller 1/N
• Thus, the value that maximizes the likelihood is N = 3.4, the largest value 

we observed.
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Back to our model

• We want to fit our model to the 
(log transformed) raw data

• We first write log likelihood 
term for the observed 
expression values:
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Iterative solution
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Normalizing using the estimated 
parameters

• Once we obtain the estimate for the scaling parameter          we re-
scale each measured value as follows:

so that all genes in all arrays will have a scaling factor of 1 (log 
scaling of 0)
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Some additional notes

• The maximum likelihood estimates of the noise variances may 
become too small; would need MAP or Bayesian estimates for the 
variances in practice.

• The simple log-normal noise model may not be adequate 
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Oligo arrays: Negative values

• In many cases oligo array can return values that are less than 0 
(Why?)

• There are a number of ways to handle these values
• The most common is to threshold at a certain positive value
• A more sophisticated way is to use the negative values to learn 

something about the variance of the specific gene 



Data analysis

• Normalization

• Combining results from replicates

• Identifying differentially expressed genes

• Dealing with missing values

• Static vs. time series 



Motivation

• In many cases, this is the goal of the experiment.

• Such genes can be key to understanding what goes wrong / or 
get fixed under certain condition (cancer, stress etc.).

• In other cases, these genes can be used as ‘features’ for a 
classifier.

• These genes can also serve as a starting point for a model for 
the system being studied (e.g. cell cycle, phermone response 
etc.).



Problems

• As mentioned in the previous lecture, differences in expression
values can result from many different noise sources.

• Our goal is to identify the ‘real’ differences, that is, differences 
that can be explained by the various errors introduced during the 
experimental phase.

• Need to understand both the experimental protocol and take 
into account the underlying biology / chemistry 



The ‘wrong’ way

• During the early days (though some continue to do this 
today) the common method was to select genes based on 
their fold change between experiments.

• The common value was 2 (or absolute log of 1).

• Obviously this method is not perfect …



Significance bands for Affy arrays



Value dependent variance



Typical experiment: replicates

healthy cancer

Technical replicates:  same sample using multiple arrays

Dye swap: reverse the color code between arrays

Clinical replicates: samples from different individuals

Many experiments have all three kinds of replicates



What you should know

• The different noise factors that influence microarray 
results

• The two major normalization methods:
- Assuming the same mRNA quantity
- Using spike controls or house keeping genes

• Maximum likelihood estimation (MLE) principal 


