Computational Genomics

: _ (Y X )

Population Genetics: (Y X X

_ _ _ 0000

Pedigree and linkage analysis ::0
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Reading: DTW book, Chap 13
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A crime or mass-disaster scene -

e Given genetic fingerprints of F family pedigrees for
alleged victims and genetic fingerprints of S samples
found at a disaster site:

e Who can you confirm died at the site?
e Who died at the site that is outside the alleged set?
e Cluster the remains for burial.




Royal pedigree example H
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Mendel’'s two laws

e Modern genetics began with Mendel’s experiments on garden
peas. He studied seven contrasting pairs of characters,
including:

e The form of ripe seeds: round, wrinkled
e The color of the seed albumen: ,
e The length of the stem: long, short

e Mendel’s first law: Characters are controlled by pairs of
genes which separate during the formation of the reproductive

cells (meiosis)
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Mendel’s two laws '
\
e Mendel's second law: When two or more pairs of gene
segregate simultaneously, they do so independently.
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Morgan'’s fruitfly data (1909): 2,839 flies

w A: red a: purple
Mh B: normal b: vestigial
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AaBb Aabb 2aBb aabb
Exp 710 710 710 710
Obs 1,339 151 154 1,195




Morgan’s explanation
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® Crossover has taken place

Recombination

e Parental types: - AABB, aabb

e Recombinants: ~_A@aBb, 4aBb

e The proportion of recombinants between the two genes (or characters)
is called the recombination fraction between these two genes.

e Recombination fraction It is usually denoted by r or 6. For
Morgan’s traits:
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If r < 1/2: two genes are said to be linked.
If r = 1/2: independent segregation (Mendel’s second law).

Now we move on to (small) pedigrees.




One locus: founder probabilities

\
e Founders are individuals whose parents are not in the

pedigree.

e They may or may not be typed. Either way, we need to assign
probabilities to their actual or possible genotypes.

e This is usually done by assuming Hardy-Weinberg equilibrium. If the
frequency of D is .01, H-W says
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e Genotypes of founder couples treated as
independent.,” } ! :
1

Dd

pr(pop Dd , mom dd )=®@
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One locus: transmission sels
probabilities o

e Children get their genes from their parents’ genes,
independently, according to Mendel’s laws;
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r(kid 3dd | pop 1 Dd & mom 2 Dd)
= 1/2x1/2

e The inheritances are independent for different children.
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pr(3dd &4 Dd &5DD |1Dd &2Dd)
= (1/2x1/2)x(2 x 1/2 x 1/2) x (1/12 x 1/2).
e The factor 2 comes from summing over the two mutually
exclusive and equiprobable ways 4 can geta D and a d.
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One locus: penetrance HHH
probabilities '

e Independent Penetrance Model:

e Pedigree analyses usually suppose that, given the genotype at all loci,
and in some cases age and sex, the chance of having a particular
phenotype depends only on genotype at one locus, and is independent
of all other factors: genotypes at other loci, environment, genotypes and
phenotypes of relatives, etc.

e Complete penetrance:
o 1IN
priaffected) DD ) = 1

e Incomplete penetrance: ¥ G

DD

pr(affected | DD )= .8




One locus: penetrance - |l s
° ége and sex-dependent penetrance:
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One locus: putting it all together |32
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e Assume DD

e Penetrances: pr(affected | dd) = .1, pr(affected | Dd)=.3
pr(affected | DD ) = .8,
e and that allele D has frequency .01.

e In general, shaded means affected, blank means unaffected.

e The probability of this pedigree is the product:
(_J)x.3)x(1/2x1/2x.9)x(2>L][2x1/2x

T)x (1/2x 112 x .8)




One locus:
putting it all together - I

e To write the likelihood of a pedigree:
e we begin by multiplying founder gene frequencies,
o followed by founder penetrances.
e next we multiply transmission probabilities,

e followed by penetrance probabilities of offspring, using their independence given
parental genotypes.

e If there are missing or incomplete data, we must sum over all mutually exclusive

possibilities compatible with the observed data.
e Two algorithms:

e The general strategy of beginning with founders, then non-founders, and
multiplyin mming as appropriate, has been codified in what is known as
€ Elston-Stewart algorithm for calculating probabilities over pedigrees. It is one
of the two widely used approaches.

e The other is termed the Lander-Green algorithm and takes a quite different
approach.

e Both are hidden Markov models, both have compute time/space limitations with
multiple individuals/loci (see next) , and extending them beyond their current
limits is the ongoing outstanding problem.

Probabilistic Graphical Models
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e The joint distribution on (X, X,,..., X\) factors according to
the “parent-of” relations defined by the edges E :

P(Xys Xa X5 Xy X5, Xg) = P(Xy) PX| XP(X3] X)) (X4l X)P(Xs| X)P(Xg] Xy Xs)




Pedigree as Graphical Models:
the allele network
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Linkage Disequilibrium

e LD is the non-random association of alleles at different sites
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e Genetic recombination breaks down LD
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Two loci: linkage and sels
recombination -
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e Son 3 produces sperm with D-T, D-t, d-T or d-t in proportions:
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Two loci: linkage and sess

recombination - I ot

e Son produces sperm with DT, Dt, dT or dt in proportions:
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0 = 1/2 : independent assortment (cf Mendel) unlinked loci
0 < 1/2 : linked loci

6=0 :tightly linked loci
Note: 8> 1/2 is never observed

If the loci are linked, then D-T and d-t are parental, and D-t and d-T
are recombinant haplotypes.




Two loci: estimation of
recombination fractions e —fp o8
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Recombination only discernible in the father. Here:e_= 1/4 (why?)

This is called the phase-known double backcross pedigree.
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e Suppose w

dd
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ave ﬂa'taon two linked loci as follows:
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e Was the daughter's D-T from her father a parental or
recombinant combination?
e This is the problem of phase: did father get D-T from one parent and d-t

from the other? If so, then the daughter's paternally derived haplotype is
parental.

s [P

e If father got D-t from one parent and d-T from the other, these would be
parental, and daughter's paternally derived haplotype would be
recombinant.
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Two loci: dealing with phase

\
e Phase is usually regarded as unknown genetic information,

specifically, in parental origin of alleles at heterozygous loci.

e Sometimes it can be inferred with certainty from genotype
data on parents.

e Often it can be inferred with high probability from genotype
data on several children.

e In general genotype data on relatives helps, but does not
necessarily determine phase.

e |n practice, probabilities must be calculated under all phases
compatible with the observed data, and added together. The
need to do so is the main reason linkage analysis is
computationally intensive, especially with multilocus analyses.

Two loci: founder probabilities

e Two-locus founder probabilities are typically calculated
assuming linkage equilibrium, i.e. independence of
genotypes across loci.

e IfD and d have frequencies .01 and .99 at one locus, and T
and t have frequencies .25 and .75 at a second, linked locus,
this assumption means that DT, Dt, dT and dt have
frequencies .01 x .25, .01 x .75, .99 x .25 and .99 x .75
respectively. Together with Hardy-Weinberg, this implies that

Dd
Tt

pr(DdTt) = (2 x .01 x .99) x (2 x .25 x .75)

=2 x (.01 x .25) x (.99 X .75) + 2.x (.01 x.75) x (.99 x .25).

e This last expression adds haplotype pair probabilities.
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Two loci:
transmission probabilities

D|d d|d
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e Haplotype inheritance: Tt

e Initially, this must be done with haplotypes, so that account can be taken
of recombination.

e Then terms like that below are summed over possible phases.
Here only the father can exhibit recombination: mother is uninformative.
pr(kid DT/dt | pop DT/dt & mom dt/dt )
= pr(kid DT | pop DT/dt ) x pr(kid dt | mom dt/dt )
= (1-6)/12 x 1.

Two Loci: Penetrance

¢ In all standard linkage programs, different parts of phenotype
are conditionally independent given all genotypes, and two-
loci penetrances split into products of one-locus penetrances.

e Assuming the penetrances for DD, Dd and dd given earlier,
and that T,t are two alleles at a co-dominant marker locus.

Pr( affected & Tt | DD, Tt)
Pr(affected | DD, Tt ) xPr(Tt | DD, Tt)
0.8 x1
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Two loci: phase unknown double
backcross

|
e We assume below pop is as likely to be DT / dt as Dt/
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Pr (alldata | 6)
= pr(parents' data | 6 ) x pr(kids' data | parents' data, 60)
= pr(parents' data) x {[((1-0)/2)® x 6/2]/2+ [(0/2)3 x (1-0)/2]/2}

This is then maximised in 0, in this case numerically. Here 0=0.25

Log (base 10) odds or LOD
scores &

e Suppose pr(data | 0) is the likelihood function of a
recombination fraction 6 generated by some 'data’, and
pr(data | 1/2) is the same likelihood when 6= 1/2.

e Statistical theory tells us that the ratio /: %

L = pr(data @%/ pr(data | 1/2)
provides a basis for deciding Whether 0 =0* rather than 0 = 1/2.

e This can equally well be done with Log,,L, i.e.
LOD(6) = Log,o{pr(data | 6*) / pr(data | 1/2)}

measures the relative strength of the data for 6 = 6* rather than 6 = 1/2.
Usually we write 6, not 6* and calculate the function LOD(9).
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Facts about/interpretation of LOD
scores

1. Positive LOD scores suggests stronger support for 6* than for
1/2, negative LOD scores the reverse.

2. Higher LOD scores means stronger support, lower means the
reverse.

3. LODs are additive across independent pedigrees, and under
certain circumstances can be calculated sequentially.

4. For a single two-point linkage analysis, the threshold LOD =~ 3
has become the de facto standard for "establishing linkage", i.e.
rejecting the null hypothesis of no linkage.

5. When more than one locus or model is examined, the remark in
4 must be modified, sometimes dramatically.

Assumptions underpinning most
2-point human linkage analyses o

e Founder Frequencies: Hardy-Weinberg, random mating at
each locus. Linkage equilibrium across loci, known allele
frequencies; founders independent.

e Transmission: Mendelian segregation, no mutation.

e Penetrance: single locus, no room for dependence on
relatives' phenotypes or environment. Known (including
phenocopy rate).

e Implicit: phenotype and genotype data correct, marker order
and location correct

e Comment: Some analyses are robust, others can be very
sensitive to violations of some of these assumptions. Non-
standard linkage analyses can be developed.
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Beyond two-point human linkage
analysis

\
e The real challenge is multipoint linkage analysis, but

going there would take more time than we have today.

e Next in importance is dealing with two-locus
penetrances.
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