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Computational GenomicsComputational Genomics

Molecular Evolution:Molecular Evolution:
PhylogeneticPhylogenetic treestrees

Eric XingEric Xing
Lecture 14, March  6, 2007

Reading: DTW book, Chap 12
DEKM book, Chap 7, 8

Ernst Haeckel (1834-1919)

Phylogeny

In 1866, Ernst Haeckel coined the word 
“phylogeny” and presented phylogenetic
trees for most known groups of living 
organisms. 
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A - GCTTGTCCGTTACGAT
B – ACTTGTCTGTTACGAT
C – ACTTGTCCGAAACGAT
D - ACTTGACCGTTTCCTT
E – AGATGACCGTTTCGAT
F - ACTACACCCTTATGAG

?

Phylogenetic Inference
Given a multiple alignment, how do we construct the tree?

Terminal nodes represent sequences or 
organisms for which we have data.
Each is typically called a 
“Operational Taxonomical Unit”
or OTU.

Internal nodes represent
hypothetical ancestors

One unique internal 
node is the root of the 
tree: the ancestor of all 

the sequences.

A tree is a mathematical structure which represents a model 
of an actual evolutionary history of a group of sequences or 
organisms.

In other words, it is an evolutionary hypothesis.

A tree consists of nodes connected by branches.

What Is a Tree?
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Rooted vs. Unrooted

2M – 3 2M – 2

2M – 12M – 2

Total

Unrooted

Total

Rooted

M – 2M – 3 Interior

M – 1M – 2 Interior

NodesBranches

M is the number of OTU’s

Types of Trees

Possible Number of 

Rooted 
trees

Unrooted 
trees

2 1 1
3 3 1
4 15 3
5 105 15
6 945 105
7 10395 945
8 135135 10395
9 2027025 135135
10 34459425 2027025

Number 
of OTU’s

The number of rooted and 
unrooted trees:
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1. Cladogram: 
simply shows relative order of common ancestry

2. Additive trees: 
a cladogram with branch lengths, 
also called phylograms and metric trees

3.   Ultrametric trees: 
(dendograms) special kind of additive tree in which 
the tips of the trees are all equidistant from the root
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More different kinds of trees
Different kinds of trees can be used to depict different aspects
of evolutionary history

Basic principles:

Degree of sequence difference is proportional to length of independent 
sequence evolution
Only use positions where alignment is pretty certain – avoid areas with (too 
many) gaps

Major methods:

Phylogeny methods 
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 A  B  C  D  E
 B  2
 C  4  4
 D  6  6  6
 E  6  6  6  4
 F  8  8  8  8  8

From http://www.icp.ucl.ac.be/~opperd/private/upgma.html

A - GCTTGTCCGTTACGAT
B – ACTTGTCTGTTACGAT
C – ACTTGTCCGAAACGAT
D - ACTTGACCGTTTCCTT
E – AGATGACCGTTTCGAT
F - ACTACACCCTTATGAG

Construction of a distance tree using clustering with the Unweighted
Pair Group Method with Arithmatic Mean (UPGMA)

First, construct a distance matrix:

UPGMA

1 1 1 1
2

3
1

1

1
3

a b c

1
0.4 2

1

a c b

Metric distances (for additive trees) must obey 4 rules:
Non-negativity: d(a,b) ≥ 0
Distinctness: d(a,b) = 0 if and only if a = b
Symmetry: d(a,b) = d(b,a)
Triangle Inequality: d(a,c) ≤ d(a,b) + d(b,c)

Ultrametric must obey one additional rule:
Three point condition: d(a,b) ≤ max( d(a,c), d(b,c) )

Ultrametric Trees
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dist(A,B),C = (distAC + distBC) / 2 = 4 
dist(A,B),D = (distAD + distBD) / 2 = 6 
dist(A,B),E = (distAE + distBE) / 2 = 6
dist(A,B),F = (distAF + distBF) / 2 = 8

 A  B  C  D  E
 B  2
 C  4  4
 D  6  6  6
 E  6  6  6  4
 F  8  8  8  8  8

 A,B  C  D  E

 C  4
 D  6  6
 E  6  6  4
 F  8  8  8  8

Choose the most similar pair, 
cluster them together and calculate 
the new distance matrix.

First round

UPGMA

 A,B  C  D  E

 C  4
 D  6  6
 E  6  6  4
 F  8  8  8  8

 A,B  C  D,
E

 C  4
 D,

E  6  6

 F  8  8  8

UPGMA
Second 
round

Third 
round 
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UPGMA
Forth 
round

Fifth
round 

 AB,C  D,E

 D,E  6
 F  8  8

 ABC,DE

 F  8
Note the this method identifies the root of the tree.

The UPGMA clustering method is very sensitive to unequal  
evolutionary rates (assumes that the evolutionary rate is the same 
for all branches).
Clustering works only if the data are ultrametric
Ultrametric distances are defined by the satisfaction of the 'three-
point condition'.

For any three taxa, the two greatest distances are equal.

The three-point condition:

A B C
A

B

C

UPGMA assumes a molecular 
clock
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 A  B  C  D  E
 B  5
 C  4  7

 D  7  10  7

 E  6  9  6  5

 F  8  11  8  9  8

From http://www.icp.ucl.ac.be/~opperd/private/upgma.html

(Neighbor joining will get 
the right tree in this case.)

UPGMA fails when rates of 
evolution are not constant

Ingman, M., Kaessmann, H., Pääbo, S. & Gyllensten, U. (2000) Nature 408: 708-713.

Phylogeny based upon the 
molecular clock

Evidence for a human mitochondrial origin in Africa: African 
sequence diversity is twice as large as that of non-African

Gyllensten and colleagues estimate that the divergence of Africans 
and non-Africans occurred 52,000 to 28,000 years ago.
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A pair of homologous bases

Typically, the ancestor is unknown.

ancestor

A C

Qh
Qm

T years

?

How does sequence variation 
arise?

Mutation: 
(a) Inherent: DNA replication errors are not always corrected. 
(b) External: exposure to chemicals and radiation. 

Selection: Deleterious mutations are removed quickly. 
Neutral and rarely, advantageous mutations, are tolerated and 
stick around.
Fixation: It takes time for a new variant to be established 
(having a stable frequency) in a population. 
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Modeling DNA base substitution

Strictly speaking, only applicable to regions undergoing 
little selection.
Standard assumptions  (sometimes weakened)

1. Site independence.
2. Site homogeneity.
3. Markovian: given current base, future substitutions independent of past.
4. Temporal homogeneity: stationary Markov chain.

More assumptions
Qh = shQ and Qm = smQ, for some positive sh, sm, and a rate 
matrix Q. 

The ancestor is sampled from the stationary distribution π of 
Q.

Q is reversible: for a, b, t ≥ 0

π(a)P(t,a,b) = P(t,b,a)π(b),    

(detailed balance).
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The stationary distribution
A probability distribution π on {A,C,G,T} is a stationary 
distribution of the Markov chain with transition probability matrix P 
= P(i,j), if for all j, 

∑i π(i) P(i,j) = π(j).

Exercise.  Given any initial distribution, the distribution at time t of a 
chain with transition matrix P converges to π as t → ∞. Thus, π is 
also called an equilibrium distribution. 

Exercise. For the Jukes-Cantor and Kimura models, the uniform 
distribution is stationary. (Hint: diagonalize their infinitesimal rate 
matrices.)

We often assume that the ancestor sequence is i.i.d π.

ancestor ~ π

A

C

Q
Q

shT PAMs

smT
PAMs

New picture from a statistical 
evolution model
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common ancestor

A
orang

C
human

t

3/4

The Jukes-Cantor adjustment
Assume that the common ancestor has 
A, G, C or T with probability  1/4.

Then the chance of the nt differing
p≠ =  3/4 × (1 − e−8αt)

=  3/4 × (1 − e−4k/3), since k =2 × 3αt

When k = .01, described as 1 PAM

Joint probability of A and C
Under the model in the previous slides, the joint probability is

where t = shT+ smT is the (evolutionary) distance between A and C.                
Note that sh , sm and T are not identifiable.

The matrix F(t) is symmetric. It is equally valid to view A as the 
ancestor of C or vice versa.  
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Estimating the evolutionary 
distance between two sequences

Suppose two aligned protein sequences a1…an and b1…bn are 
separated by t PAMs.

Under a reversible substitution model that is IID across sites, the 
likelihood of t is

where c(a,b) = # {k : ak = a, bk = b}.

Maximizing this quantity gives the maximum likelihood estimate 
of t. This generalizes the distance correction with Jukes-Cantor. 

),(

,

),,(

),,(

)model|,()(

ba

ba

k
kk

nn

bat

bat
bbaapt

∏

∏

=

=

= KK 11L

Phylogeny

The shaded nodes represent the observed nucleotides at a 
given site for a set of organisms
The unshaded nodes represent putative ancestral nucleotides
Transitions between nodes capture the dynamic of evolution
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A tree, with branch lengths, and the data at a single site.

Since the sites evolve independently on the same tree,

ACAGTGACGCCCCAAACGT
ACAGTGACGCTACAAACGT
CCTGTGACGTAACAAACGA
CCTGTGACGTAGCAAACGA
CCTGTGACGTAGCAAACGAt1

t2

t3

t4

t5

t6

t8

t7

∏
=

==
m

i

i TDPTDPL
1

)|()|( )(

Likelihood methods

t1

t2

t3

t4

t5

t6

t8

t7

x

y

z
w

∑∑∑∑=
x y z w

i TwzyxCCCAAPTDP )|,,,,,,,,()|( )(

Likelihood at one site on a tree
We can compute this by summing over 
all assignments of states x, y, z and w 
to the interior nodes:

Due to the Markov property of the tree, we 
can factorize the complete likelihood according 
to the tree topology: 

Summing this up, there are 256 terms in this case!

=)|,,,,,,,,( TwzyxCCCAAP

),|C( ),|C(),|()( 216 tyPtyPtxyPxP
),|C(),|( 38 tyPtxzP

),|A( ),|A( ),|( 547 tyPtyPtzwP
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Getting a recursive algorithm
when we move the summation signs as far right as possible:

t1

t2

t3

t4

t5

t6

t8

t7

x

y

z

w

Felsenstein’s Pruning Algorithm
To calculate P(x1, x2, …, xN | T, t)

Initialization:
Set k = 2N – 1

Recursion: Compute P(Lk | a) for all a ∈ Σ
If k is a leaf node:

Set P(Lk | a) = 1(a = xk)
If k is not a leaf node:

1. Compute P(Li | b), P(Lj | c) for all b and c, for daughter nodes i, j

2. Set P(Lk | a) = Σb, cP(b | a, ti)P(Li | b) P(c | a, tj) P(Lj | c)

Termination:

Likelihood at this column = P(x1, x2, …, xN | T, t) = ΣaP(L2N-1 | a)P(a)

This algorithm can easily handle Ambiguity and error in the sequences (how?)

AcAb
a

i j

k ak
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Finding the ML tree
So far I have just talked about the computation of the 
likelihood for one tree with branch lengths known.

To find a ML tree, we must search the space of tree 
topologies, and for each one examined, we need to optimize 
the branch lengths to maximize the likelihood.

Bayesian phylogeny methods
Bayesian inference has been applied to inferring phylogenies 
(Rannala and Yang, 1996;Mau and Larget, 1997; Li, Pearl 
and Doss, 2000).

All use a prior distribution on trees. The prior has enough influence on 
the result that its reasonableness should be a major concern. In
particular, the depth of the tree may be seriously affected by the 
distribution of depths in the prior.
All use Markov Chain Monte Carlo (MCMC) methods. They sample from 
the posterior distribution.
When these methods make sense they not only get you a point estimate 
of the phylogeny, they get you a distribution of possible phylogenies.
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Modeling rate
variation among sites

AG

AG

AC

AA

AA

AG

AA

AT

AG

...

A model of variation in 
evolutionary rates among sites

The basic idea is that the rate at each site is drawn 
independently from a distribution of rates. The most widely 
used choice is the Gamma distribution, which has density 
function:

Gamma distributions (α,θ)

α

θαλαα

θαα
λ
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Γ
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Γ
=

−−−− rr rrr
11

f
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Unrealistic aspects of the model:
There is no reason, aside from mathematical convenience, to 
assume that the Gamma is the right distribution. 

A common variation is to assume there is a separate 
probability f0 of having rate 0.

Rates at different sites appear to be correlated, which this 
model does not allow.

Rates are not constant throughout evolution, they change with 
time.

Rates varying among sites
If L(i)(ri) is the likelihood of the tree for site i given that the rate 
of evolution at site i is ri, we can integrate this over a gamma 
density:

so that the overall likelihood is

Unfortunately these integrals cannot be evaluated for trees 
with more than a few tips as the quantities L(i)(ri) becomes 
complicated.
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There are a finite number of rates (denote rate i as ri).
There are probabilities pi of a site having rate i.
A process not visible to us ("hidden") assigns rates to sites. 
The probability of our seeing some data are to be obtained by summing 
over all possible combinations of rates, weighting appropriately by their 
probabilities of occurrence.

Modeling rate variation among 
sites

A A A AAA A A A A A A A A A A AC G T AGA A A A G A G T C A A T

i i i iii e1 e2 e3 e4 e5 e6 e7 e8 i i i

...Y1 Y2 Y3 YT

X1 X2 X3 XT...

Rocall the HMM

The shaded nodes represent the observed nucleotides at particular 
sites of an organism's genome
For discrete Yi, widely used in computational biology to represent 
segments of sequences

gene finders and motif finders
profile models of protein domains
models of secondary structure 
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Definition (of HMM)
Observation space

Alphabetic set:
Euclidean space:

Index set of hidden states

Transition probabilities between any two states

or

Start probabilities

Emission probabilities associated with each state

or in general:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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Graphical model
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State automata
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...

Hidden Markov Phylogeny

Replacing the standard emission model with a tree 
A process not visible to us (.hidden") assigns rates to sites. It is a 
Markov process working along the sequence. 
For example it might have transition probability Prob (j|i) of changing to 
rate j in the next site, given that it is at rate i in this site.

These are the most widely used models allowing rate 
variation to be correlated along the sequence.
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The Forward Algorithm
We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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The Backward Algorithm
We can compute       for all k, t, using dynamic programming!

Initialization:

Iteration:

Termination:
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AG

AG

AC

AA

AA

AG

AA

AT

AG

...

Hidden Markov Phylogeny

this yields a gene finder that exploits evolutionary constraints

Based on sequence data from 12-15 primate species, 
McAuliffe et al (2003) obtained sensitivity of 100%, with a 
specificity of 89%. 

Genscan (state-of-the-art gene finder) yield a sensitivity of 45%, with a 
specificity of 34%.  

0
10
20
30
40
50
60
70
80
90

100

sensitivity specificity

Phylogenetic
HMM 
Genscan
(HMM)

A Comparison of comparative genomic 
gene-finding and isolated gene-finding
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Observation:

Finding a good phylogeny will help in finding the genes.

Finding the genes will help to find biologically meaningful 
phylogenetic trees

Which came first, the chicken or the egg?

Open questions (philosophical)

Open questions (technical)
How to learn a phylogeny (topology and transition prob.)?

Should different site use the same phylogeny? Function-
specific phylogeny?  

Other evolutionary events: duplication, rearrangement, lateral 
transfer, etc.
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