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Genetic Polymorphisms o

The ABO Blood System
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Type of polymorphisms 5
\
¢ Insertion/deletion of a section of DNA
e Minisatellites: repeated base patterns (several hundred base pairs)
e Microsatellites: 2-4 nucleotides repeated
e Presence or absence of Alu segments
e Single base mutation (SNP)
e Restriction fragment length (RFLP) -
e Creating restriction sites via PCR primer ~— —— —t+————
e Direct sequencing - T
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Frequency of SNPs greater than that of any other type of polymorphism
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Restriction Fragment Length
Polymorphism (RFLP)

Restriction site

Single Nucleotide Polymorphism
(SNP) | P st N

fggcgtatce. - -
acjgtatce: - -

Polymorphism rate: number of letter changes between two different members of a species
Humans: ~1/1,000




Exploiting Genetic Variations

\
e Population Evolution: the majority of human sequence

variation is due to substitutions that have occurred once in
the history of mankind at individual base pairs /\

e There can be big differences between populations! /\ /\

e Markers for pinpointing a disease: certain polymorphisms
are in "Linkage Disequilibrium" with disease phenotypes
e Association study: check for differences in SNP patterns between cases

and controls )
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e Forensic analysis: the polymorphisms provide individual and
familiar signatures

Single Nucleotide Polymorphism
(SNP) o2

GATCTTCGTACTGAGT
GATCTTCGTACTGAGT
GATTTTCGTACGGAAT
GATTTTCGTACTGAGT
GATCZTTCGTACTGAA
GATTTTCGTACGGAAT
GXTTTTCGTACGGAAT
ATCTTCGTACTGAAT

Chromosome ;:/—

= “Binary” nt-substitutions at a single locus on a chromosome
— each variant is called an "allele”




Some Facts About SNPs

\
e More than 5 million common SNPs each with frequency 10-

50% account for the bulk of human DNA sequence difference
e About 1 in every 600 base pairs

e It is estimated that ~60,000 SNPs occur within exons; 85% of
exons within 5 kb of nearest SNP
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What is a haplotype? s3:t
--a more discriminative state of a chromosomal region °
<@ETTCGTACTGA >
i T Haplotype
GATTTTCGTACTGAGT CTG 3/8 healthy
GATCTTCGTACTGAAT TGA 3/8 healthy
GATTTTCGTACGGAAT CTA 28 disease X

GATTTTCGTACGGAAT /T
GATCTTCGTACTGAAT 7<=
AN

chromosome ;:%

= Considef'J binary markers in a genomic region
= There arg{2’) gossible haplotypes —jrl (

— but ir@-c_t, far fewer are seen in human population
= Good genetic marker for population, evolution and hereditary diseases ...
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Haplotype and Genotype )
\

e A collection of alleles derived from the same chromosome
Genotypes Haplotypes

365
&

Chromosome phase is unknown Chromosome phase is known

Linkage Disequilibrium

e LD reflects the relationship between alleles at different loci.
Alleles at locus A: frequencies p;,..., p,,

e Alleles at locus B: frequencies ¢,,...,g,
e Haplotype frequency for AB;:
equilibrium value: p, g;
Observed value: /7,-J-
Linkage disequilibrium: 4, -p;¢;

e Linkage disequilibrium is an allelic association measure (difference
between the actual haplotype frequency and the equilibrium value)

e More precisely: gametic association

e Association studies.

e Ifinheriting a certain allele at the disease locus increases the chance of
getting the disease, and the disease and marker loci are in LD, then the
frequencies of the marker alleles will differ between diseased and non-
diseased individuals.
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Use of Polymorphism in Gene sels
Mapping H
e 1980s —Mker maps
o 19908—nﬁ'§ateﬁnmker maps ,
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Advantages of SNPs in genetic sels
analysis of complex traits o

e Abundance: high frequency on the genome

e Position: throughout the genome (level of influence of
type of SNP, e.g. coding region, promoter site, on
phenotypic expression?)

e Ease of genotyping

e Less mutable than other forms or polymorphisms
e Allele frequency drift (different populations)

e Haplotypic patterns




Haplotype analyses

e Haplotype analyses
e Linkage disequilibrium assessment
e Disease-gene discovery
e Genetic demography
e Chromosomal evolution studies

e Why Haplotypes

e Haplotypes are more powerful discriminators between cases and
controls in disease association studies

e Use of haplotypes in disease association studies reduces the number of
tests to be carried out.

e With haplotypes we can conduct evolutionary studies
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The International '‘HapMap' Project

WASHINGTON, Oct. 29, 2002

(AP) Looking for a quicker way to identify
genes that cause disease, researchers

are beginning wwto
identify blocks o tontain

common variations in the human genetic
structure, officials announced Tuesday.

The project, expected to take three years,
involves nine research groups in five
countries and will analyze genetic
patterns in blood samples taken from
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Phase ambiguity 3
-- haplotype reconstruction for individuals | ¢
!
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sequencing
Heterozygous
diploid individual @ @&)
7 Genotype g
%pairs of alleles with association of ~I -
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e A alleles to chromosomes unknown ~C T\—A/
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haplotype h=(h, h,)
possible associations of alleles to
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Inferring Haplotypes o
Ty
e Genotype:AT//AA/ICG A —
o Maternal genotype: TA//AA//CC AL Y3
e Paternal genotype: TT//AA//CG TAT R
e Then the haplotype is AAC/TAG. L3 * C.
No& C

e Genotype: AT//AA/ICG
e Maternal genotype: AT//AA/ICG
e Paternal genotype: AT//AA//CG
e Cannot determine unique haplotype

e Problem: determine Haplotypes without parental genotypes




ldentifiability

Genotypes of
14 individual
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representations 1 111 22

21 2 222 02
0/0 > 0 02 1 111 22
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21 2 222 02
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22 2 222 21
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01 1 111 00 01 17101 00
11 0 000 01 11 0 010 01 11 0 000 01
01 1 111 00 01 1 111 00 i (g
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11 0 000 01 11 0 000 01 11 0 010 01
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01 1 111 00 01 1 111 00
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11 0 000 01 11 0 000 01
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Three Problems £

e Frequency estimation of all possible haplotypes
e Haplotype reconstruction for individuals

e How many out of all possible haplotypes are plausible in
a population

Given a random sample of multilocus genotypes at a set
of SNPs

Haplotype reconstruction:
Clark (1990)

Choose individuals that are homozygous at every locus (e.g\ TT//AA//CC)

° Haplotype@
Choose individuals that are heterozygous at just one locus (e.g. TT//AA/ICG)
e Haplotypes: TAC or TAG

Tally the resulting known haplotypes.

For each known haplotype, look at all remaining unresolved cases: is there a
combination to make this haplotype?
e Known haplotype: TAC
Unresolved pattern: AT//AA//ICG
Inferred haplotype: TAC/AAG. Add to list.
e Known haplotype: TAC and TAG
Unresolved pattern: AT//AA//CG
Inferred haplotypes: TAC and TAG. Add both to list.

Continue until all haplotypes have been recovered or no new haplotypes can
be found this way.
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Problems: Clark (1990)

\
e No homozygotes or single SNP heterozygotes in the sample

e Many unresolved haplotypes at the end

e Error in haplotype inference if a crossover of two actual
haplotypes is identical to another true haplotype

e Frequency of these problems depend on avg. heterozygosity

of the SNPs, number of loci, re ination rate, sample size.
e Clark (1990): algorithm "performs well" gven with small

sample sizes.
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Finite mixture model o
e The probability of a genotype g: @J\ /@
C\P(0) %@@“’@ S
hy,h,
3 Population haplotype Haplotype Genotyping

Z poo model model

e Standard settings:
e 1p(glhy,hy)=1(h,®h;=0) noiseless genotyping

° »ho)s p(hy)p(h,)=ff, Hardy-Weinberg equilibrium, multinomial
o | 5K fixed-sized population haplotype pool
o(0)= Shh)

by hyesr
h®hy=g

12



EM algorith

m:
Excoffier and Slatkin (1995)

e Numerical method of finding maximum likelihood estimates
for parameters given incomplete data. v,

A
1. Initial parameter values: Haplotype frequencies:@...,fh

2. : compute expected values of missing data
based on initial data

3. : compute MLE for parameters from the
complete data

4. Repeat with new set of parameters until changes in the

arameter estimates are negligible.
p glig | @ _—
C A
e Beware: local maxima) % o

EM algorithm efficiency

e Heavy computational burden with large number of loci?
(2L possible haplotypes for L SNPs)

e Accuracy and departures from HWE?

e Error between EM-based frequency estimates and their
true frequencies

e Sampling error vs. error from EM estimation process

13



Bayesian Haplotype 0
reconstruction -

\
Bayesian model to approximate the posterior distribution

of haplotype configurations for each phase-unknown
genotype.

G =(Gy, ..., G,) observed multilocus genotype
frequencies
H = (H,, ..., H,) corresponding unknown haplotype pairs

F = (F,, ..., Fyy) M unkown population haplotype
frequencies

EM algorithm: Find F that maximizes P(G|F). Choose H

that maximizes P(H|FEM, G). 1y, ﬁé%) |
3
&

Gibbs sampler

Initial haplotype reconstruction H(©).

Choose and individual i, uniformly and at random from all
ambiguous individuals.

Sampl@om P(H|G,H.®), where H, is the set of
haplotypes excluding individual i.

Set Hj(t+1) = Hj(t) for j=1,...,i-1,i+1,...,n.

H=(.() &jL/”“l &,’/j{

$— TM)_}Z@%) &"4

F(H{PVH'):?

< ol

14



HAPLOTYPER:

Bayesian Haplotype Inference (Niu et al.2002)

\
e Bayesian model to approximate the posterior distribution of

haplotype configurations for each phase-unknown genotype.
o (Dirichlet prior§ B=(B;, .-, B,\ﬂor the haplotype frequencies

F=(f,,....fy)- LN
e Multinomial model (as in EM algorithm) for individual

haplotypes: W(‘[ )
e product over n individuals,

¢ and multilocus genotype probabilities are sums of products of
. pairs of haplotype probabilities.

PLG1h ) K Achat=d)

. :fhw% wp. Y
v t o, (7

— N0
S W—

Gibbs sampler

e Haplotypes H are “missing:”

pO LD (LD
PGHIF)~ []f,f, T1 £/

e Sample h;,; and h, for individual /:

f f,
P(hy=9.h, =h]| FaGi):gi

S f,

g'®h'=G;

— e

e Sample H given Hurdated Improving efficiency (Niu et al.)
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Gibbs sampler s
e Predictive updating (Gibbs sampling):
— (N(H)=vector of haplotype counts)
P(G,H) ~ T(IB+N(H)I) T(B+N(H))
— Pick an individual i, update haplotype h;:
P(h; =(g:h)[H,,G) ~ (ng+ Bg)(ny+ By)
(ng =count of g in H )
— Prior Annealing:

— use high pseudo counts at the beginning of the iteration and
progressively reduce them at a fixed rate as the sampler
continues.

[ X X ]
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HAPLOTYPER Discussions o
\ \ \ \ \ \

v A) A)

e Missing marker data: =
e PCR dropouts->absence of bcmlre‘?é_s, - m_’\?_‘} M, G

e one allele is unscored ; ; — k/'n/d
-2

e Gibbs sampler adapts nicely — —
o —t = (ot =
e Ligation |C=

e Problem: large number of loci.
e Partition L loci into blocks of 8 and carry out block level haplotype
reconstruction.

e Record the B most probable (partial) haplotypes for each black and join
them . , y

Level 3

Progressive ligation.
Hierarchical ligation. e N

r 1 Level 1
— g

Level 2

5 * v D
%P—.—_L.}_é\—.—_/—.& Level 0
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Phase sect
!E—o(alescence-based Bayesian Haplotype inference: Stephens et al (2001) 4
|
e Whatis P(H, |G,H, ®)? p (L TP

e For a haplotype Hi=(h;;,h;,) gogsistent with.genotypes G;:

e T1(.|H)=conditional distribution of a future sampled haplotype
given previously sampled haplotypes H.

¢ r=total number of haplotypes, r,=number of haplotypes of type
a, 6=mutation rate, then a choice for

@ [H)= (ry + © p)/(r+ ), > /\i\%
where p=prob. of type a. 3
SRER ) =Ph(—)
M

PHASE, details

e This is not working when the number of possible values H; is too
large: 291, J=number of loci at which individual i is heterozygous.
Alternatively,

rr(th Sy (P

azE 5=0 +9

e where E=set of types for a general mutation model, P=reversible
mutation matrix.

e |.e. future haplotype h is obtained by applying a random number of
mutations, s (sampled from geometric distribution), to a randomly
chosen existing haplotype, r, (coalescent).

e Problems: estimation of 6, dimensionality of P (dim P = M, the
number of possible haplotypes).

17



PHASE Discussion

\
e Key: unresolved haplotypes are similar to known haplotypes

o H assumption, but robust to “moderate” levels of [(
recombinations

e More accurate than EM,Clark’s and Haplotyper algorithms

e Provides estimates of the uncertainty associated with each
phase call

e Problem (of both Bayesian model): dimensionality

Summary: Algorithms

e Clark’s parsimony algorithm:
e simple, € ve;

e depends on order of individuals in the data set,
e need sufficient number of homozygous individuals,
e Disadvantage: individuals may remain phase indeterminate, biased
estimates of haplotype frequencies
e EM algorithm:
e accurate in the inference of common haplotypes

e Allows for possible haplotype configurations that could contribute to a
phase-unknown genotype.

e Cannot handle a large number of SNPs.

18



Summary: Algorithms

Haplotyper:

Bayesian model to approximate the posterior distribution of
haplotype configurations

Prior annealing helps to escape from local maximum

Partitions long haplotypes into small segments: block-by-block
strategy

Gibbs sampler to reconstruct haplotypes within each
segment. Assembly of segments.

http://www.people.fas.harvard.edu/~junliu/index1.htmi#Comp
utationalBiology

Summary: Algorithms

PHASE:

Bayesian model to approximate the posterior distribution of
haplotype configurations

based on the coalescence theory to assign prior predictions
about the distributions of haplotypes in natural populations,

may depend on the order of the individuals,

pseudo posterior probabilities (-> pseudo Gibbs sampler),
lacks a measure of overall goodness.
http://www.hgmp.mrc.ac.uk/Registered/Option/phase.html
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