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Computational GenomicsComputational Genomics

Molecular Evolution:Molecular Evolution:
nucleotide substitution modelsnucleotide substitution models

Eric XingEric Xing
Lecture 13, February  27, 2007

Reading: DTW book, Chap 12
DEKM book, Chap 8 

Some important dates in history
(billions of years ago)

Origin of the universe 15 ±4
Formation of the solar system 4.6
First self-replicating system 3.5 ±0.5
Prokaryotic-eukaryotic divergence 1.8 ±0.3
Plant-animal divergence 1.0
Invertebrate-vertebrate divergence 0.5
Mammalian radiation beginning 0.1

(86 CSH Doolittle et al.)
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The three kingdoms

Two important early observations
Different proteins evolve at different rates, and this seems    
more or less independent of the host organism, including its 
generation time.

It is necessary to adjust the observed percent difference 
between two homologous proteins to get a distance more or  
less linearly related to the time since their common ancestor.  
( Later we offer a rational basis for doing this.)

See nest slide …
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Evolution of
the globins
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Rates of macromolecular 
evolution

How does sequence variation 
arise?

Mutation: 
(a) Inherent: DNA replication errors are not always corrected. 
(b) External: exposure to chemicals and radiation. 

Selection: Deleterious mutations are removed quickly. 
Neutral and rarely, advantageous mutations, are tolerated and 
stick around.

Fixation: It takes time for a new variant to be established 
(having a stable frequency) in a population. 
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Modeling DNA base substitution
Standard assumptions  (sometimes weakened)

Site independence.
Site homogeneity.
Markovian: given current base, future substitutions independent of past.
Temporal homogeneity: stationary Markov chain.

Strictly speaking, only applicable to regions undergoing little 
selection.

Some terminology
In evolution, homology (here of proteins), means similarity due to 
common ancestry.

A common mode of protein evolution is by duplication. Depending 
on the relations between duplication and speciation dates, we have 
two different types of homologous proteins. Loosely,

Orthologues:  the “same” gene in different organisms; common 
ancestry goes back to a speciation event.
Paralogues: different genes in the same organism; common 
ancestry goes back to a gene duplication.

Lateral gene transfer gives another form of homology. 
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Speciation vs. duplication

10 20 30 40

M V H L T P E E K S A V T A L W G K V N V D E V G G E A L G R L L V V Y P W T Q BG-human
- . . . . . . . . N . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . BG-macaque
- - M . . A . . . A . . . . F . . . . K . . . . . . . . . . . . . . . . . . . . BG-bovine
- . . . S G G . . . . . . N . . . . . . I N . L . . . . . . . . . . . . . . . . BG-platypus
. . . W . A . . . Q L I . G . . . . . . . A . C . A . . . A . . . I . . . . . . BG-chicken
- . . W S E V . L H E I . T T . K S I D K H S L . A K . . A . M F I . . . . . T BG-shark

50 60 70 80

R F F E S F G D L S T P D A V M G N P K V K A H G K K V L G A F S D G L A H L D BG-human
. . . . . . . . . . S . . . . . . . . . . . . . . . . . . . . . . . . . N . . . BG-macaque
. . . . . . . . . . . A . . . . N . . . . . . . . . . . . D S . . N . M K . . . BG-bovine
. . . . A . . . . . S A G . . . . . . . . . . . . A . . . T S . G . A . K N . . BG-platypus
. . . A . . . N . . S . T . I L . . . M . R . . . . . . . T S . G . A V K N . . BG-chicken
. Y . G N L K E F T A C S Y G - - - - - . . E . A . . . T . . L G V A V T . . G BG-shark

90 100 110 120

N L K G T F A T L S E L H C D K L H V D P E N F R L L G N V L V C V L A H H F G BG-human
. . . . . . . Q . . . . . . . . . . . . . . . . K . . . . . . . . . . . . . . . BG-macaque
D . . . . . . A . . . . . . . . . . . . . . . . K . . . . . . . V . . . R N . . BG-bovine
D . . . . . . K . . . . . . . . . . . . . . . . N R . . . . . I V . . . R . . S BG-platypus
. I . N . . S Q . . . . . . . . . . . . . . . . . . . . D I . I I . . . A . . S BG-chicken
D V . S Q . T D . . K K . A E E . . . . V . S . K . . A K C F . V E . G I L L K BG-shark

130 140

K E F T P P V Q A A Y Q K V V A G V A N A L A H K Y HBG-human
. . . . . Q . . . . . . . . . . . . . . . . . . . . .BG-macaque
. . . . . V L . . D F . . . . . . . . . . . . . R . .BG-bovine
. D . S . E . . . . W . . L . S . . . H . . G . . . .BG-platypus
. D . . . E C . . . W . . L . R V . . H . . . R . . .BG-chicken
D K . A . Q T . . I W E . Y F G V . V D . I S K E . . BG-shark

.  means same as 
reference sequence

- means deletion

Beta-globins (orthologues)
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hum     mac bov pla chi       sha

hum ---- 5         16        23       31        65

mac 7        ---- 17       23        30        62

bov 23         24         ---- 27        37        65

pla 34         34 39        ---- 29        64

chi 45         44         52        42       ---- 61

sha 91         88         91        90       87       ----

Beta-globins: uncorrected 
pairwise distances

DISTANCES between protein sequences (calculated over: 1 to 147)

Below diagonal: observed number of differences
Above diagonal: number of differences per 100 amino acids

DISTANCES between protein sequences (calculated over: 1 to 147)

Below diagonal: observed number of differences
Above diagonal: number of differences per 100 amino acids
Correction method: Jukes-Cantor

hum     mac bov pla chi       sha

hum ---- 5          17       27       37      108

mac 7        ---- 18       27       36       102 

bov 23         24         ---- 32       46       110

pla 34         34 39        ---- 34       106

chi 45         44         52        42       ---- 98

sha 91         88         91        90       87      ----

Beta-globins: corrected pairwise
distances
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10 20 30

- V L S P A D K T N V K A A W G K V G A H A G E Y G A E A L E R M F L S F P T T alpha-human
V H . T . E E . S A . T . L . . . . - - N V D . V . G . . . G . L L V V Y . W . beta-human
V H . T . E E . . A . N . L . . . . - - N V D A V . G . . . G . L L V V Y . W . delta-human
V H F T A E E . A A . T S L . S . M - - N V E . A . G . . . G . L L V V Y . W . epsilon-human
G H F T E E . . A T I T S L . . . . - - N V E D A . G . T . G . L L V V Y . W . gamma-human
- G . . D G E W Q L . L N V . . . . E . D I P G H . Q . V . I . L . K G H . E . myo-human

40 50 60 70

K T Y F P H F - D L S H G S A - - - - - Q V K G H G K K V A D A L T N A V A H V alpha-human
Q R F . E S . G . . . T P D . V M G N P K . . A . . . . . L G . F S D G L . . L beta-human
Q R F . E S . G . . . S P D . V M G N P K . . A . . . . . L G . F S D G L . . L delta-human
Q R F . D S . G N . . S P . . I L G N P K . . A . . . . . L T S F G D . I K N M epsilon-human
Q R F . D S . G N . . S A . . I M G N P K . . A . . . . . L T S . G D . I K . L gamma-human
L E K . D K . K H . K S E D E M K A S E D L . K . . A T . L T . . G G I L K K K myo-human

80 90 100 110

D D M P N A L S A L S D L H A H K L R V D P V N F K L L S H C L L V T L A A H L alpha-human
. N L K G T F A T . . E . . C D . . H . . . E . . R . . G N V . V C V . . H . F beta-human
. N L K G T F . Q . . E . . C D . . H . . . E . . R . . G N V . V C V . . R N F delta-human
. N L K P . F A K . . E . . C D . . H . . . E . . . . . G N V M V I I . . T . F epsilon-human
. . L K G T F A Q . . E . . C D . . H . . . E . . . . . G N V . V T V . . I . F gamma-human
G H H E A E I K P . A Q S . . T . H K I P V K Y L E F I . E . I I Q V . Q S K H myo-human

120 130 140

P A E F T P A V H A S L D K F L A S V S T V L T S K Y R - - - - - -alpha-human
G K . . . . P . Q . A Y Q . V V . G . A N A . A H . . H . . . . . .                        beta-human
G K . . . . Q M Q . A Y Q . V V . G . A N A . A H . . H . . . . . .                        delta-human
G K . . . . E . Q . A W Q . L V S A . A I A . A H . . H . . . . . .                        epsilon-human
G K . . . . E . Q . . W Q . M V T A . A S A . S . R . H . . . . . .                        gamma-human
. G D . G A D A Q G A M N . A . E L F R K D M A . N . K E L G F Q G             myo-human

Human globins (paralogues)

alpha     beta    delta   epsil gamma   myo

alpha ---- 281       281 281 313     208

beta 82      ---- 7       30        31     1000

delta 82       10       ---- 34        33      470

epsil 89       35        39       ---- 21      402

gamma 85       39        42       29       ---- 470

myo 116     117      116     119      118      ----

Human globins: corrected 
pairwise distances

DISTANCES between protein sequences (calculated over 1 to 141)

Below diagonal: observed number of differences
Above diagonal: estimated number of substitutions per 100 amino acids
Correction method: Jukes-Cantor
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Correcting distances between 
DNA and protein sequences

Why it is necessary to adjust observed percent differences to get a 
distance measure which scales linearly with time? 

This is because we can have multiple and back substitutions at a 
given position along a lineage. 

All of the correction methods (with names like Jukes-Cantor, 2-
parameter Kimura, etc) are justified by simple probabilistic 
arguments involving Markov chains whose basis is worth mastering. 

The same molecular evolutionary models can be used in scoring
sequence alignments.

Markov chain
State space = {A,C,G,T}.  

p(i,j) = pr(next state Sj | current state Si)

Markov  assumption:

p(next state Sj | current state Si & any configuration of states before 
this) = p(i,j) 

Only the present state, not previous states, affects the probs of 
moving to next states.
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pr(state after next is Sk | current state is Si)

= ∑j pr(state after next is Sk, next state is Sj | current state is Si) 

= ∑j pr(next state is Sj| current state is Si) x pr(state after next is Sk | current    

state is Si, next state is Sj) 

= ∑j pi,j x pj,k

= (i,k)-element of P2, where P=(pi,j).

More generally,

pr(state t steps from now is Sk | current state is Si)   = i,k element of Pt

[addition rule]

[multiplication rule]

[Markov assumption]

The multiplication rule

Continuous-time version
For any (s, t):

Let pij(t) = pr(Sj at time t+s | Si at time s) denote the stationary (time-homogeneous)
transition probabilities.

Let P(t) = (pij(t)) denote the matrix of pij(t)’s.
Then for any (t, u): P(t+u) = P(t) P(u).

It follows that P(t) = exp(Qt), where Q = P’(0) (the derivative of P(t) at t 
= 0 ).

Q is called the infinitesimal matrix (transition rate matrix) of P(t), and 
satisfies 

P’(t) = QP(t) = P(t)Q.
Important approximation: when t is small, 

P(t) ≈ I + Qt.
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≠

Interpretation of Q
Roughly, qij is the rate of transitions of i to j, while qii = − Σj  i qij, so 
each row sum is 0 (Why?). 
Now we have the short-time approximation:

where pij(t+h) is the probability of transitioning from i at time t to j at time t+h

Now consider the Chapman-Kolmogorov relation: (assuming we have a 
continuous-time Markov chain, and let pj(t) = pr(Sj at time t)):

p’ = Qp as h↓0.
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Probabilistic models 
for DNA changes

Orc: ACAGTGACGCCCCAAACGT
Elf: ACAGTGACGCTACAAACGT
Dwarf: CCTGTGACGTAACAAACGA
Hobbit: CCTGTGACGTAGCAAACGA
Human: CCTGTGACGTAGCAAACGA
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A

C

G

T

µ/3 µ/3

µ/3

µ/3

µ/3

µ/3

the simplest symmetrical model for DNA evolution

-µ -µ

-µ-µ

The Jukes-Cantor model (1969) 

Substitution rate:

Transition probabilities under the 
Jukes-Cantor model

IID assumption:
All sites change independently
All sites have the same stochastic process working at them

Equiprobablity assumption:
Make up a fictional kind of event, such that when it happens the site 
changes to one of the 4 bases chosen at random equiprobably

Equilibrium condition:
No matter how many of these fictional events occur, provided it is not 
zero, the chance of ending up at a particular base is 1/4 . 

Solving differentially equation system P’ = QP
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r(t) s(t) s(t) s(t)
P(t) = s(t) r(t) s(t) s(t)

s(t) s(t) r(t) s(t)
s(t) s(t) s(t) r(t)

Where we can derive:

A
C
G
T

A C G T

Transition probabilities under the 
Jukes-Cantor model (cont.)

Prob transition matrix:

( )tetr µ3
4

31
4
1 −+=)(

( )tets µ3
4

1
4
1 −−=)( Homework!

di
ffe

re
nc

e 
pe

r s
ite

time

Jukes-Cantor (cont.)

Fraction of sites differences
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A

C

G

T

β β

α

α

β

β

-α-2β -α-2β

-α-2β -α-2β

Kimura's K2P model (1980)

Substitution rate:

which allows for different rates of transition and transversions.
Transitions (rate α) are much more likely than transversions (rate β).

Prob transition matrix:

By proper choice of α and β one can achieve the overall rate of change 
and Ts=Tn ratio R you want (warning: terminological tangle).

r(t) s(t) u(t) s(t)
P(t) = s(t) r(t) s(t) u(t)

u(t) s(t) r(t) s(t)
s(t) u(t) s(t) r(t)

Where s(t) = ¼ (1 – e-4βt)
u(t) = ¼ (1 + e-4βt – e-2(α+β)t)
r(t)  = 1 – 2s(t) – u(t)

Kimura (cont.)



14

Kimura (cont.)

Transitions, transversions expected under different R:

Other commonly used models
Two models that specify the equilibrium base frequencies
(you provide the frequencies A; C; G; T and they are set up to 
have an equilibrium which achieves them), and also let you 
control the transition/transversion ratio:
The Hasegawa-Kishino-Yano (1985) model:
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Other commonly used models
The F84 model (Felsenstein)

where πR = πA + πG and πY = πC + πT (The equilibrium frequencies of 
purines and pyrimidines)

― s(t) s(t) s(t)
s(t) ― s(t) s(t)
s(t) s(t) ― s(t)
s(t) s(t) s(t) ―

A
C
G
T

A C G T
Cαπ Gβπ Tγπ

Aαπ Gδπ Tεπ
Aβπ Cδπ Tνπ
Aγπ Cεπ Gνπ

The general time-reversible 
model

It maintains "detailed balance" so that the probability of starting at 
(say) A and ending at (say) T in evolution is the same as the 
probability of starting at T and ending at A:

And there is of course the general 12-parameter model which has 
arbitrary rates for each of the 12 possible changes (from each of the 
4 nucleotides to each of the 3 others). 
(Neither of these has formulas for the transition probabilities, but 
those can be done numerically.)
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Relation between models

Adjusting evolutionary distance 
using base-substitution model
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-3αααα
α-3ααα

αα-3αα
ααα-3α

rsss
srss
ssrs
sssr

r = (1+3e−4αt)/4,     s = (1− e−4αt)/4.
Consider e.g. the   2nd 
position in  a-globin2 Alu1.

The Jukes-Cantor model

Common 
ancestor of 
human and orang

Human (now)

t time unit

Q =

P =

Definition of PAM
Let P(t) = exp(Qt).  Then the A,G element of P(t) is 

pr(G now | A then) =  (1 − e−4αt)/4.

Same for all pairs of different nucleotides.
Overall rate of change k = 3αt.

PAM = accepted point mutation
When k = .01, described as 1 PAM
Put t = .01/3α = 1/300α.  Then the resulting P = P(1/300α) is called the 
PAM(1) matrix.  

Why use PAMs?
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Evolutionary time, PAM

Since sequences evolve at different rates, it is 
convenient to rescale time so that 1 PAM of evolutionary 
time corresponds to 1% expected substitutions.

For Jukes-Cantor, k = 3αt is the expected number of 
substitutions in [0,t], so is a distance. (Show this.)

Set 3αt = 1/100, or t = 1/300α, so  1 PAM = 1/300α years.

Distance adjustment
For a pair of sequences, k = 3αt is the desired metric, but not 
observable.  Instead, pr(different) is observed.  So we use a model 
to convert pr(different) to k.

This is completely analogous to the conversion of  
θ = pr(recombination) 

to genetic (map) distance (= expected number of crossovers) using 
the Haldane map  function 

θ = 1/2 × (1 − e-2d),

assuming the no-interference (Poisson) model.
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common ancestor

G
orang

C
human

t

3/4

Towards Jukes-Cantor 
adjustment

E.g., 2nd position in a-globin Alu 1

Assume that the common ancestor has 
A, G, C or T with probability  1/4.

Then the chance of the nt differing
p≠ =  3/4 × (1 − e−8αt)

=  3/4 × (1 − e−4k/3), since k =2 × 3αt

Jukes-Cantor adjustment
If we suppose all nucleotide positions behave identically and 
independently, and n≠ differ out of n, we can invert this, 
obtaining 

This is the corrected or adjusted fraction of differences (under 
this simple model).  × 100 to get PAMs

The analogous simple model for amino acid sequences has 

× 100 for PAM.

⎟
⎠
⎞

⎜
⎝
⎛ −×−= ≠ nnk /log

3
41

4
3)

⎟
⎠
⎞

⎜
⎝
⎛ −×−= ≠ nnk /log

19
201

20
19)
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Illustration
1. Human and bovine beta-globins are aligned with no deletions 

at 145 out of 147 sites.  They differ at 23 of these sites. Thus
n≠/n = 23/145, and the corrected distance using the Jukes-
Cantor formula is (natural logs)

− 19/20 × log(1 − 20/19 × 23/145) = 17.3 × 10-2.

2. The human and gorilla sequences are aligned without gaps 
across all 300 bp, and differ at 14 sites.  Thus n≠/n = 14/300, 
and the corrected distance using the Jukes-Cantor formula is

− 3/4 × log(1 − 4/3 × 14/300) = 4.8 × 10-2.

Observed Percent Difference Evolutionary Distance in PAMs

1
5
11
17
23
30
38
47
56
67
80
94
112
133
159
195
246

1
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85 328

Correspondence between observed a.a. 
differences and the evolutionary distance (Dayhoff
et al., 1978)
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Scoring matrices for alignment

C 9

S -1 4

T -1 1 5

P -3 -1 -1 7

A 0 1 0 -1 4

G -3 0 -2 -2 0 6

N -3 1 0 -2 -2 0 6

D -3 0 -1 -1 -2 -1 1 6

E -4 0 -1 -1 -1 -2 0 2 5

Q -3 0 -1 -1 -1 -2 0 0 2 5

H -3 -1 -2 -2 -2 -2 1 -1 0 0 8

R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5

K -3 0 -1 -1 -1 -2 0 -1 1 1 -1 2 5

M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5

I -1 -2 -1 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4

L -1 -2 -1 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4

V -1 -2 0 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4

F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6

Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7

W -2 -3 -2 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11

C S T P A G N D E Q H R K M I L V F Y W

134 LQQGELDLVMTSDILPRSELHYSPMFDFEVRLVLAPDHPLASKTQITPEDLASETLLI
|     |||         |       |        ||||||    |    || ||   

137 LDSNSVDLVLMGVPPRNVEVEAEAFMDNPLVVIAPPDHPLAGERAISLARLAEETFVM

D:D = +6

D:R = -2

From Henikoff 1996

BLOSUM62

How scoring matrices work
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Since p<3/4, σ = log((1-p)/(1/4))>0, while -µ= log(p/(3/4))<0.
Thus the alignment score = a×σ + d×(-µ), where the match score σ > 
0, and the mismatch penalty is -µ < 0.

AGCTGATCA...
AACCGGTTA...Alignment: H = homologous (indep. sites, Jukes-Cantor)

R = random (indep. sites, equal freq.)Hypotheses:

).( nts,disagreeme# ,agreements# where,)(

)...|CC(pr)|GA(pr)|AA(pr)|(pr

tda epdapp

HHHHdata
α81

4
31 −−===−=

=

da

RRRRdata

)()(

)...|CC(pr)|GA(pr)|AA(pr)|(pr

4
3

4
1

=

=

Statistical motivation for 
alignment scores

).(
/

log
/

log}
)|(pr
)|(prlog{       µσ −×+×=+

−
=⇒ dapdpa

Rdata
Hdata

4341
1

Large and small evolutionary 
distances

Recall that 
p = (3/4)(1-e-8αt), 
σ = log((1-p)/(1/4)), 
-µ = log(p/(3/4)).

Now note that if αt  ≈ 0, 
then p ≈ 6αt, and 1-p ≈ 1, and so σ ≈ log4,  while -µ ≈ log8αt is large and 
negative. 
That is, we see a big difference in the two values of σ and µ for small distances.

Conversely, if αt is large, 
p =  (3/4)(1-ε),  hence p/(3/4) = 1- ε, giving µ = -log(1- ε) ≈ ε,  while 1-p = (1+3ε)/4, 
(1-p)/(1/4)  = 1+3ε, and so σ = log(1+3ε) ≈ 3ε. 
Thus the scores are about 3 (for a match) to 1 (for a mismatch) for large 
distances. This makes sense, as mismatches will on average be about 3 times 
more frequent than matches.

the matrix which performs best will be the matrix that reflects the           
evolutionary separation of the sequences being aligned.
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Phylogenetic methods: a tree, with branch lengths, and the 
data at a single site.

See next lecture for how to compute likelihood under this 
hypothesis

ACAGTGACGCCCCAAACGT
ACAGTGACGCTACAAACGT
CCTGTGACGTAACAAACGA
CCTGTGACGTAGCAAACGA
CCTGTGACGTAGCAAACGAt1

t2

t3

t4

t5

t6

t8

t7

What about multiple alignment
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