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Quantitative Trait Locus (QTL) Quantitative Trait Locus (QTL) 

MappingMapping

Eric XingEric Xing
Lecture 4, January 25, 2007

Reading: DTW book, Chap 13 

Phenotypical Traits 

Body measures:

Disease susceptibility and 
drug response

Gene expression (microarray)
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Backcross experiment

F2 intercross experiment
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Trait distributions: a classical 
view

Note the equivalent of dominance in our trait distributions.

Another representation of a trait 
distribution
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Note the approximate additivity in our trait distributions here.

A second example

QTL mapping
Data

Phenotypes:  yi = trait value for mouse i
Genotype:      xij = 1/0 (i.e., A/H) of mouse i at marker j(backcross);

need three states for intercross
Genetic map: Locations of markers

Goals 
Identify the (or at least one) genomic region, called quantitative trait 
locus = QTL,  that contributes to variation in the trait
Form confidence intervals for the QTL location 
Estimate QTL effects
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QTL mapping (BC)

QTL mapping (F2)
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Models: Recombination

We assume no chromatid or crossover interference.

⇒ points of exchange (crossovers) along chromosomes 
are distributed as a Poisson process, rate 1 in genetic 
distance

⇒ the marker genotypes {xij} form a Markov chain along 
the chromosome for a backcross; what do they form in 
an F2 intercross?

Models: Genotype → Phenotype
Let   y = phenotype,                                        

g = whole genome genotype

Imagine a small number of QTL with genotypes g1,…., gp
(2p or 3p distinct genotypes for BC, IC resp, why?).                  

We assume

E(y|g) =   µ(g1,…gp ), var(y|g) =  σ2(g1,…gp)
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Models: Genotype → Phenotype
Homoscedacity (constant variance)

 σ2(g1,…gp)  = σ2  (constant)

Normality of residual variation
y|g ~ N(µg ,σ2  )

Additivity: 
µ(g1,…gp ) = µ + ∑∆j gj (gj = 0/1 for BC)

Epistasis: Any deviations from additivity.

µ(g1,…gp ) = µ + ∑∆j gj +∑ωij gi gj

The effect of QTL 1 is 
the same, irrespective 
of the genotype of QTL 
2, and vice versa.1∆2∆

Epistatic QTLs

)|(~ ji gp∆

Additivity, or non-additivity (BC)
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Additivity or non-additivity: F2

● Split subjects into groups 
according to genotype at 
a single marker

● Do a t-test/ANOVA
● Repeat for each marker

● LOD score = log10 likelihood ratio, comparing single-QTL model 
to the “no QTL anywhere” model.

t-test/ANOVA will tell whether 
there is sufficient evidence to 
say that measurements from 
one condition (i.e., genotype) 
differ significantly from 
another 

The simplest method: ANOVA
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Advantages
• Simple
• Easily incorporate covariates (sex, env, treatment ...)
• Easily extended to more complex models

Disadvantages
• Must exclude individuals with missing genotype data
• Imperfect information about QTL location
• Suffers in low density scans
• Only considers one QTL at a time

ANOVA at marker loci

Interval mapping (IM)
Consider any one position in the genome as the location for a 
putative QTL
For a particular mouse, let z = 1/0 if  (unobserved) genotype 
at QTL is AB/AA
Calculate Pr(z = 1 | marker data of an interval bracketing the QTL)

Assume no meiotic interference
Need only consider flanking typed markers
May allow for the presence of genotyping errors

Given genotype at the QTL, phenotype is distributed as

yi | zi ~ Normal( µzi , σ2 )

Given marker data, phenotype follows a mixture of normal 
distributions
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AA AB AB

IM: the mixture model

● Use a version of the EM algorithm to obtain estimates 
of µAA, µAB, and σ (an iterative algorithm)

● Calculate the LOD score

● Repeat for all other genomic positions (in practice, at 
0.5 cM steps along genome)

{ })QTL no|data(
)ˆ,ˆ|data(

10log=LOD P
P ABAA µµ

IM: estimation and LOD scores
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LOD score curves

LOD thresholds
To account for the genome-wide search, compare the 
observed LOD scores to the distribution of the maximum LOD 
score, genome-wide, that would be obtained if there were no 
QTL anywhere.

LOD threshold = 95th %ile of the distribution of genome-wide   
maxLOD, when there are no QTL anywhere

Derivations: 
Analytical calculations (Lander & Botstein, 1989)
Simulations 
Permutation tests (Churchill & Doerge, 1994).



12

Permutation distribution for trait4

Advantages
• Make proper account of missing data
• Can allow for the presence of genotyping errors
• Pretty pictures
• Higher power in low-density scans
• Improved estimate of QTL location

Disadvantages
• Greater computational effort
• Requires specialized software
• More difficult to include covariates?
• Only considers one QTL at a time

Interval mapping
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Multiple QTL methods

Why consider multiple QTL at once?

To separate linked QTL. If two QTL are close together on the same 
chromosome, our one-at-a-time strategy may have problems finding 
either (e.g. if they work in opposite directions, or interact). Our LOD 
scores won’t make sense either.
To permit the investigation of interactions. It may be that interactions 
greatly strengthen our ability to find QTL, though this is not clear. 

To reduce residual variation. If  QTL exist at loci other than the one 
we are currently considering, they should be in our model. For if they 
are not, they will be in the error, and hence reduce our ability to 
detect the current one. See below.

The problem

n backcross subjects; M markers in all, with at most a 
handful expected to be near QTL

xij = genotype (0/1) of mouse i at marker j
yi = phenotype (trait value) of mouse i

Yi = µ + ∑j=1
M ∆jxij + εj                 Which ∆j ≠ 0 ?

⇒ Variable selection in linear models (regression)
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Select class of models
Additive models
Additive plus pairwise interactions
Regression trees

Compare models (γ)
BICδ(γ) = logRSS(γ)+ γ(δlog n/n)
Sequential permutation tests

Search model space
Forward selection (FS)
Backward elimination (BE)
FS followed by BE
MCMC

Assess performance
Maximize no QTL found;
control false positive rate

Finding QTL as model selection
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