Computational Genomics

The Coalescent Process
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e How to label them ?
e inference

e How many clusters ?7??
e model selection ?
e orinference ?




Genetic Demography
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e Are there genetic prototypes among them ?
e What are they ?
e How many ? (how many ancestors do we have ?)

Multi-population Genetic
Demography o

e Inference done separately, or jointly?




The coalescent

e (PR

Sir John Kingman,
Head of the Isaac Newton Institute of
Mathematical Sciences

Coalescent Theory

e how we can build up a genealogical tree to relate a
sample of n haploid individuals, collected in the
present day?

e The following series of slides shows how you can build up a
genealogical tree to relate a sample of 22 individuals, collected in the
present day, at a single haplotype locus (e.g. the non-recombining Y
chromosome).

e Because (for the Y chromosome) one son has only one father, but one
father can have more than one son, coalescent events occur in the
genealogy which inevitably result in a reduction of ancestors. Eventually,
one ancestor remains — the Most Recent Common Ancestor (MRCA).
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e Mutational events can now be added to the genealogical tree,
resulting in polymorphic sites. If these sites are typed in the
modern sample, they can be used to split the sample into

sub-clades (represented by different colors)
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The Statistical Models

!
e To move beyond mere description, and to attempt such things

as estimating the TMRCA (Time to Most Recent Common
Ancestor) of the tree, it is necessary to adopt certain modeling
assumptions.

e For now lets forget about mutations, but just concern
ourselves with the coalescence

Kingman's coalescent process

(5

k-1 copies:
2N
k(k-1

copies to coalesce:
generations
N~

e Random collision of lineages as go back in time
e Collision is faster the smaller the effective population size

e In a haplotype population of effective population sizék}/, ;

Average time for k
copies to coalesce t

Average time for

generations

o

Average time for two .
generations

Derivation? ---- Hw!

copies to coalesce:

20



Hint of the derivation

The Wright-Fisher (WF) model

e The coalescent is descriptive, but not generative!
(g

e A classic generative model is the Wright-Fisher model. This
is the canonical model of genetic drift in populations. 1t was
invented in 1932 and 1930 by Sewall Wright and R. A. Fisher.

—_— pr—

e |t starts with the following assumptions:

e random mating and a random number of offspring (strictly, following a
Poisson distribution) —

e . no recombination (i.e. a single locus),

e constant population size,

e no selection,
o selectior]
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The Wright-Fisher (WF) model

\
e ltis a forwards-in-time model of a neutral locus in a

constant-size, random-mating, haploid population
evolving in discrete generations.

e Each individual in generation t has a random number
(possibly 0) of offspring in generation t+1. Each is:
° identiﬁl_tc@ parent with probability 1-u;
e otherwise a mutation occurs.

e With WF, one can attempt such things as estimating the
TMRCA (Time to Most Recent Common Ancestor) of the tree,
etc.

generation 0
generation 1
generation 2
generation 3
generation 4

generation 5

generation 6
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Coalescent theory

\
When we consider the same set of assumptions but now

simulate going “backwards in time”, we arrive at the
standard coalescent model with infinite-allele-mutations.

A coalescent is the backwards-in-time “cousin” of the WF
model: similar assumptions, but traces the ancestry of n
observed alleles.

Ancestry is represented via a genealogical tree: leaves are
observed alleles, root is the most recent common ancestor
(MRCA).

| _ t,= TMRCA (Time
since Most Recent
Common Ancestor)

— t,= 2" coalescence

!‘j — t, =15 coalescence
® — t, = present

Time is measured in units of N generations: 1 coalescent time
unit = , Where G is generation time in years.
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Time back to the next coalescence when there are k lineages has
the exponential distribution with mean and standard deviation both
2/k(k-1);

e.g. k=4:

mean=sd =1

mean = sd = 1/3

|__| mean =sd = 1/6

Height of tree: mean = 3/2 sd =107
Total branch length: mean =11/3 sd = 2:33

The TMRCA under the coalescent

e The TMRCA (height of the genealogical tree) is on average
2(n-1)/n; the average time in which there are just two
ancestral lineages is 1. A2

e the number of ancestors of a sample drops rapidly (backwards in time);

e for more than half its history, on average, a sample has only two
ancestors;

e data often clustered.

¢ When we simulate from the standard coalescent, we find that there
is considerable variation in the TMRCA from one simulation to the
next.

e Most coalescent event occur in the recent past (at the tips of the tree)

24



Random Trees
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Coalescent with variable
population size '

e The situation changes if we expand the coalescent model to
incorporate a factor of exponential population growth.

e Now there is less variation in the TMRCA between /(,
simulations, and more coalescent events occur in the more
distant past (near the root of the tree).
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Exponentially Growing Populations
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Generalisations of the standard
coalescent model o

e Variable population size: coalescences occur more rapidly when the
population size is small.

e Population subdivision with migration.
e Some forms of selection.
e Recombination: the ancestral recombination graph (ARG)
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A recombining coalescent

Different markers have
slightly different
coalescent trees

Coalescents in related species

Consistency of
gene tree with
species tree
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How to approximate a
coalescent?

\
e Kingman coalescent process with binary lineage merging
/—\

e New population haplotype alleles emerge along all branches
of the coalescence tree at rate a/2 per unit length

e This can be approximated by an infinite mixture model (aks,

Dirichlet process mixture)

Natural genealogy

Coalescent with mutation Infinite mixtures
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e Assuming there are presently &

active lineages:
e The probability of coalescence:

D)

k-1+a
—

e  The profability of mutatio
lineage)

(killing a
a

_ Kl

How to derive? ---HW!
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Chinese Restaurant Process

P(c; =k]c;) = :1L y

l+a l+a
1 1

2+a 2+a 2+a
1 2 a

3+ta 3+ta 3+ta
m, my

i+ta-1 i+a-1 ita-1

N
CBB.deﬂne&an—éxahangeable distribution on paﬁitinnq‘mt%]wgce
of samples, such a distribution is formally known as the Dirichlet Process (DP

The DP Mixture of Ancestral
Haplotypes o

e The customers around a table form a cluster
e associate a mixture component (i.e., a population haplotype) with a table

e sample {a, 6} at each table from a base measure G, to obtain the
population haplotype and%otide substitution frequency for that
component

“a N p 4 A

® <N\ ° PY 8 “ -l @
g( BWa {AG AG AG {AG  {AG
® ® ® ®

o With p(h|{A4, #}) and ¢(g|h,.hg), the CRP yields a posterior distribution on
the'number of population haplotypes (and on the haplotype
configurations and the nucleotide substitution frequencies)
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A Hierarchical Bayesian Infinite | 28
Allele model '

« Assume an individual haplotype h is stochastically
derived from a population haplotype a, with
nucleotide-substitution frequency 4.

ON
NG

(@)

h ~p(hi{a,d}).

* Not knowing the correspondences between individual
and population haplotypes, each individual haplotype
is a mixture of population haplotypes.

* The number and identity of the population haplotypes are unknown

— use a Dirichlet Process to construct a prior distribution G on #H X ®.

DP-haplotyper

@ DP
}
o)
I L
PUA(L |4 N

haplotypes and genotypes)
e Inference: Markov Chain Monte Carlo (MCMC)
e Gibbs sampling

~

infinite mixture components
(for population haplotypes)

e Metropolis Hasting
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Model components 5
e Choice of base measure:
&, ~ Unif(a) -HBeta(ej)
J
e Nucleotide-substitution model:
p(h/|{av9}k):Hp(h]‘J‘|ak.j'6‘k/)
J
(60, if 4. =a,,
e P(/IIJ lakw()“)illjgk,/ if /Zj :ak‘j
e Noisy genotyping model:
p(g\h.h)=11pP(g 1k, .h))
J
7 it h,;®h,;=9,
where  p(g, ;14 ;.4 ;)= 1;2/ it b, oh, g,
[ X X ]
0000
0000
i | s
Gibbs sampling :

Starting from some initial haplotype reconstruction H® , pick a first table
with an arbitrary a,©, and form initial population-hap pool A@ ={a, @}:

i)  Choose an individual i and one of his/her two haplytopes t, uniformly and at
random, from all ambiguous individuals;

ii) Sample Cif”l) from p(CiEt+1)|C£ti[),H(t),A(t)),update ¢t

iii) Sample a"™”, where k = Cétm, from p(al"*™” |Vh£t,)t s.t. Ci(,:fl) =k);
update A1) ;

iii) Sample hift+1) from p(hi$t+1) |CiEt+l)’ HEtit)’A(Hl))' update H(+D),
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. . . [ X X ]
Multi-population Genetic sels
Gemography -

e Pool everything together and solve 1 hap problem?
e ---ignore population structures
e Solve 4 hap problems separately?
e ---datafragmentation
e Co-clustering ... solve 4 coupled hap problems jointly
esee
Why humans are so similar and seco
polymorphic patterns are regional .o

' e Population bottleneck: a small population
Out of Africa that interbred reduced the genetic
variation

e Out of Africa ~ 100,000 years ago

130,000 yrs

§
40,000-60,000 yrs /
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Population Specific DPs

e Each population can be associated with a unique DP
capturing population-specific genetic demography

e Different population may have unique haplotypes

e Different population may share
common haplotypes

e Thus Population specific DPs
are marginally dependent
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Hierarchical DP Mixture

HapMap Data

m HDP) ~——~DP  =#== PHASE *==HAPLOTYPER
"

13 25 ] 13
BlocklD BlocklD

(a,) Performance on 37 blocks with length 7

25 1 9 17 25

9
BlockID BlocklD
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The block structure of haplotypes

e The Daly et al (2001) data set

e This consists of 103 common SNPs (>5% minor allele frequency) in a 500 kb
region implicated in Crohn disease, genotyped in 129 trios (mom, pop, kid) from a
European derived population, giving 258 transmitted and 258 untransmitted
chromosomes.

SNPs I 1 1 CINTTR T Al R T T TR RUA] [y "
L L 1 ]

CAR

P*ume 104:!(9 mmwT block 11

21 kb 2T kb 55 kb 19 kb

D <
block 1 block2  block 3 block 4 blocTE block &
B4 kb kb 14 kb 30 kb 5 kb 11 kb

e The haplotype blocks span up to 100kb and contain 5 or more common SNPs.
For example, one 84 kb block of 8 SNPs shows just two distinct haplotypes
accounting for 95% of the observed chromosomes.

Another study: the Patil et al data

e The haplotype patterns for 20
independent globally diverse
chromosomes defined by 147
common human chr 21 SNPs
spanning 106 kb of genomic
sequence.

e Each row represents an SNP.

e Blue box = major, = minor
allele.
e Each column represents a single
chromosome. miik :
e The 147 SNPs are divided into 18 = L 4 8 4

500 @ @ O wen

blocks defined by black lines.
‘® ® O Own

e The expanded box on the rightis an
SNP block of 26 SNPs over 19kb of
genomic DNA.

e The 4 most common of 7 different
haplotypes include 80% of the
chromosomes, and can be
distinguished with 2 SNPs.

Figure 2 of Patil et al
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e On any chromosome, the haplotype carried at the kth block is drawn
from A according to unknown probabilities that depend on the

haplotype at block k — 1.
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Block Partitioning Algorithms

e Greedy algorithm (Patil et al 2001).

e Begin by considering all possible blocks of 21 consecutive SNPs.
e Next, exclude all blocks in which < 80% of the chromosomes in the data are
defined by haplotypes represented more than once in the block (80% coverage).

e Considering the remaining overlapping blocks simultaneously, select the one
which maximizes the ratio of total SNPs in the block to the number required to
uniquely discriminate haplotypes represented more than once in the block. Any
of the remaining blocks that physically overlap with the selected block are
discarded, and the process repeated until we have selected a set of contiguous,
non-overlapping blocks that cover the 32.4 Mb of chr 21 2ith no gaps and with
every SNP assigned to a block.

e Hidden Markov Models

e Maximum a posterior inference (i.e., viterbi) (Daly et al. 2001)
e Minimum description length (Anderson et al.2003)

e Dynamic programming (Sun et al. 2002)

Haplotypes are Shaped by
Recombination '

Inheritance of unknown

1 — —————
i i s s .
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Hidden Markov DP for
Recombination
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