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In 1866, Ernst Haeckel coined the word
“phylogeny” and presented phylogenetic
trees for most known groups of living
organisms.

Ernst Haeckel (1834-1919)




Phylogenetic Inference

\
e Given a multiple alignment, how do we construct the tree?

GCTTGTCCGTTACGAT

A A
B — ACTTGTCTGTTACGAT B
C — ACTTGTCCGAAACGAT c
D - ACTTGACCGTTTCCTT D
E — AGATGACCGTTTCGAT E
F

ACTACACCCTTATGAG

What Is a Tree?

e A tree is a mathematical structure which represents a model
of an actual evolutionary history of a group of sequences or

organisms. T= {,( T M Z

e In other words, it is an evolutionary hypothesis.

e A tree consists of nodes connected by branches.

week
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Terminal nodes represent sequences or
organisms for which we have data.
Each is typically called a
“Operational Taxonomical Unit”
or OTU.
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Types of Trees '
e Rooted vs. Unfrooted
Branches Nodes
Rooted Interior M-2 M-1
Total 2M -2 2M -1
Unrooted Interior M-3 M-2
Total 2M -3 2M -2
O M is the number of OTU’s
00
The number of rooted and sels
unrooted trees: ot

Possible Number of

Number
of OTU’s Rooted Unrooted
trees trees
2 1 1
3 3 1
4 15 3
5 105 15
6 945 105
7 10395 945
8 135135 10395
9 2027025 135135

@/ 34459425 2027025




More different kinds of trees

\
e Different kinds of trees can be used to depict different aspects

of evolutionary history

1. ladogram:
' simply shows relative order of common ancestry

N

Additive trees:
a cladogram with branch lengths,
also called phylograms and metric trees

3. Ultrametric trees:
(dendograms) special kind of additive tree in which
the tips of the trees are all equidistant from the root

Phylogeny methods

Basic principles:

e Degree of sequence difference is proportional to length of independent
sequence evolution

e Only use positions where alignment is pretty certain — avoid areas with (too

many) gaps
Major methods: Clustering QF%W Neighbor-joining
methods WPGMA
T Single linkage
Complete linkage
Obijective Least-squares distance
criterion- Maximum parsimony
based Minimum evolution

methods Maximum likelihood




UPGMA

e Construction of a distance tree using clustering with the Unweighted
Wethod with Arithmatic Mean (UPGMA)

e First, construct a distance matrix:

A B CDE
A - GCTTGTCCGTTACGAT
B — ACTTGTCTGTTACGAT B |2
C — ACTTGTCCGAAACGAT C 4 4
D - ACTTGACCGTTTCCTT —  _ |pD 6 6 6
E — AGATGACCGTTTCGAT El6lelela
F - ACTACACCCTTATGAG

F 8 8 8 8 8

From http://www.icp.ucl.ac.be/~opperd/private/upgma.htmi

Ultrametric Trees

e Metric distances (for additive trees) must obey 4 rules: —L(/(

e Non-negativity: d(a,b)= 0 &\ h ¢
e Distinctness: d(a,b)=0ifandonlyifa=b

e Symmetry: d(a,b) =d(b,a)

°

Triangle Inequality:  d(a,c) <d(a,b) + d(b,c) /{
e Ultrametric must obey one additional rule:

e Three point condition: d(a,b) < max( d(a,c), d(b,c) )
P —




UPGMA

e First round

mm OO W
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Choose the most similar pair,
cluster them together and calculate
the new distance matrix.

dist(A,B),C = (diStAC + distBC) /2 = 4

“dist(A,B),D = (distAD + distBD) /2 = 6

dist(A,B),E = (diStAE + distBE) /2= 6
dist(A,B),F = (distAF + distBF) /2 =8

cC 4

D ©6 6

E ©6 6 4
F 8 8 8 8

UPGMA

e Second

BA C
round
C 4
D 6 6
E 6 6 (
F 8 8
e Third
round B,A C
C 4
,D
E 6
F 8
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UPGMA :
\
e Forth ]
round C.,AB E.D 1 ! 1 ;‘
2 ¢
E,D 6 1 2 D
F 8 8 E
e Fifth A
B
round c
D
E
F

Note the this method identifies the root of the tree.

UPGMA/assumes a molecular sels
clock °e

e The UPGMA clustering method is very sensitive to unequal
evolutionary rates (assumes that the evolutionary rate is the same
for all branches).

e Clustering works only if the data are ultrametric
e Ultrametric distances are defined by the satisfaction of the 'three-

point condition'.
The three-point condition: //@
AN
l [J

A B C

For any three taxa, the two greatest distances are equal.




UPGMA fails when rates of
evolution are not constant -
Al B C|D l E

B 5

cC 4 7

D 7 10 7

E | 6 9 6| 5

F 8 11 8 9 8

A
C
B

Wrong
topology
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From http://www.icp.ucl.ac.be/~opperd/private/upgma.html

(Neighbor joining will get
the right tree in this case.)

momo >

Phylogeny based upon the
molecular clock o

e Evidence for a human mitochondrial origin in Africa: African
sequence diversity is twice as large as that of non-African

e Gyllensten and colleagues estimate that the divergence of Africans
and non-Africans occurred 52,000 to 28,000 years ago.

Ingman, M., Kaessmann, H., Paabo, S. & Gyllensten, U. (2000) Nature 408: 708-713.




A pair of homologous bases -
ancestor
?
T years @ @y
(B (¢
Typically, the ancestor is unknown.
How does sequence variation sels
arise? o

e Mutation:
e (a) Inherent: DNA replication errors are not always corrected.
e (b) External: exposure to chemicals and radiation.

e Selection: Deleterious mutations are removed quickly.
Neutral and rarely, advantageous mutations, are tolerated and
stick around.

e Fixation: It takes time for a new variant to be established
(having a stable frequency) in a population.




Modeling DNA base substitution

!
e Strictly speaking, only applicable to regions undergoing

little selection.
e Standard assumptions (sometimes weakened)

Site independence.
Site homogeneity.
Markovian: given current base, future substitutions independent of past.

> @ M=

Temporal homogeneity: stationary Markov chain.

More assumptions

-@ s,@and Q,, = s,,Q, for some positive s, s,,, and a rate

matmx&.- p= @w
e The ancestor is sampled from the stationary distribution 7 of
Q.
e Qisreversible:fora, b, t>0 .
m(a)P(t,a,b) = P(t.b,a)x(b), ()z/{/ (Y n
(detailed balance). A
—_ © @)

C/\b
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The stationary distribution

!
e A probability distribution 7z on {A,C,G, T} is a stationary
distribution of the Markov chain with transition probability matrix P
= P(i,j), if for all j,

2, i) P(ij) = j).
e Exercise. Given any initial distribution, the distribution at time ¢ of a

chain with transition matrix P converges to zas t — «. Thus, zis
also called an equilibrium distribution.

e Exercise. For the Jukes-Cantor and Kimura models, the uniform
distribution is stationary. (Hint: diagonalize their infinitesimal rate
matrices.)

We often assume that the ancestor sequence is i.i.d n.

= . . 000
New picture from a statistical sels
evolution model °s
ancestor~@
S ol
PAMs

11



The Jukes-Cantor adjustment

common ancestor

e Assume that the common ancestor has
A, G, C or T with probability 1/4.

A C
e Then the chance of the nt differing orang  human

(p)= 3/4 x (1 - e@{
= 3/4 x (1 —e*53), since k =2 x 3at

3/4

When k =.01, described as 1 PAM

Joint probability of A and C

e Under the model in the previous slides, the joint probability is

p(A.C)DD r(a)p(Als,T.Q.a)p(Cl|s,T.Q.a) 2

=Y z(A)plals,T.Q.A)p(Cls,T.Q.a) /\
o/\\{)

=x(A)p(C|s, T +5,T,Q,A)

e wheret=s,T+s,T is the (evolutionary) distance between A and C.
Note that s;,, s, and T are not identifiable.

e The matrix F(t) is symmetric. It is equally valid to view A as the
ancestor of C or vice versa.

12



Estimating the evolutionary
distance between two sequences

e Suppose two aligned protein sequences a;,...a,and b,...b, are
separated by t PAMs.

e Under a reversible substitution model that is IID across sites, the
likelihood of tis

L(*)=p(a,...a,,B...b,| model) A ;

-1 *.a.5) / NS
k

_ @(a.b)

a,b

e wherec(ab) =#{k:a,=a, b,=b}.

e Maximizing this quantity gives the maximum likelihood estimate
of t. This generalizes the distance correction with Jukes-Cantor.

2z
c

Phylogeny <8

e The shaded nodes represent the observed nucleotides at a
given site for a set of organisms

Mangabey

H.Langur

Human
Bonobo

e The unshaded nodes represent putative ancestral nucleotides
e Transitions between nodes capture the dynamic of evolution

13



Likelihood methods

\
e A tree, with branch lengths, and the data at a single site.

)

5|
t Y]

—tz‘e Wangabey
O - Libl
B C}AGTGACGCCCCAAACGT
CAGTGACGCTACAAACGT
40

—— CTGTGACGTAACAAACGA
CTGTGACGTAGCAAACGA
tf“@ — CTGTGACGTAGCAAACGA

e Since the sites evolve independently on the same tree,

L=POIT)=][PO"T)

Likelihood at one site on a tree

e We can compute this by summing over .
all assignments of states x, y, zand w
to the interior nodes:

PO ITY=YDDPAACCCx .y zw|T)

X y z w
e Due to the Markov property of the tree, we ts ty
can factorize the complete likelihood according 5

Mangabey

Bonobo

to the tree topology:

P(A,AC,C,C.x,y,zw|T)=
P(x) Plylx.t) P(Cly.h)P(Cly.t)
P(z|x,1) P(Cly.1)
Pwlz.1;) P(Aly. 1) P(Aly.15)
e Summing this up, there are 256 terms in this case!

14



Getting a recursive algorithm

\
e when we move the summation signs as far right as possible:

POV T)=>>> > P(AAC,C,C,xy,z,W|T)=

X y z w

z P(X) A . Human

[zp(wx,ts) P<C|y,tl)P(C|y.t2>]
( S P@Ixt) P(Clzt)
( > P(W|2,t,)P(A | w,t,)P(A] W) ))

Felsenstein’s Pruning Algorithm

e To calcul P(X4, Xgy -0y Xy | T, 1) .

. Q
Initialization: (@)
Setk=2N-1 D ® O é

VANAN

Recursion: Compute P(L, | a) foralla € =
If k is a leaf node:

Set (L, | a) = 1(a = x,) /\ UL
If k is not a leaf node: %k
1. Compute P(L; | b), P(L; | c) for all b and c, for daughter nodes i, j

2.SetP(L, |a)= Zb, P(b|a t)P(L; | b) P(c|a, t)P(L | c)
Termination:

Likelihood at this column = P(x,, X, ..., Xy | T, t) = ZaP(LZN_1 | a)P(a)

e This algorithm can easily handle Ambiguity and error in the sequences (how?)

15



Finding the ML tree

e So far | have just talked about the computation of the
likelihood for one tree with branch lengths known.

e Tofind a ML tree, we must search the space of tree
topologies, and for each one examined, we need to optimize
the branch lengths to maximize the likelihood.

Bayesian phylogeny methods

e Bayesian inference has been applied to inferring phylogenies
(Rannala and Yang, 1996;Mau and Larget, 1997; Li, Pearl
and Doss, 2000).

e All use a prior distribution on trees. The prior has enough influence on
the result that its reasonableness should be a major concern. In
particular, the depth of the tree may be seriously affected by the
distribution of depths in the prior.

e All use Markov Chain Monte Carlo (MCMC) methods. They sample from
the posterior distribution.

e When these methods make sense they not only get you a point estimate
of the phylogeny, they get you a distribution of possible phylogenies.

16



/—r
%\&_\
-\
Modeling rate b\cﬂi PLAT)
variation among sitesy, *  ©
A model of variation in §§:
evolutionary rates among sites o

e The basic idea is that the rate at each site is drawn
independently from a distribution of rates. The most widely
used choice is thWﬂon, which has density
function:

la/,,a—le—/ir

="

e Gamma distributions («,0)

17



Unrealistic aspects of the model:

e There is no reason, aside from mathematical convenience, to
assume that the Gamma is the right distribution.

e A common variation is to assume there is a separate
probability f, of having rate 0.

e Rates at different sites appear to be correlated, which this
model does not allow.

e Rates are not constant throughout evolution, they change with
time.

Rates varying among sites

e If LO(r) is the likelihood of the tree for site /given that the rate
of evolution at site /is r; we can integrate this over a gamma
density:

e so that the overall likelihood is _—

LT[ e

-

e Unfortunately these integrals cannot be evaluated for trees
with more than a few tips as the quantities L()(r) becomes
complicated.

18



Modeling rate variation among
sites

Phylogeny

Rates 100 o © o= o @

of 50 e=e’e o\e e
evolution

03 o ® & @ -8—=8 @

e There are a finite number of rates (denote rate i as ;).
e There are probabilities p; of a site having rate i.
e A process not visible to us ("hidden") assigns rates to sites.

e The probability of our seeing some data are to be obtained by summing
over all possible combinations of rates, weighting appropriately by their
probabilities of occurrence.

Rocall the HMM

=<
-
<
N
=<
w
<

e |The ghaded/nodes represent the observed nucleotides at particular
of an-erganism's genome

e Fordiscrete Y, widely used in computational biology to represent
segments of sequences
e gene finders and motif finders
e profile models of protein domains
e models of secondary structure

19



Definition (of HMM)

\
e Observation space
Alphabetic set: C=1{g.,6 ¢} G @ @ @
Euclidean space: RY
e Index set of hidden states G @ @ @

].:.{1’2'“.'/“} . Graphical model
e Transition probabilities between any two states

P! =llyli=D=aq,,
or  py; |y, =1)~Multinomial(g, ;g ,,...,q, , )} Vi€ l. 1 2

e Start probabilities
p(y,) ~ Multinomial(z,, 7,,..., 7, ).
e Emission probabilities associated with each state
plx, |yl =1~ Multinomial(b,yl,b,.yz,...,b,.‘/(),v/' el.
or in general:

px |y =1)~(|6,)viel

K

State automata

Hidden Markov Phylogeny

341

e Replacing the standard emission model with a tree
e A process not visible to us (.hidden") assigns rates to sites. ltis a
Markov process working along the sequence.
e For example it might have transition probability Prob (]/) of changing to
rate jin the next site, given that it is at rate /in this site.
e These are the most widely used models allowing rate
variation to be correlated along the sequence.

20



The Forward Algorithm

\
e We can compute af for all A, #, using dynamic programming!

Initialization: a1k :P(Xv}ﬁk =1)

=Pl |yl =DP(y =1)

af =P(x |y =D, =P(x, |y =D,

Iteration: /?(H/}’ST)

a 'D(Xrlyrkzl’)za;qgi

Termination:

P(X)=>af
k

The Backward Algorithm

e We can compute ﬂfk for all 4, #, using dynamic programming!

Initialization:
k
Bl =1, vk
lteration:

B = Zr‘akv P | s =15,

Termination:

P(x) = Z alkﬂ1k
7

21



Hidden Markov Phylogeny

e this yields a gene finder that exploits evolutionary constraints

A Comparison of comparative genomic | se2¢
gene-finding and isolated gene-finding o2

e Based on sequence data frorr@rimate species,
McAuliffe et al (2003) obtained sensitivity of 100%, with a
specificity of 89%. > —

e Genscan (state-of-the-art gene finder) yield a sensitivity of 45%, with a
specificity of 34%.

1007
90+
807
707
60+
507
40
307
207
10+

,
EQﬁhylogenetic
MM

H Genscan

T(AVM)

0

sensitivity specificity
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Open questions (philosophical)

Observation:

e Finding a good phylogeny will help in finding the genes.
e TeTT R e

° Finﬁg the genes will help to find biologically meaningflil
phylogenetic trees

Which came first, the chicken or the egg?

Open questions (technical)

e How to learn a phylogeny (topology and transition prob.)?

e Should different site use the same phylogeny? Function-
specific phylogeny?

e Other evolutionary events: duplication, rearrangement, lateral
transfer, etc.

23
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