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Other types of networks
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KEGG database: http: l/www genome ad. jp/kegg/keggz html reaCtionS (1 K)
o Reflect the cell’'s metabolic circuitry.




Graph theoretic description of
metabolic networks
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“Graph theoretic description for a simple pathway (catalyzed by Mg2* -dependant
enzymes) is illustrated (a). In the most abstract approach (b) all interacting
metabolites are considered equally.”

Barabasi & Oltvai. NRG. (2004) 5 101-113

Protein Interaction Networks

o Nodes — proteins (6K).

o Edges — interactions (15K).

0 Reflect the cell’s machinery and
signlaing pathways.




Experimental approaches
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Graphs and Networks

e Graph: a pair of sets G={V,E} where V is a set of nodes,
and E is a set of edges that connect 2 elements of V.

e Directed, undirected graphs

e Large, complex networks are

ubiquitous in the world:

e Genetic networks
e Nervous system

e Social interactions
e World Wide Web




Global topological measures

e Indicate the gross topological structure of the network
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Connectivity Measures o

e Node degree: the number of edges incident on the node
(number of network neighbors.)

e Undetected networks
Q

Degree of node i = 5

Degree distribution A(k): probability that a node has degree 4.
e Directed networks, i.e., transcription regulation networks (TRNs)

\l/ Incoming degree = 2.1
—each gene is regulated by ~2 TFs

v
‘71&‘ Outgoing degree = 49.8

—each TF targets ~50 genes
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Characteristic path length :
|
° L,-j is the number of edges in the shortest i
path between vertices /and j

e The characteristic path length of a graph is the I-(i,j) =2

average of the L,-J for every possible pair ()

e Diameter: maximal distance in the network. 3]
Networks with small values of L are said to have the “small world property”

e InaTRN[ L} nepresents the number of intermediate TFs until final

target
V . Starting TF
Indicate how immediate 1
a regulatory response is v 1 intermediate TF
Average path length = 4.7 1
O Final target
v

Path length =1

Clustering coefficient

e The clustering coefficient of node /is the ratio of the number
£, of edges that exist among its neighbors, over the number
of edges that could exist:

4 neighbours

Measure how inter-connected
the network is 1 existing link

Average coefficient = 0.11 )

6 possible links
Clustering coefficient
=1/6 =0.17

e The clustering coefficient for the entire network Cis the
average of all the C;




A Comparison of Global Network
Statistics (Barabasi & oitvai, 2004)
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Local network motifs

e Regulatory modules within the network
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[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

MIM = Multiple input motifs
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[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]




FFL = Feed-forward loops
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[Alon; Horak, Luscombe et al (2002), Genes & Dev, 16: 3017 ]

FBL = Feed-back loops
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What network structure should be
used to model a biological network?

Strogatz S.H., Nature (2001) 410 268

lattice random

Calculating the degree
connectivity of a network -

L)
Caspase

Degree connectivity distributions:

‘ frequency

12345678
degree connectivity
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Connectivity distributions for
metabolic networks
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Jeong et al. Nature (2000) 407 651-654

Protein-protein interaction
networks

-
[ T 3 4 5 6TEGIOR
degree

Jeong et al. Nature 411, 41 - 42 (2001)

color of nodes is explained later)\
( P ) Wagner. RSL (2003) 270 457-466
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Random versus scaled
exponential degree distribution

\
e Degree connectivity distributions differs between random and

observed (metabolic and protein-protein interaction) networks.

> >
2 X 2 — ya
g y=a g y=X
o o
o o
— Y—
(@2} (@2
o 2
log degree connectivity log degree connectivity

Strogatz S.H., Nature (2001) 410 268

What is so “scale-free” about
these networks? o

e No matter which scale is chosen the same distribution of
degrees is observed among nodes
10° <
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Models for networks of complex §§:
topology -

e Erdos-Renyi (1960)

e Watts-Strogatz (1998)

e Barabasi-Albert (1999)
Random Networks:
The Erdés-Rényi [ER] model (1960): o

p=0.1 p=0.15

e Mean degree: (N-1)p.

e Degree distribution is binomial, concentrated around the mean g

e Average distance (Np>1): log N S5

k

e Important result: many properties in these graphs appear quite

suddenly, at a threshold value of PER(N)

e If PER~c/N with c<1, then almost all vertices belong to isolated trees

e Cycles of all orders appear at PER ~ 1/N

13



The Watts-Strogatz [WS] model
(1998)

e Start with a regular network with N vertices
e Rewire each edge with probability p

Reqular Small-workd
p=0 p=1
Increasing randomness
For p=0 (Regular Networks): For p=1 (Random Networks):
* high clustering coefficient * low clustering coefficient
 high characteristic path length * low characteristic path length

e QUESTION: What happens for intermediate values of p?

WS model, cont.

e There is a broad interval of p for which\L is small but-C_
remains large
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e Small world networks are common :
T WRTE eTWoT

Table 1 Empirical examples of smal-wamd n¥tworks
Lactual L random Cactual Crandom
Film actors N 365 298 073 0.00027
Power grid 187 124 0080 0.005
C. elegans 288 225 028
l—7
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Scale-free networks: sese
y _m [ X J
The Barabasi-Albert [BA] model (1999) o
e The distribution of degrees:
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e In real network, the probability of finding a highly connected
node decreases exponentially with &

P(K)~ K™

BA model, cont.

e Two problems with the previous models:
1. N does not vary
2. the probability that two vertices are connected is uniform

e The BA model:

e Evolution: networks expand continuously by the addition of new
vertices, and

e Preferential-attachment (rich get richer): new vertices attach
preferentially to sites that are already well connected.

. J - <N- - AN
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Scale-free network model

|
e GROWTH: starting with a small number of vertices m, at

every timestep add a new vertex with m < m,

connectivity of that verteX: ﬂ(ki):L

il e B N

Barabasi & Bonabeau Sci. Am. May 2003 60-69
Barabasi and Albert. Science (1999) 286 509-512

Scale Free Networks

P(K)

a) Connectivity distribution with N = m,+t=300000 and m,=m=1(circles),
my=m=3 (squares), and m,=m=>5 (diamons) and m,=m=7 (triangles)

b) P(k) for my=m=>5 and system size N=100000 (circles), N=150000
(squares) and N=200000 (diamonds)

Barabasi and Albert. Science (1999) 286 509-512
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Comparing Random Vs. Scale- §§:
free Networks o

e Two networks both with 130 nodes and 215 links)

s shes
LE N B

@ Five nodes with most links
@ First neighbors of red nodes
Exponential Scale-free

e The importance of the connected nodes in the scale-free
network:
e 27% of the nodes are reached by the five most connected nodes, in the
scale-free network more than 60% are reached.

[ X X ]
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[ XX
Fa i I U re a n d AttaC k Albert et al. Science (2000) 406 378-382 : H

e Failure: Removal of a random node.

e Attack: The selection and removal of a few nodes that play a
vital role in maintaining the network’s connectivity.

a macroscopic snapshot of Internet connectivity by K. C. Claffy




Failure and Attack, cont.

e Random networks are homogeneous so there is no difference
between failure and attack

12 T T

A Failure
I © Attack

Diameter of the network

4 " | L 1
0.00 0.02 0.04
Fraction nodes removed from network

Modified from Albert et al. Science (2000) 406 378-382

Failure and Attack, cont.

e Scale-free networks are robust to failure but susceptible to

attack
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Modified from Albert et al. Science (2000) 406 378-382
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The phenotypic effect of removing the
corresponding protein:

e Yeast protein-protein interaction networks

@ Lethal
O Slow-growth

Jeong et al. Nature 411, 41 - 42 (2001)

Lethality and connectivity are
positively correlated o

e Average and standard deviation for the various clusters.
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0 > 10 15 20
Number of links

e Pearson’s linear correlation coefficient = 0.75
Jeong et al. Nature 411, 41 - 42 (2001)
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Genetic foundation of network
evolution

e Network expansion by gene duplication

e A gene duplicates b
e Inherits it connections
e The connections can change Protemo
Before duplication
e Gene duplication slow ~10%/year

e Connection evolution fast ~10%/year

After duplication
Proteins

Barabasi & Oltvai. NRG. (2004) 5 101-113

The transcriptional regulation
network of Escherichia coli. H
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Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan & Uri Alon (2002) Nature Genetics 31 64 - 68
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Motifs in the networks =

e Deployed a motif detection
algorithm on the transcriptional
regulation network.

e Identified three recurring motifs
(significant with respect to
random graphs).

single input module (SIM)
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Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan & Uri Alon (2002) Nature Genetics 31 64 - 68

Convergent evolution of gene

circuits

e Are the components of the
feed-forward loop for
example homologous?

e Circuit duplication is rare in
the transcription network

A
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~ Increasing common ancestry

b
Circuit Mumber | Humber of | Index of Largest
type of families (C) | common circuit family
circuits ancestry (A) | (Finas)
Yeast i 44 (488« 0082 (0.02TN 5(1.0+ 14
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Conant and Wagner. Nature Genetics (2003) 34 264-266
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