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Lecture 22, April 10 & 12, 2007

Reading

Mining and analyzing networks
Identifying Signaling Pathways

color-coding technique (Alon, Yuster and Zwick. 1995) and generalizations (Scott et al. 
RECOMB 2005)

Identifying Interaction Complexes (clique-like structures)
Statistical subgraph scoring (Sharan et al. RECOMB 2004)

Network alignment
PathBLAST: identify conserved pathways (Kelley et al 2003)
MaWISh: identify conserved multi-protein complexes (Koyuturk et al 2004)
Nuke: Scalable and General Pairwise and Multiple Network Alignment (Flannick, Novak, 
Srinivasan, McAdams, Batzoglou 2005)

Network Dynamics
Sandy: backtracking to find active sub-network (Luscombe et al, Nature 2005)

Node function inference
Stochastic block models (Aroldi et al, 2006)
Latent space models (Hoff, 2004)

Link prediction
Naïve Bayes classifier, Bayesian network
MRF
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MRCA-Most Recent Common Ancestor
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irection
Network evolution

3 Problems:

1. Test all possible 
relationships.

2. Examine unknown 
internal states.

3. Explore unknown 
paths between states 
at nodes.

Network alignment

Sequence alignment seeks to identify conserved DNA or 
protein sequence

Intuition: conservation implies functionality
EFTPPVQAAYQKVVAGV (human)
DFNPNVQAAFQKVVAGV (pig)
EFTPPVQAAYQKVVAGV (rabbit)

By similar intuition, subnetworks
conserved across species are 
likely functional modules

Motivation
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Network Alignment
“Conserved” means two subgraphs contain proteins having 
homologous sequences, serving similar functions, having 
similar interaction profiles

Key word is similar, not identical

Product graph:
Nodes: groups of sequence-similar proteins, one per species. 
Edges: conserved interactions.
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Scoring Scheme
Given two protein subsets, one in each species, with a many-
to-many correspondence between them, we wish:

Each subset induces a dense subgraph.
Matched protein pairs are sequence-similar.

Two hypothesis:
Conserved complex model: matched pairs are similar.
Random model: matched pairs are randomly chosen.
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Scoring Scheme cont.
For multiple networks: run into problem of scoring a multiple 
sequence alignment.
Need to balance edge and vertex terms.

Practical solution: 
Sensible threshold for sequence similarity.
Nodes in alignment graph are filtered accordingly.
Node terms are removed from score.

Preprocessing

Interaction scores: 
logistic regression on 
#observations, expression 
correlation, clustering coeff.

Network alignment
Subnetwork search

Filtering & 
Visualizing
p-value<0.01, 
≤80% overlap

Conserved paths

Conserved clustersProtein 
groups

Conserved 
interactions

Multiple Network Alignment

Two recent algorithms:
???, Sharan et al. PNAS 2005
Nuke: Flannick, Novak, Srinivasan, McAdams, Batzoglou 2005
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hypothetical
ancestral

module

descendants

equivalence
classes

Nuke: the model

Example:

S = SN + SE

= 11.0 + 4.0

log P(nodes | M)
P(nodes | R)

+ log P(edges | M)
P(edges | R)

2.5

4.0 1.5

3.0
0.8

0.4

-0.4

0.8
1.2

-0.3
0.60.5 0.6

-0.2

Nuke: Scoring
Probabilistic scoring of alignments:

M : Alignment model (network evolved from a common ancestor)
R : Random model (nodes and edges picked at random)
Nodes and edges scored independently
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wij log P(ni,n j ) wij

H. pyloriM. tuberculosis C. crescentus

2 31
E. coli
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Nuke: Scoring, cont.

Node scores: simple
Weighted Sum-Of-Pairs (SOP)

Each equivalence class scored as sum (over pairs ni, nj) of
, where       is weight on phylogenetic tree

PM (ni,n j ) = P(BLAST score Sij | ni,n j homologous)

PR (ni,n j ) = P(BLAST score Sij )

Nuke: Scoring, cont.
Alignment model

Based on BLAST pairwise sequence alignment scores Sij

Intuition: most proteins descended from common ancestor have 
sequence similarity

Random model
Nodes picked at random
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Non-trivial tradeoff in pairwise alignment of full networksNon-trivial tradeoff in pairwise alignment of full networks

Nuke: Scoring, cont.

Edge scores: more complicated
Edge scores in earlier aligners rewarded high edge weights

But this biases towards clique-like topology!
Don’t want solely conservation either

This alignment has highly conserved (zero-weight) edges:

ESMs: A New Edge-Scoring 
Paradigm

Idea: assign each node a label from a finite alphabet ∑, 
and define edge likelihood in terms of labels it connects

During alignment, assign labels which maximize score

E: Symmetric matrix of probability distributions, E(x, y) is 
distribution of edge weights between nodes labeled x
and y
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ESMs: A New Edge-Scoring 
Paradigm

Idea: assign each node a label from a finite alphabet ∑, 
and define edge likelihood in terms of labels it connects

During alignment, assign labels which maximize score

E: Symmetric matrix of probability distributions, E(x, y) is 
distribution of edge weights between nodes labeled x
and y
Simplest case is clique ESM

1x1 matrix: ∑ contains a single label
Duplicates edge-scoring of aligners which search for cliques

ESMs: A New Edge-Scoring Paradigm

For query-to-database alignment, use a module ESM
One label for each node in query module

Tractable because queries are usually small (~10-40 nodes)
For each pair of nodes (ni, nj) in query, let E(i, j) be a Gaussian centered 
at cij = weight of (ni, nj) edge
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ESMs: A New Edge-Scoring Paradigm

Multiple alignment gives us more information about 
conservation

Can iteratively improve ESM to adjust mean and deviation based 
on weights of edges between aligned pairs of query nodes

Easily implemented using kernel density estimation (KDE)

A General Network Aligner: Algorithm

Given this model of network alignment and scoring 
framework, how to efficiently find alignments between a 
pair of networks (N1, N2)?
Constructing every possible set of equivalence classes 
clearly prohibitive
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Seed

Extend

A General Network Aligner: Algorithm

Idea: seeded alignment
Inspired by seeded sequence alignment (BLAST)
Identify regions of network in which “good” alignments likely to be found

MaWISh does this, using high-degree nodes for seeds
Can we avoid such strong topological constraints?

d-Clusters: Intuition
“Good” alignments typically have:

a significant number of nodes with high sequence similarity
Implied by the node scoring function, which prefers aligning nodes with 
high BLAST scores

with mostly conserved connected components
Implied by the edge scoring function which prefers conserved edge 
weights
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d-Clusters
Define D(n), the d-cluster of node n as the d “closest” nodes 
to n

Distance defined in terms of edge weights

n
d = 4

d-Clusters

ni

nj

d = 4
T = 73.5

1.62.8 Matching score:

3.56.37.9

Expect the majority of high-scoring alignments to contain a 
pair of d-clusters (D(ni), D(nj)) such that a greedy matching 
scores at least T

for suitably chosen d and T
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d-Clusters
Seeding algorithm: for each ni ∈ N1 and 
nj ∈ N2, emit (ni, nj) as a seed if matching score exceeds T

nj

3.5

1.62.8

Seed:

ni

Extending seeds

nj

3.5

1.62.8

ni

yx

Given a pair of d-cluster seeds (D(ni), D(nj)), want to find 
highest-scoring alignment containing this seed
Start by forming an equivalence class consisting of 
x ∈ D(ni) and y ∈ D(nj) maximizing SN(x, y)

All other m ∈ N1 ∪ N2 are singleton equivalence classes
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Extending seeds

Extend greedily:
Define the frontier (F) as the set of all already-aligned nodes and their 
neighbors in each network
Picking nodes s, t ∈ F, and label L ∈ ∑, which maximally increase 
alignment score:

Merge equivalence classes [s] and [t]
Relabel the resulting equivalence class to L

Multiple Alignment

M. tuberculosis E. coli C. crescentus

Progressive alignment technique
Used by most multiple sequence aligners

Simple modification of implementation to align 
alignments rather than networks

Node scoring already uses weighted SOP
Edge scoring remains unchanged
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pbpB pbpB

mraY mraY

ftsZ ftsZ

murD murD

Cj0693c HP0707

ftsA ftsA

murE murE

murG murG

murC murC
murF murF

ftsW ftsW

lpxC lpxC

mrdB mrdB

Cell division

wzc yccC CC0164
yccZ wza CC0169 CC2432

wcaJ CC1486 CC2425 CC2384 CC0166
Polysaccharide transport

ruvC ruvC

ruvB ruvB

ruvA ruvA

Cj0965c HP0496
Cj0112 HP1126

exbB2 exbB
pal pal

exbB3 exbB
exbB1 exbB

exbD2 exbD3 exbD1 exbD exbD exbD

DNA uptake

Pairwise alignments

ex bB tolQ ex bB ex bB exbB2 ex bB1 exbB ex bB

exbD ex bD exbD2 exbD3 exbD1 ex bD ex bD exbD

CC3230 Cj0112 HP 1126

y bgC CC3234 Cj0965c HP 0496

pal pal pal pal

ruvC ruvC ruvC ruvC

r uv A ruvA r uvA ruv A

ruv B r uvB ruv B ruvB

DNA uptake

gyrB gyrB gyrB gyrB dnaA dnaA dnaA dnaA

dnaN dnaN dnaN dnaN

yidC yidC yidC yidC

gidA gidA gidA gidA
trmE thdF thdF thdF

DNA replication

Multiple alignments
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Target Genes

Transcription Factors

Dynamic Yeast TF network

Analyzed network as a 
static entity

But network is dynamic
Different sections of the network 
are active under different cellular 
conditions

Integrate gene expression 
data

[Luscombe et al, Nature]

1,385Stress response

1,715DNA damage

1,876Diauxic shift

876Sporulation

437Cell cycle

No. genesCellular condition

Gene expression data
Genes that are differentially expressed under five cellular 
conditions

Assume these genes undergo transcription regulation

[Luscombe et al, Nature]
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Define differentially expressed genes

Identify TFs that regulate these genes

Identify further TFs that regulate these TFs

Active regulatory sub-network

Backtracking to find active sub-
network

[Luscombe et al, Nature]

static

Network usage under different 
conditions
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cell cycle

Network usage under different 
conditions

sporulation

Network usage under different 
conditions
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diauxic shift

Network usage under different 
conditions

DNA damage

Network usage under different 
conditions
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stress response

Network usage under different 
conditions

Cell cycle Sporulation Diauxic shift DNA damage Stress

Network usage under different 
conditions

How to model the networks change? 
--- an open problem

[Luscombe et al, Nature]
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Node Clustering

White et al:  From logical role systems to empirical social structures

“We can express a role through a relation (or set of relations) and thus a 
social system by the inventory of roles.   If roles equate to positions in an 
exchange system, then we need only identify particular aspects of a 
position.  But what aspect?”

Structural Equivalence:

Two actors are structurally equivalentstructurally equivalent if they have the 
same types of ties to the same people.

Dissecting Social Networks
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Structural Equivalence
Two actors are structurally equivalent if they have the same 
types of ties to the same people.

Graph reduced to positions

Structural Equivalence
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0 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 1 1 0 0 0 0
1 0 1 0 0 0 1 1 1 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1 1 1 1
0 1 0 0 1 0 0 0 0 0 1 1 1 1
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0

Blockmodeling is the process of identifying these types of positions. A block is a 
section of the adjacency matrix - a “group” of structurally equivalent people.

Classical Blockmodeling

. 1 1 1 0 0 0 0 0 0 0 0 0 0
1 . 0 0 1 1 0 0 0 0 0 0 0 0
1 0 . 1 0 0 1 1 1 1 0 0 0 0
1 0 1 . 0 0 1 1 1 1 0 0 0 0
0 1 0 0 . 1 0 0 0 0 1 1 1 1
0 1 0 0 1 . 0 0 0 0 1 1 1 1
0 0 1 1 0 0 . 0 0 0 0 0 0 0
0 0 1 1 0 0 0 . 0 0 0 0 0 0
0 0 1 1 0 0 0 0 . 0 0 0 0 0
0 0 1 1 0 0 0 0 0 . 0 0 0 0
0 0 0 0 1 1 0 0 0 0 . 0 0 0
0 0 0 0 1 1 0 0 0 0 0 . 0 0
0 0 0 0 1 1 0 0 0 0 0 0 . 0
0 0 0 0 1 1 0 0 0 0 0 0 0 .

1 2 3 4 5 6
1 0 1 1 0 0 0
2 1 0 0 1 0 0
3 1 0 1 0 1 0
4 0 1 0 1 0 1 
5 0 0 1 0 0 0
6 0 0 0 1 0 0

Structural equivalence thus generates 6 positions in the network

1 2 3 4 5 6
1
2

3

4

5

6

Cohesive Subgroups
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Domingo
Carlos

Alejandro
Eduardo

Frank
Hal
Karl
Bob
Ike
Gill

Lanny
Mike
John

Xavier
Utrecht

Norm
Russ
Quint

Wendle
Ozzie

Ted
Sam
Vern
Paul

Stochastic Cohesive Subgroups

Spectral Clustering

Minimize total transition probability of single-step between cluster random walk 
Each object has a unique cluster membership
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General Framework for 
Stochastic Blockmodel

Regard each network tie as a random variable (often binary)

Xij= 1 if there is a network link from person i to person j
= 0 if there is no link,
for i, j members of some set of actors N.

A directed network: Xij and Xji are distinct.
A non-directed network: Xij = Xji

Formulate a hypothesis about interdependencies and 
construct a dependence graph

The dependence graph represents the contingencies among network 
variables Xij. (e.g., defined on cliques), i.e., a set of "potential functions".

where:
the summation is over all cliques A;

zA = Π xij∈A xij is the network statistic corresponding to the clique A; 

λA is the parameter corresponding to clique A;

c = ΣX exp{ΣAλAzA(x)} is a normalising constant

(Besag, 1974)

{ }∑===
cliques all

exp)(*)Pr( AAzc
xpxX λ1

The Hammersley-Clifford 
Theorem
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Bernoulli blockmodels
Suppose actors are either in block 1 or 2, and pairwise potentials

Hammersley-Clifford: 
Pr(X = x) = (1/c) exp{Σi,j λij xij }

Block homogeneity:
λij = θ11 if i and j both in block 1
λij = θ12 if i in block 1 and j in block 2, etc.

Pr(X = x) = (1/c) exp{θ11 L11+θ12 L12+θ21 L21+θ22 L22}

where L rs is the number of edges from block r to block s.

Extendable to multiple blocks

Motivation

In many networks (e.g., biological network, citation networks), 
each node may be “multiple-class”, i.e.,  has multiple 
functional/topical aspects.
The interaction of a node (e.g., a protein) with different nodes
(partners) may be under different function context. 
Prior knowledge of group interaction may be available.

A Latent Mixture Membership 
Blockmodel
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Topic vector of node i Topic vector of node j

Topic vector of node j as acceptorTopic indicators of node i as donor

The link indicator of (i,j)

A Latent Mixture Membership 
Blockmodel

( )01
21

δρργ )(Bernoulli~
,,,, ,, −+

jiji zzjiR ( )01
21

δρργ )(Bernoulli~
,,,, ,, −+

jiji zzjiR

( )01
21

δρργ )(Bernoulli~
,,,, ,, −+

jiji zzjiR

For each object i=1,…,N:

For each topic-pair (s,t):

( )ijiZ θMulti~,, 1

( )jjiZ θMulti~,, 2

( )αθ Dirichlet~i

( )βγ Beta~,ts

For each pair of object (i,j)

A Hierarchical Bayesian LMMB
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Variational Inference
The Joint likelihood:

GMF approximation:

MF approximation:

Experiments

Convergence Model Selection
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100 300 600

stringent

diffused

LMMB and SC on Simulated Data

Protein-Protein Interaction Data
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Inferred Membership

LSC:  41.67%
LMM: 43.49%

Supervised Prediction of 
Membership

Learning q and g from training data and predict r : 

Accuracy: 45.12%
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Summary of LMMB
A stochastic block model

Each node can play "multiple roles", and its ties with other 
nodes can be explained by different roles

Hierarchical Bayesian formalism

Efficient variational inference 
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