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Reading: hand-outs 

Genetic Polymorphisms  
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Type of polymorphisms
Insertion/deletion of a section of DNA

Minisatellites: repeated base patterns (several hundred base pairs)
Microsatellites: 2-4 nucleotides repeated
Presence or absence of Alu segments

Single base mutation (SNP)
Restriction fragment length (RFLP)
Creating restriction sites via PCR primer
Direct sequencing

Frequency of SNPs greater than that of any other type of polymorphism

Variable Number of Tandem 
Repeats (VNTR) Polymorphism
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Restriction Fragment Length 
Polymorphism (RFLP) 

Single Nucleotide Polymorphism 
(SNP)

Polymorphism rate: number of letter changes between two different members of a species
Humans: ~1/1,000
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Exploiting Genetic Variations
Population Evolution: the majority of human sequence 
variation is due to substitutions that have occurred once in 
the history of mankind at individual base pairs

There can be big differences between populations!

Markers for pinpointing a disease: certain polymorphisms 
are in "Linkage Disequilibrium" with disease phenotypes

Association study: check for differences in SNP patterns between cases 
and controls  

Forensic analysis: the polymorphisms provide individual and 
familiar signatures

a diploid individual

Cp

Cm

chromosome

“Binary” nt-substitutions at a single locus on a chromosome
− each variant is called an "allele"

GATCTTCGTACTGAGT
GATCTTCGTACTGAGT
GATTTTCGTACGGAAT
GATTTTCGTACTGAGT
GATCTTCGTACTGAAT
GATTTTCGTACGGAAT
GATTTTCGTACGGAAT
GATCTTCGTACTGAAT

Single Nucleotide Polymorphism 
(SNP)
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Some Facts About SNPs
More than 5 million common SNPs each with frequency 10-
50% account for the bulk of human DNA sequence difference

About 1 in every 600 base pairs

It is estimated that ~60,000 SNPs occur within exons; 85% of 
exons within 5 kb of nearest SNP

GATCTTCGTACTGAGT
GATCTTCGTACTGAGT
GATTTTCGTACGGAAT
GATTTTCGTACTGAGT
GATCTTCGTACTGAAT
GATTTTCGTACGGAAT
GATTTTCGTACGGAAT
GATCTTCGTACTGAAT

CTG 3/8

TGA 3/8

CTA 2/8

Haplotype

Consider J binary markers in a genomic region
There are 2J possible haplotypes 

− but in fact, far fewer are seen in human population
Good genetic marker for population, evolution and hereditary diseases …

chromosome

disease X
healthy
healthy

What is a haplotype?
-- a more discriminative state of a chromosomal region
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2 13
61

9 15
174

1 9
62

9 17
2 12

127
146
71

18 18
1 4
10 10

Genotypes Haplotypes

13
1
15
4
9
2
17
12
7
6
1
18
4
10

2
6
9
17
1
6
9
2
12
14
7
18
1
10

Haplotype

Re-construction

Chromosome phase is knownChromosome phase is unknown

Haplotype and Genotype
A collection of alleles derived from the same chromosome

Linkage Disequilibrium
LD reflects the relationship between alleles at different loci.

Alleles at locus A: frequencies p1,…, pm

Alleles at locus B: frequencies q1,…,qn

Haplotype frequency for AiBj:
equilibrium value: pi qj

Observed value: hij

Linkage disequilibrium: hij -pi qj
Linkage disequilibrium is an allelic association measure (difference 
between the actual haplotype frequency and the equilibrium value)
More precisely: gametic association

Association studies.
If inheriting a certain allele at the disease locus increases the chance of 
getting the disease, and the disease and marker loci are in LD, then the 
frequencies of the marker alleles will differ between diseased and non-
diseased individuals.
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Use of Polymorphism in Gene 
Mapping

1980s – RFLP marker maps
1990s – microsatellite marker maps

Advantages of SNPs in genetic
analysis of complex traits

Abundance: high frequency on the genome
Position: throughout the genome (level of influence of 
type of SNP, e.g. coding region, promoter site, on 
phenotypic expression?)
Ease of genotyping
Less mutable than other forms or polymorphisms
Allele frequency drift (different populations)
Haplotypic patterns
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Haplotype analyses
Haplotype analyses

Linkage disequilibrium assessment
Disease-gene discovery
Genetic demography
Chromosomal evolution studies

Why Haplotypes
Haplotypes are more powerful discriminators between cases and 
controls in disease association studies
Use of haplotypes in disease association studies reduces the number of 
tests to be carried out.
With haplotypes we can conduct evolutionary studies



9

C T A

T G A

C G A

T T A

??????

haplotype h≡(h1, h2)
possible associations of alleles to 

chromosome

Heterozygous
diploid individual

C T A

T G ACp

Cm

Genotype g
pairs of alleles with association of 
alleles to chromosomes unknown

ATGC
sequencing

TC TG AA

Phase ambiguity
-- haplotype reconstruction for individuals

Inferring Haplotypes
Genotype: AT//AA//CG

Maternal genotype: TA//AA//CC
Paternal genotype: TT//AA//CG
Then the haplotype is AAC/TAG.

Genotype: AT//AA//CG
Maternal genotype: AT//AA//CG
Paternal genotype: AT//AA//CG
Cannot determine unique haplotype

Problem: determine Haplotypes without parental genotypes
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Genotype 
representations

0/0 0
1/1 1
0/1 2

Genotypes of 
14 individual

21 2 222 02
02 1 111 22
11 0 000 01
02 1 111 22
21 2 222 02
02 1 111 22
11 0 000 01
02 1 111 22
21 2 222 02
22 2 222 21
21 1 222 02
02 1 111 22
22 2 222 21
21 2 222 02

|| | ||| ||

Identifiability

01 1 000 00
11 0 000 01
01 1 000 00
00 1 111 11
11 0 000 01
11 0 000 01
01 1 000 00
00 1 111 11
01 1 000 00
11 0 000 01
00 1 111 11
01 1 000 00
11 0 000 01
11 0 000 01
01 1 000 00
00 1 111 11
01 1 000 00
11 0 000 01
00 1 111 11
11 0 000 01
11 0 000 01
01 1 000 00
00 1 111 11
01 1 000 00
11 0 000 01
00 1 111 11
01 1 000 00
11 0 000 01

11 0 000 01

|| | ||| || 

01 1 000 00

|| | ||| ||

00 1 111 11

|| | ||| ||

11

10

7

01 1 111 00
11 0 000 01
01 1 111 00
00 1 111 11
11 0 000 01
11 0 000 01
01 1 111 00
00 1 111 11
01 1 111 00
11 0 000 01
00 1 111 11
01 1 111 00
11 0 000 01
11 0 000 01
01 1 111 00
00 1 111 11
01 1 111 00
11 0 000 01
00 1 111 11
11 0 000 01
11 1 000 01
01 1 111 00
00 1 111 11
01 1 111 00
11 0 000 01
00 1 111 11
01 1 111 00
11 0 000 01

11 0 000 01
|| | ||| || 

11 0 010 01
|| | ||| ||

11 1 000 01
|| | ||| ||

11 0 000 11
|| | ||| ||

01 1 111 00
|| | ||| ||

01 1 101 00
|| | ||| ||

01 0 111 00
|| | ||| ||

00 1 111 11
|| | ||| ||

00 1 111 01
|| | ||| ||

8

1

1

1

8

1

1

6

1

01 1 101 00
11 0 010 01
01 1 111 00
00 1 111 11
11 0 000 01
11 0 000 01
01 1 111 00
00 1 111 11
01 0 111 00
11 1 000 01
00 1 111 11
01 1 111 00
11 0 000 01
11 0 000 01
01 1 111 00
00 1 111 11
01 1 111 00
11 0 000 01
00 1 111 11
11 0 000 01
11 1 000 01
01 1 111 00
00 1 111 11
01 1 111 00
11 0 000 11
00 1 111 01
01 1 111 00
11 0 000 01

??
Parsimonious solution

Identifiability
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Three Problems

Frequency estimation of all possible haplotypes
Haplotype reconstruction for individuals
How many out of all possible haplotypes are plausible in 
a population

Given a random sample of multilocus genotypes at a set 
of SNPs

Haplotype reconstruction:
Clark (1990)
Choose individuals that are homozygous at every locus (e.g. TT//AA//CC)

Haplotype: TAC

Choose individuals that are heterozygous at just one locus (e.g. TT//AA//CG)
Haplotypes: TAC or TAG

Tally the resulting known haplotypes.
For each known haplotype, look at all remaining unresolved cases: is there a 
combination to make this haplotype?

Known haplotype: TAC
Unresolved pattern: AT//AA//CG
Inferred haplotype: TAC/AAG. Add to list.

Known haplotype: TAC and TAG
Unresolved pattern: AT//AA//CG
Inferred haplotypes: TAC and TAG. Add both to list.

Continue until all haplotypes have been recovered or no new haplotypes can 
be found this way.
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Problems: Clark (1990)
No homozygotes or single SNP heterozygotes in the sample
Many unresolved haplotypes at the end
Error in haplotype inference if a crossover of two actual 
haplotypes is identical to another true haplotype
Frequency of these problems depend on avg. heterozygosity
of the SNPs, number of loci, recombination rate, sample size.
Clark (1990): algorithm "performs well" even with small 
sample sizes.

The probability of a genotype g:

Standard settings:
p(g|h1,h2)=1(h1⊕h1=g) noiseless genotyping
p(h1,h2)= p(h1)p(h2)=f1f2 Hardy-Weinberg equilibrium, multinomial
|H| = K fixed-sized population haplotype pool 
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Finite mixture model
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EM algorithm: 
Excoffier and Slatkin (1995)

Numerical method of finding maximum likelihood estimates 
for parameters given incomplete data.

1. Initial parameter values: Haplotype frequencies: f1,…,fh
2. Expectation step: compute expected values of missing data 

based on initial data
3. Maximization step: compute MLE for parameters from the 

complete data
4. Repeat with new set of parameters until changes in the 

parameter estimates are negligible.

Beware: local maxima.

EM algorithm efficiency

Heavy computational burden with large number of loci? 
(2L possible haplotypes for L SNPs)
Accuracy and departures from HWE?
Error between EM-based frequency estimates and their 
true frequencies
Sampling error vs. error from EM estimation process
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Bayesian Haplotype 
reconstruction

Bayesian model to approximate the posterior distribution 
of haplotype configurations for each phase-unknown 
genotype.
G = (G1, …, Gn) observed multilocus genotype 
frequencies
H = (H1, …, Hn) corresponding unknown haplotype pairs
F = (F1, …, FM) M unkown population haplotype 
frequencies
EM algorithm: Find F that maximizes P(G|F). Choose H 
that maximizes P(H|FEM, G).

Gibbs sampler

Initial haplotype reconstruction H(0).

Choose and individual i, uniformly and at random from all 
ambiguous individuals.
Sample Hi

(t+1) from P(Hi|G,H-I
(t)), where H-i is the set of 

haplotypes excluding individual i.
Set Hj

(t+1) = Hj
(t) for j=1,…,i-1,i+1,…,n.
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HAPLOTYPER: 
Bayesian Haplotype Inference (Niu et al.2002)

Bayesian model to approximate the posterior distribution of 
haplotype configurations for each phase-unknown genotype.
Dirichlet priors β=(β1,…, βM) for the haplotype frequencies 
F=(f1,…,fM). 
Multinomial model (as in EM algorithm) for individual 
haplotypes: 
product over n individuals, 
and multilocus genotype probabilities are sums of products of 
pairs of haplotype probabilities.

Haplotypes H are “missing:”

Sample hi1 and hi2 for individual i: 

Sample H given Hupdated Improving efficiency (Niu et al.)
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Gibbs sampler
Predictive updating (Gibbs sampling): 

– (N(H)=vector of haplotype counts) 

P(G,H) ~ Γ(|β+N(H)|)/ Γ(β+N(H)) 

– Pick an individual i, update haplotype hi: 

P(hi =(g,h)|H-i,G) ~ (ng+ βg)(nh+ βh)

(ng =count of g in H-i)
– Prior Annealing: 

– use high pseudo counts at the beginning of the iteration and 
progressively reduce them at a fixed rate as the sampler 
continues.

HAPLOTYPER Discussions
Missing marker data:

PCR dropouts->absence of both alleles,
one allele is unscored
Gibbs sampler adapts nicely

Ligation
Problem: large number of loci.
Partition L loci into blocks of 8 and carry out block level haplotype 
reconstruction.
Record the B most probable (partial) haplotypes for each block and join 
them

Progressive ligation.
Hierarchical ligation.
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Phase
Coalescence-based Bayesian Haplotype inference: Stephens et al (2001)

What is P(Hi |G,H-i
(t) )?

For a haplotype Hi=(hi1,hi2) consistent with genotypes Gi: 
P(Hi|G,H-i)~P(Hi|H-i )~π(hi1|H-i) π(hi2|hi1,H-i)
π(.|H)=conditional distribution of a future sampled haplotype 
given previously sampled haplotypes H.
r=total number of haplotypes, rα=number of haplotypes of type 
α, θ=mutation rate, then a choice for 

π(α |H)= (rα + θ µα)/(r+ θ), 

where µα=prob. of type α.

PHASE, details
This is not working when the number of possible values Hi is too 
large: 2J-1, J=number of loci at which individual i is heterozygous. 
Alternatively,

where E=set of types for a general mutation model, P=reversible 
mutation matrix.

I.e. future haplotype h is obtained by applying a random number of 
mutations, s (sampled from geometric distribution), to a randomly 
chosen existing haplotype, rα (coalescent).
Problems: estimation of θ, dimensionality of P (dim P = M, the 
number of possible haplotypes).
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PHASE Discussion
Key: unresolved haplotypes are similar to known haplotypes
HWE assumption, but robust to “moderate” levels of 
recombinations
More accurate than EM,Clark’s and Haplotyper algorithms
Provides estimates of the uncertainty associated with each 
phase call
Problem (of both Bayesian model): dimensionality

Summary: Algorithms
Clark’s parsimony algorithm:

simple, effective,
depends on order of individuals in the data set,
need sufficient number of homozygous individuals,
Disadvantage: individuals may remain phase indeterminate, biased
estimates of haplotype frequencies

EM algorithm:
accurate in the inference of common haplotypes
Allows for possible haplotype configurations that could contribute to a 
phase-unknown genotype.
Cannot handle a large number of SNPs.
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Summary: Algorithms
Haplotyper:

Bayesian model to approximate the posterior distribution of 
haplotype configurations
Prior annealing helps to escape from local maximum
Partitions long haplotypes into small segments: block-by-block 
strategy
Gibbs sampler to reconstruct haplotypes within each 
segment. Assembly of segments.
http://www.people.fas.harvard.edu/~junliu/index1.html#Comp
utationalBiology

Summary: Algorithms
PHASE:

Bayesian model to approximate the posterior distribution of 
haplotype configurations
based on the coalescence theory to assign prior predictions 
about the distributions of haplotypes in natural populations,
may depend on the order of the individuals,
pseudo posterior probabilities (-> pseudo Gibbs sampler),
lacks a measure of overall goodness.
http://www.hgmp.mrc.ac.uk/Registered/Option/phase.html
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