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Backcross experiment
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F, intercross experiment
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Trait distributions: a classical sels
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Note the equivalent of dominance in our trait distributions.
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Note the approximate additivity in our trait distributions here.
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e Genotype:  x;=1/0 (i.e., A/H) of mouse i at marker j(backcross);
need three states for intercross

e Genetic map: Locations of markers

e Goals

e Identify the (or at least one) genomic region, called quantitative trait
locus = QTL, that contributes to variation in the trait

e Form confidence intervals for the QTL location
e Estimate QTL effects




QTL mapping (BC)

QTL mapping (F2)




Models: Recombination

\
e \We assume no chromatid or crossover interference.

= points of exchange (crossovers) along chromosomes
are distributed as a Poisson process, rate 1 in genetic
distance

— the marker genotypes {x;} form a Markov chain along
the chromosome for a backcross; what do they form in

an F,intercross? |
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Models: Genotype — Phenotype

e Let y=phenotype, —~ |/ (//\ §)
g = whole genome genotype M )
S (—)

e Imagine a small number of QTL with genotypes g;,...., g,
(2r or 3¢ distinct genotypes for BC, IC resp, why?).

We assume

d
E(ylg) = w(gy---9,), var(ylg) = 0%(94,.--9p)
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Models: Genotype — Phenotype '
\
e Homoscedacity (constant variance)
o%(9y,---9,) = o? (constant)
e Normality of residual variation
—
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o| Additivity:
HGr---Gy) = Jat zréj_g’;j (g, = 0/1 for BC)
° @i_s@ny deviations from additivity.
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Additivity, or non-additivity (BC) | :¢
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The effect of QTL 1 is
the same, irrespective
of the genotype of QTL
2, and vice versa.
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Additivity or non-additivity: F2 o
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The simplest method: ANOVAY o

e Do a t-test/ANOVA
e Repeat for each marker
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e Split subjects into groups 80 % ' 3
according to genotype at 8o op
a single marker 70 | %& d%O
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one condition (i.e., genotype) QJ o
differ significantly from @ (,g@ & @B
another Genotype at D1M30 Genotype a@

e LOD score = log,, likelihood ratio, comparing single-QTL model
to the “no QTL anywhere” model.
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ANOVA at marker loci '
Advantages
» Simple
» Easily incorporate covariates (sex, env, treatment ...)
» Easily extended to more complex models
Disadvantages
* Must exclude individuals with missing genotype data
* Imperfect information about QTL location
» Suffers in low density scans
* Only considers one QTL at a time
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Interval mapping (IM)<— = (1o |22

e Consider any one position in the genome as the location for a
putative QTL

e For a particular mouse, let z = 1/0 if (unobserved) genotype
at QTL is AB/AA

e Calculate Pr(z = 1 | marker data of an interval bracketi\@)}gle S\)}TL)
e Assume no meiotic interference
e Need only consider flanking typed markers \ Q()?
e May allow for the presence of genotyping errors -

e Given genotype at the QTL, phenotype is distributed as

Yi| z; ~ Normal( w,; , o2)

e Given marker data, phenotype follows a mixture of normal
distributions




IM: the miﬁture model o
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e Use a version of the EM algorithm to obtain estimates
of Waa, Mag, @nd o (an iterative algorithm)

e Calculate the LOD score \ (
_ =P(data| [pp o Hag)
LOD - IOglO P(datafno Q/'JI'L) }>

e Repeat for all other genomic positions (in practice, at

0.5 cM steps along genome)
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LOD score curves

LOD curves
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LOD thresholds

e To account for the genome-wide search, compare the
observed LOD scores to the distribution of the maximum LOD
score, genome-wide, that would be obtained if there were no
QTL anywhere.

e LOD threshold = 95th %ile of the distribution of genome-wide
maxLOD, when there are no QTL anywhere

e Derivations:
e Analytical calculations (Lander & Botstein, 1989)
e Simulations
e Permutation tests (Churchill & Doerge, 1994).
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Permutation distribution for trait4
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Advantages

Make proper account of missing data

Can allow for the presence o{ genotyping errors

Pretty pictures
Higher power in low-density scans
Improved estimate of QTL location

i o
Disadvantages

Greater computational effort
Requires specialized software
More difficult to include covariates?
Only considers one QTL at a time
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Multiple QTL methods

Why consider multiple QTL at once?

e To separate linked QTL. If two QTL are close together on the same
chromosome, our one-at-a-time strategy may have problems finding
either (e.qg. if they work in opposite directions, or interact). Our LOD
scores won’t make sense either.

e To permit the investigation of interactions. It may be that interactions
greatly strengthen our ability to find QTL, though this is not clear.

e To reduce residual variation. If QTL exist at loci other than the one
we are currently considering, they should be in our model. For if they
are not, they will be in the error, and hence reduce our ability to
detect the current one. See below.

The problem

e n backcross subjects; M markers in all, with at most a
handful expected to be near QTL / ~__
| .

ey

j= genotype (0/1) of mouse / at marker j
y phenotype (trait value) of mouse i

Y, = y+zl1/£)o Which 4,20 ?
XX,

= Variable selection in linear models (regression)

£o— 0

13



Finding QTL as model selection

Select class of models Search model space
e Additive models e Forward selection (FS)
e Additive plus pairwise interactions e Backward elimination (BE)
e Regression trees e FS followed by BE
e MCMC

Compare models (3

o BIC () = logRSS(»)+ y(dlog n/n) Assess performance

e Sequential permutation tests e Maximize no QTL found;
e control false positive rate

Acknowledgements

Melanie Bahlo, WEHI
Hongyu Zhao, Yale

Karl Broman, Johns Hopkins
Nusrat Rabbee, UCB

14



References

www.netspace.org/MendelWeb

HLK Whitehouse: Towards an Understanding of the Mechanism of Heredity, 3rd
ed. Arnold 1973

Kenneth Lange: Mathematical and statistical methods for genetic analysis,
Springer 1997

Elizabeth A Thompson: Statistical inference from genetic data on pedigrees,
CBMS, IMS, 2000.

Jurg Ott : Analysis of human genetic linkage, 3rd edn
Johns Hopkins University Press 1999

JD Terwilliger & J Ott : Handbook of human genetic linkage, Johns Hopkins
University Press 1994

15



