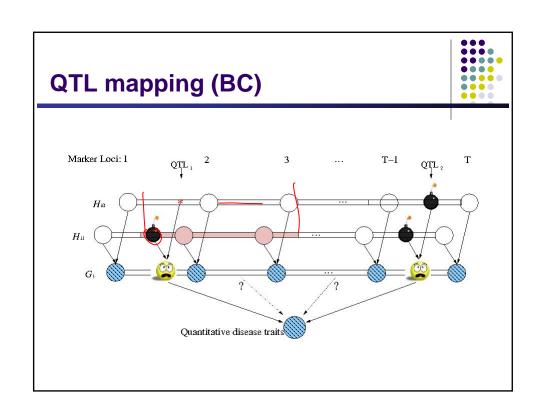
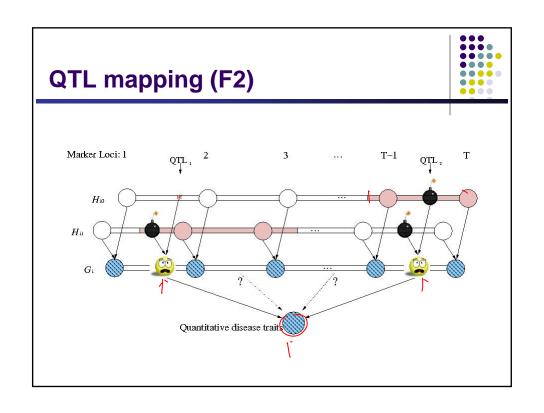


OTL mapping Data Phenotypes: y_i = trait value for mouse i Genotype: x_{ij} = 1/0 (i.e., A/H) of mouse i at marker j(backcross); need three states for intercross Genetic map: Locations of markers Goals Identify the (or at least one) genomic region, called quantitative trait locus = QTL, that contributes to variation in the trait Form confidence intervals for the QTL location Estimate QTL effects





Models: Recombination

- We assume no chromatid or crossover interference.
- ⇒ points of exchange (crossovers) along chromosomes are distributed as a Poisson process, rate 1 in genetic distance
- \Rightarrow the marker genotypes $\{x_{ij}\}$ form a Markov chain along the chromosome for a backcross; what do they form in an F_2 intercross?

[] d []

Models: Genotype → **Phenotype**

- Let y = phenotype, $\sim \mathcal{N}(M, \sigma)$ g = whole genome genotype
- Imagine a small number of QTL with genotypes $g_1, ..., g_p$ (2^p or 3^p distinct genotypes for BC, IC resp, why?).

We assume

$$E(y|g) = \mu(g_1, \dots g_p), \quad var(y|g) = \sigma^2(g_1, \dots g_p)$$

Models: Genotype → **Phenotype**

• Homoscedacity (constant variance)

$$\sigma^2(g_1, ..., g_p) = \sigma^2$$
 (constant)

• Normality of residual variation

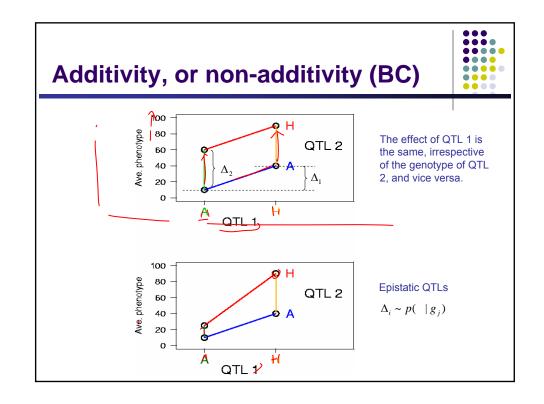
$$y|g \sim N(\mu_a, \sigma^2)$$

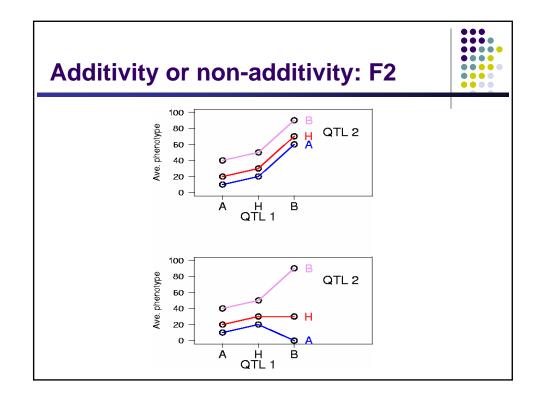
• Additivity:

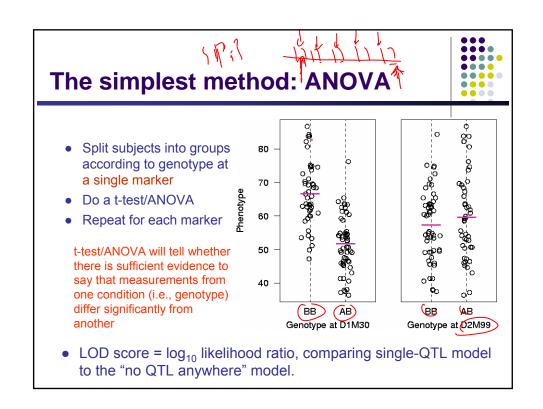
$$\mu(g_1,...g_p) = \mathcal{L} + \sum A_j g_j \ (g_j = 0/1 \ for \ BC)$$

• **Epistasis**: Any deviations from additivity.

$$\mu(g_1, \dots g_p) = \mu + \left[\sum \Delta_j g \right] + \sum \omega_{ij} \left[g_i g_j \right]$$







ANOVA at marker loci

Advantages

- Simple
- Easily incorporate covariates (sex, env, treatment ...)
- Easily extended to more complex models

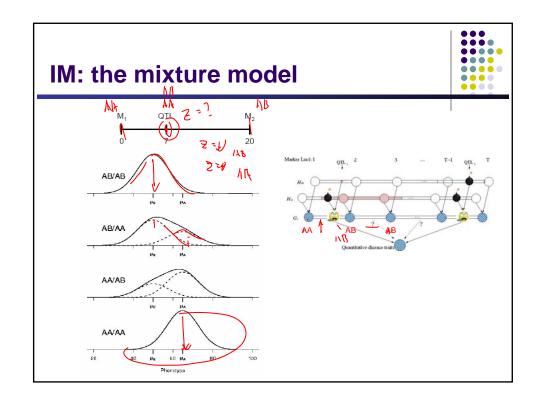
Disadvantages

- · Must exclude individuals with missing genotype data
- · Imperfect information about QTL location
- · Suffers in low density scans
- · Only considers one QTL at a time

- Consider any one position in the genome as the location for a putative QTL
- For a particular mouse, let z = 1/0 if (unobserved) genotype at QTL is AB/AA
- Calculate Pr(z = 1 | marker data of an interval bracketing the QTL)
 - Assume no meiotic interference
 - Need only consider flanking typed markers
 - May allow for the presence of genotyping errors
- Given genotype at the QTL, phenotype is distributed as

$$y_i \mid z_i \sim Normal(\mu_{zi}, \sigma^2)$$

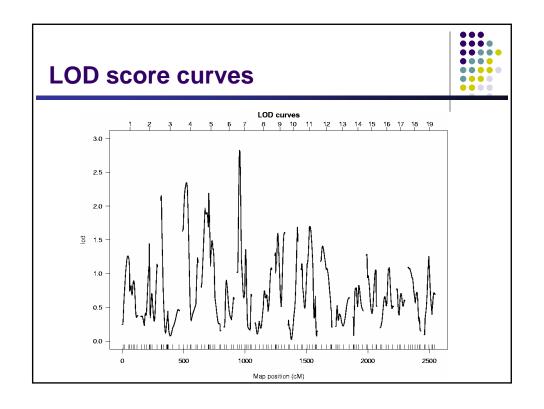
Given marker data, phenotype follows a mixture of normal distributions



- Use a version of the EM algorithm to obtain estimates of μ_{AA} , μ_{AB} , and σ (an *iterative* algorithm)
- Calculate the LOD score

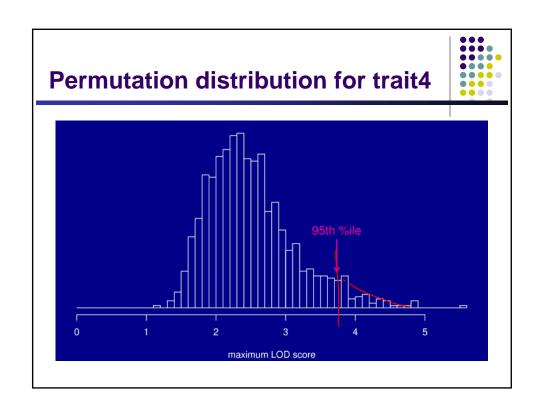
$$LOD = log_{10} \left\{ \frac{P(\text{data}|\hat{\mu}_{AA}, \hat{\mu}_{AB})}{P(\text{data}|\text{no QTL})} \right\}$$

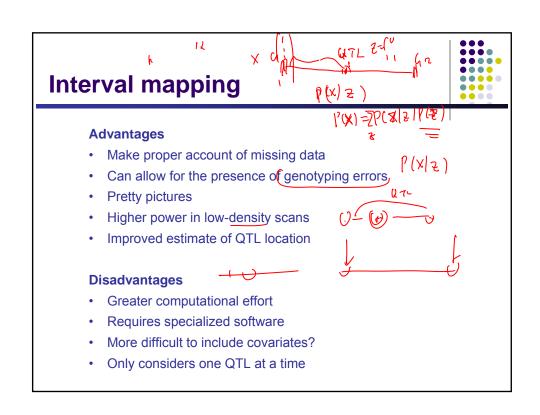
 Repeat for all other genomic positions (in practice, at 0.5 cM steps along genome)



LOD thresholds

- To account for the genome-wide search, compare the observed LOD scores to the distribution of the <u>maximum LOD</u> <u>score</u>, <u>genome-wide</u>, <u>that would be obtained if there were no</u> <u>QTL anywhere</u>.
- **LOD threshold** = 95th %ile of the distribution of genome-wide maxLOD, when there are no QTL anywhere
- Derivations:
 - Analytical calculations (Lander & Botstein, 1989)
 - Simulations
 - Permutation tests (Churchill & Doerge, 1994).





Multiple QTL methods

Why consider multiple QTL at once?

- To separate linked QTL. If two QTL are close together on the same chromosome, our one-at-a-time strategy may have problems finding either (e.g. if they work in opposite directions, or interact). Our LOD scores won't make sense either.
- To permit the investigation of interactions. It may be that interactions greatly strengthen our ability to find QTL, though this is not clear.
- To reduce residual variation. If QTL exist at loci other than the one
 we are currently considering, they should be in our model. For if they
 are not, they will be in the error, and hence reduce our ability to
 detect the current one. See below.

The problem

 n backcross subjects; M markers in all, with at most a handful expected to be near QTL

 x_{ij} = genotype (0/1) of mouse i at marker j y_i = phenotype (trait value) of mouse i

$$Y_{i} = \mu + \sum_{j=1}^{M} \Delta x_{ij} + \varepsilon_{j}$$
 Which $\Delta_{j} \neq 0$?

 \Rightarrow Variable selection in linear models (regression)

Finding QTL as model selection

Select class of models

- Additive models
- Additive plus pairwise interactions
- Regression trees

Compare models (y)

- $BIC_{\delta}(\gamma) = logRSS(\gamma) + \gamma(\delta log n/n)$
- Sequential permutation tests

Search model space

- Forward selection (FS)
- Backward elimination (BE)
- FS followed by BE
- MCMC

Assess performance

- Maximize no QTL found;
- control false positive rate

Acknowledgements

Melanie Bahlo, WEHI Hongyu Zhao, Yale Karl Broman, Johns Hopkins Nusrat Rabbee, UCB

References

www.netspace.org/MendelWeb

HLK Whitehouse: **Towards an Understanding of the Mechanism of Heredity**, 3rd ed. Arnold 1973

Kenneth Lange: Mathematical and statistical methods for genetic analysis, Springer 1997

Elizabeth A Thompson: Statistical inference from genetic data on pedigrees, CBMS, IMS, 2000.

Jurg Ott : **Analysis of human genetic linkage**, 3rd edn Johns Hopkins University Press 1999

JD Terwilliger & J Ott : **Handbook of human genetic linkage**, Johns Hopkins University Press 1994