10-810 /02-710 Computational Genomics

Ziv Bar-Joseph zivbj@cs.cmu.edu WeH 4107 Takis Benos benos@pitt.edu 3078 BST3 (Pitt) Eric Xing epxing@cs.cmu.edu WeH 4127

http://www.cs.cmu.edu/~epxing/Class/10810-07/

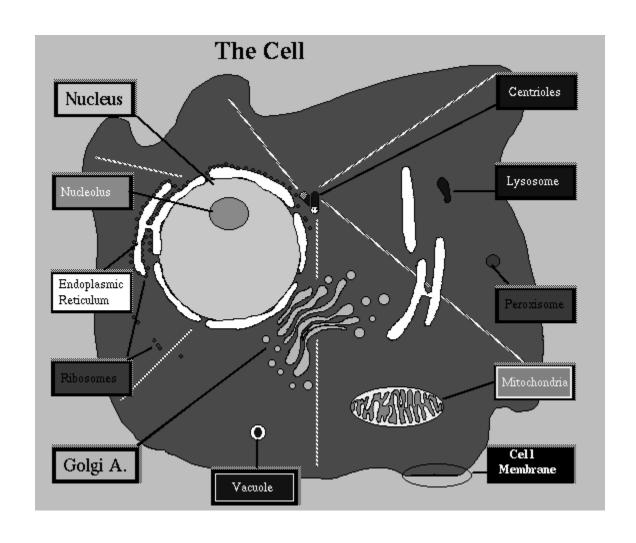
Topics

- Introduction (1 Week)
- Genetics (3 weeks)
- Sequence analysis and evolution (4 weeks)
- Gene expression (3 weeks)
- Systems biology (4 weeks)

Grades

4 Problem sets: 36%

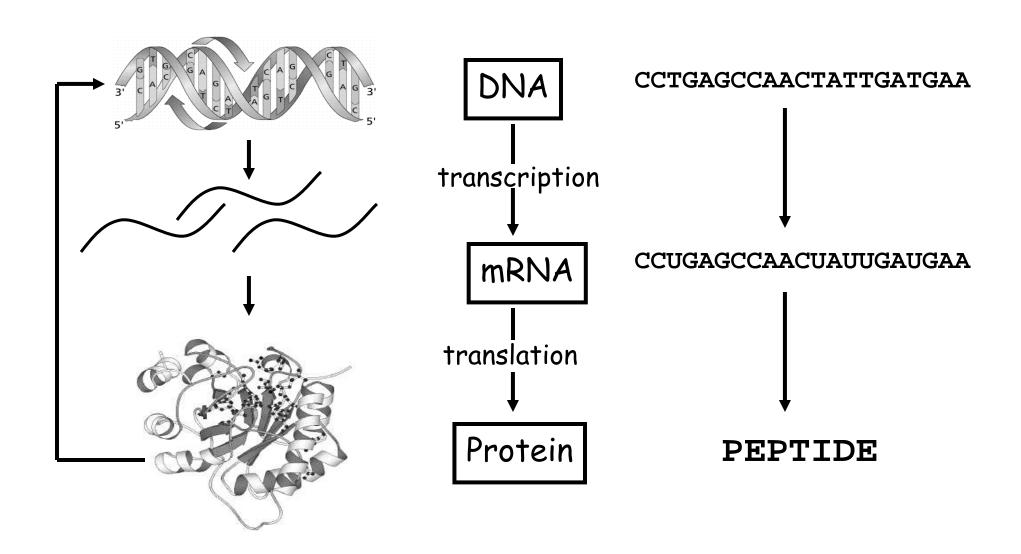
• Midterm: 24%


• Projects: 30%

Class participation and reading: 10%

Introduction to Molecular Biology

- Genomes
- Genes
- Regulation
- mRNAs
- Proteins
- Systems


The Eukaryotic Cell

Cells Type

- Eukaryots:
 - Plants, animals, humans
 - DNA resides in the nucleus
 - Contain also other compartments
- Prokaryots:
 - Bacteria
 - Do not contain compartments

Central dogma

Genome

- A genome is an organism's complete set of DNA (including its genes).
- However, in humans less than 3% of the genome actually encodes for genes.
- A part of the rest of the genome serves as a control regions (though that's also a small part).
- The goal of the rest of the genome is unknown (a possible project ...).

Comparison of Different Organisms

	Genome size	Num. of genes
E. coli	.05*108	4,200
Yeast	.15*108	6,000
Worm	1*108	18,400
Fly	1.8*108	13,600
Human	30*108	25,000
Plant	1.3*108	25,000

Assigning function to genes / proteins

- One of the main goals of molecular (and computational) biology.
- There are 25000 human genes and the vast majority of their functions is still unknown
- Several ways to determine function
 - Direct experiments (knockout, overexpression)
 - Interacting partners
 - 3D structures
 - Sequence homology

Function from sequence homology

- We have a query gene: ACTGGTGTACCGAT
- Given a database with genes with a known function, our goal is to find another gene with similar sequence (possibly in another organism)
- When we find such gene we predict the function of the query gene to be similar to the resulting database gene
- Problems
 - How do we determine similarity?

Sequence analysis techniques

- A major area of research within computational biology.
- Initially, based on deterministic (dynamic programming) or heuristic (Blast) alignment methods
- More recently, based on probabilistic inference methods (HMMs).

Genes

What is a gene?

Promoter

Protein coding sequence

Terminator

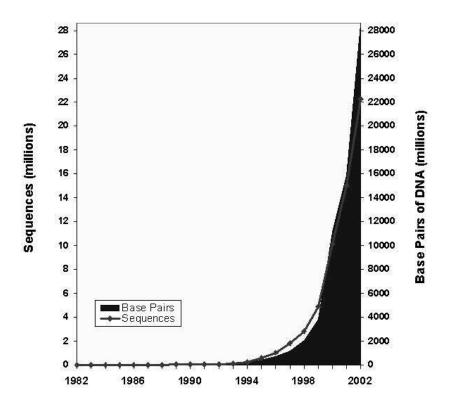
Genomic DNA

Example of a Gene: Gal4 DNA

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGATATTTGCCGACTTAAAAAGCTCAAG TGCTCCAAAGAAAACCGAAGTGCGCCAAGTGTCTGAAGAACAACTGGGAGTGTCGCTAC TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGGGCACATCTGACAGAAGTGGAATCAAGG CTAGAAAGACTGGAACAGCTATTTCTACTGATTTTTCCTCGAGAAGACCTTGACATGATT TTGAAAATGGATTCTTTACAGGATATAAAAGCATTGTTAACAGGATTATTTGTACAAGAT AATGTGAATAAAGATGCCGTCACAGATAGATTGGCTTCAGTGGAGACTGATATGCCTCTA ACATTGAGACAGCATAGAATAAGTGCGACATCATCATCGGAAGAGAGTAGTAACAAAGGT CAAAGACAGTTGACTGTATCGATTGACTCGGCAGCTCATCATGATAACTCCACAATTCCG TTGGATTTTATGCCCAGGGATGCTCTTCATGGATTTGATTGGTCTGAAGAGGATGACATG TCGGATGGCTTGCCCTTCCTGAAAACGGACCCCAACAATAATGGGTTCTTTGGCGACGGT TCTCTCTTATGTATTCTTCGATCTATTGGCTTTAAACCGGAAAATTACACGAACTCTAAC GTTAACAGGCTCCCGACCATGATTACGGATAGATACACGTTGGCTTCTAGATCCACAACA TCCCGTTTACTTCAAAGTTATCTCAATAATTTTCACCCCTACTGCCCTATCGTGCACTCA CCGACGCTAATGATGTTGTATAATAACCAGATTGAAATCGCGTCGAAGGATCAATGGCAA ATCCTTTTTAACTGCATATTAGCCATTGGAGCCTGGTGTATAGAGGGGGAATCTACTGAT ATAGATGTTTTTTACTATCAAAATGCTAAATCTCATTTGACGAGCAAGGTCTTCGAGTCA

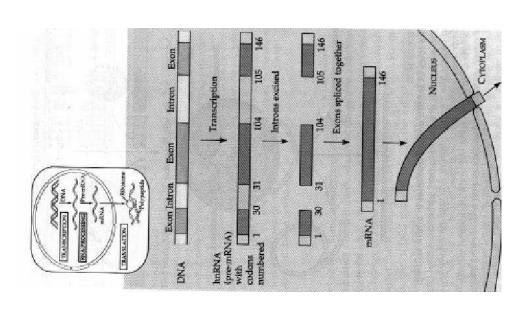
Genes Encode for Proteins

Second Letter


		U	С	А	G	
1st letter	0	UUU Phe UUC UUA Leu UUG	UCU UCC Ser UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	U	CUU CUC Leu CUA CUG	CCU CCC Pro CCA CCG	CAU His CAC CAA GIN CAG	CGU CGC Arg CGA CGG	U C A G
	A	AUU IIe AUC IIe AUA AUG Met	ACU Thr ACA ACG	AAU Asn AAC AAA Lys AAG	AGU Ser AGC AGA Arg AGG	U letter C A G
	G	GUU GUC Val GUA GUG	GCU GCC Ala GCA GCG	GAU Asp GAC GAA GIU	GGU GGC Gly GGA GGG	U C A G

Example of a Gene: Gal4 AA

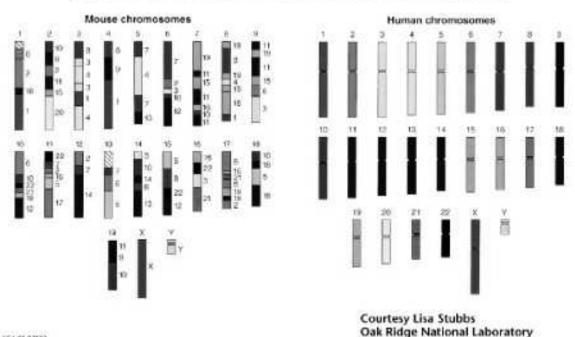
MKLLSSIEQACDICRLKKLKCSKEKPKCAKCLKNNWECRYSPKTKRSPLTRAHLTEVESR LERLEQLFLLIFPREDLDMILKMDSLQDIKALLTGLFVQDNVNKDAVTDRLASVETDMPL TLRQHRISATSSSEESSNKGQRQLTVSIDSAAHHDNSTIPLDFMPRDALHGFDWSEEDDM SDGLPFLKTDPNNNGFFGDGSLLCILRSIGFKPENYTNSNVNRLPTMITDRYTLASRSTT SRLLQSYLNNFHPYCPIVHSPTLMMLYNNQIEIASKDQWQILFNCILAIGAWCIEGESTD IDVFYYQNAKSHLTSKVFESGSIILVTALHLLSRYTQWRQKTNTSYNFHSFSIRMAISLG LNRDLPSSFSDSSILEQRRRIWWSVYSWEIQLSLLYGRSIQLSQNTISFPSSVDDVQRTT TGPTIYHGIIETARLLQVFTKIYELDKTVTAEKSPICAKKCLMICNEIEEVSRQAPKFLQ MDISTTALTNLLKEHPWLSFTRFELKWKQLSLIIYVLRDFFTNFTQKKSQLEQDQNDHQS YEVKRCSIMLSDAAQRTVMSVSSYMDNHNVTPYFAWNCSYYLFNAVLVPIKTLLSNSKSN AENNETAQLLQQINTVLMLLKKLATFKIQTCEKYIQVLEEVCAPFLLSQCAIPLPHISYN NSNGSAIKNIVGSATIAQYPTLPEENVNNISVKYVSPGSVGPSPVPLKSGASFSDLVKLL SNRPPSRNSPVTIPRSTPSHRSVTPFLGQQQQLQSLVPLTPSALFGGANFNQSGNIADSS


Number of Genes in Public Databases

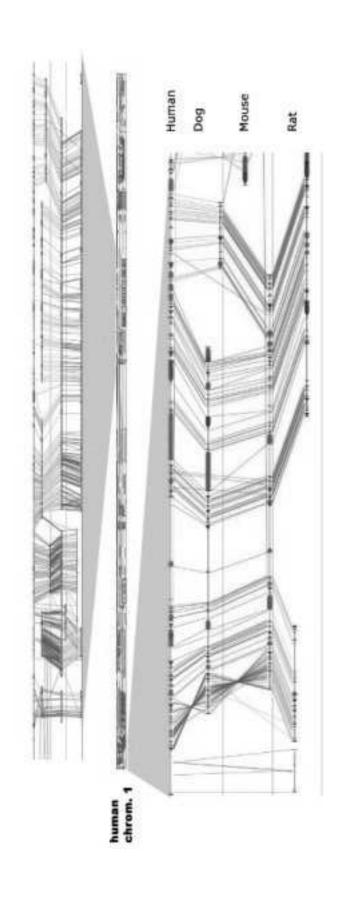
Growth of GenBank

Structure of Genes in Mammalian Cells

- Within coding DNA genes there can be un-translated regions (Introns)
- Exons are segments of DNA that contain the gene's information coding for a protein
- Need to cut Introns out of RNA and splice together Exons before protein can be made
- Alternative splicing increases the potential number of different proteins, allowing the generation of millions of proteins from a small number of genes.

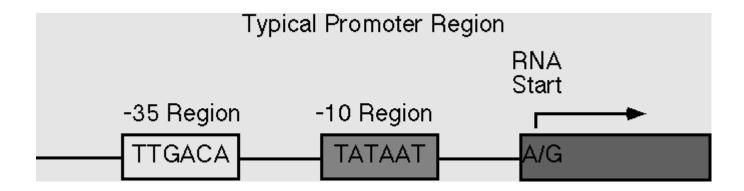


Identifying Genes in Sequence Data


- Predicting the start and end of genes as well as the introns and exons in each gene is one of the basic problems in computational biology.
- Gene prediction methods look for ORFs (Open Reading Frame).
- These are (relatively long) DNA segments that start with the start codon, end with one of the end codons, and do not contain any other end codon in between.
- Splice site prediction has received a lot of attention in the literature.

Comparative genomics

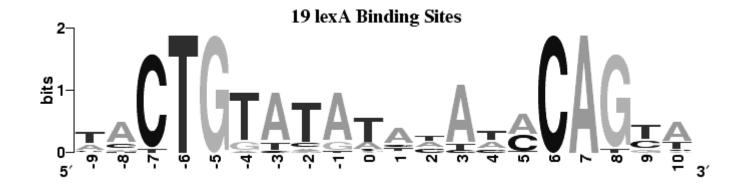
Mouse and Human Genetic Similarities


YGA 98-07512

Regulatory Regions

Promoter

The promoter is the place where RNA polymerase binds to start transcription. This is what determines which strand is the coding strand.



DNA Binding Motifs

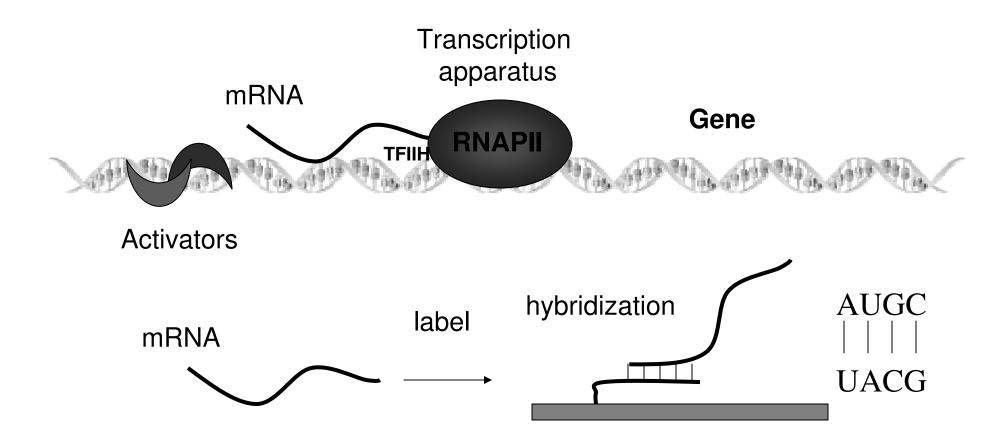
- In order to recruit the transcriptional machinery, a transcription factor (TF) needs to bind the DNA in front of the gene.
- TFs bind in to short segments which are known as DNA binding motifs.
- Usually consists 6 8 letters, and in many cases these letters generate palindromes.

Example of Motifs

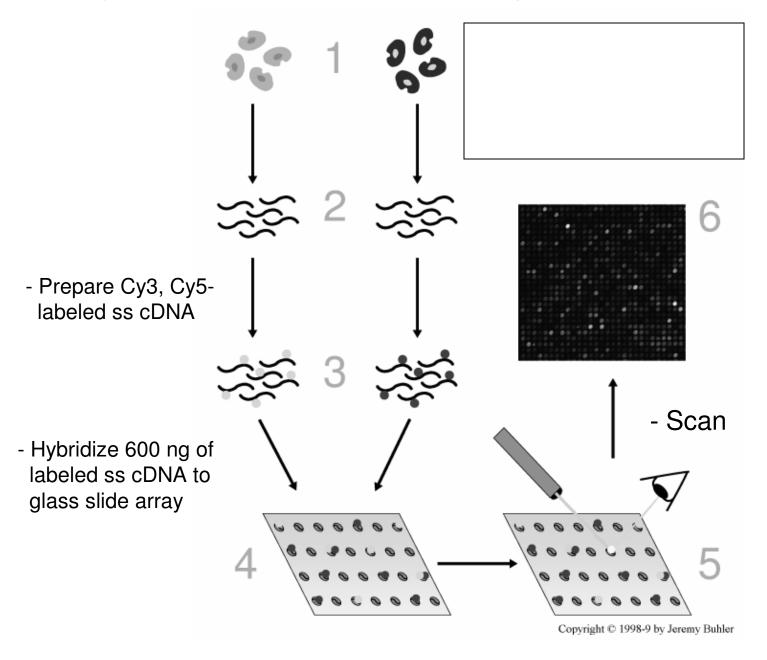
Messenger RNAs (mRNAs)

RNA

Four major types (one recently discovered regulatory RNA).

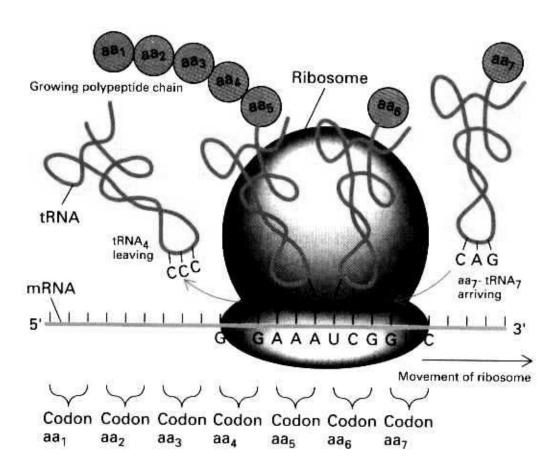

- mRNA messenger RNA
- tRNA Transfer RNA
- rRNA ribosomal RNA
- RNAi, microRNA RNA interference

Messenger RNA


- Basically, an intermediate product
- Transcribed from the genome and translated into protein
- Number of copies correlates well with number of proteins for the gene.
- Unlike DNA, the amount of messenger RNA (as well as the number of proteins) differs between different cell types and under different conditions.

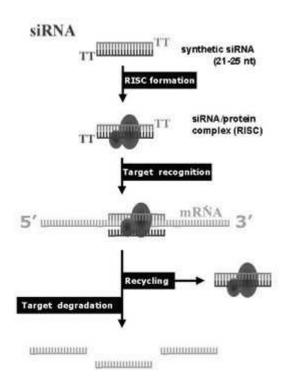
Complementary base-pairing

- mRNA is transcribed from the DNA
- mRNA (like DNA, but unlike proteins) binds to its complement


Hybridization and Scanning—Glass slide arrays

The Ribosome

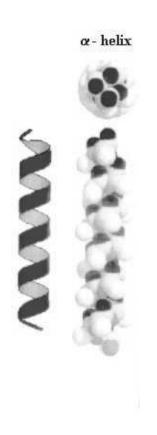
- Decoding machine.
- Input: mRNA, output: protein
- Built from a large number of proteins and a number of RNAs.
- Several ribosomes can work on one mRNA


The Ribosome

Perturbation

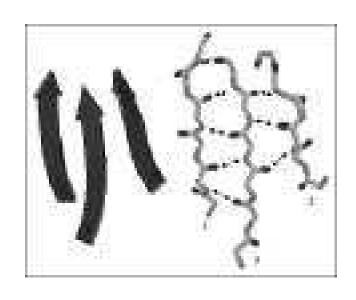
- In many cases we would like to perturb the systems to study the impacts of individual components (genes).
- This can be done in the sequence level by removing (knocking out) the gene of interest.
- Not always possible:
 - higher organisms
 - genes that are required during development but not later
 - genes that are required in certain cell types but not in others

Perturbations: RNAi



Proteins

Proteins


- Proteins are polypeptide chains of amino acids.
- Four levels of structure:
 - Primary Structure: The sequence of the protein
- Secondary structure: Local structure in regions of the chain
 - Tertiary Structure: Three dimensional structure
 - Quaternary Structure: multiple subunits

Secondary Structure: Alpha Helix

Secondary Structure: Beta Sheet

Protein Structure

Domains of a Protein

- While predicting the structure from the sequence is still an open problem, we can identify several domains within the protein.
- Domains are compactly folded structures.
- In many cases these domains are associated with specific biological function.

Assigning Function to Proteins

- While almost 30000 genes have been identified in the human genome, relatively few have known functional annotation.
- Determining the function of the protein can be done in several ways.
 - Sequence similarity to other (known) proteins
 - Using domain information
 - Using three dimensional structure
- Based on high throughput experiments (when does it functions and who it interacts with)

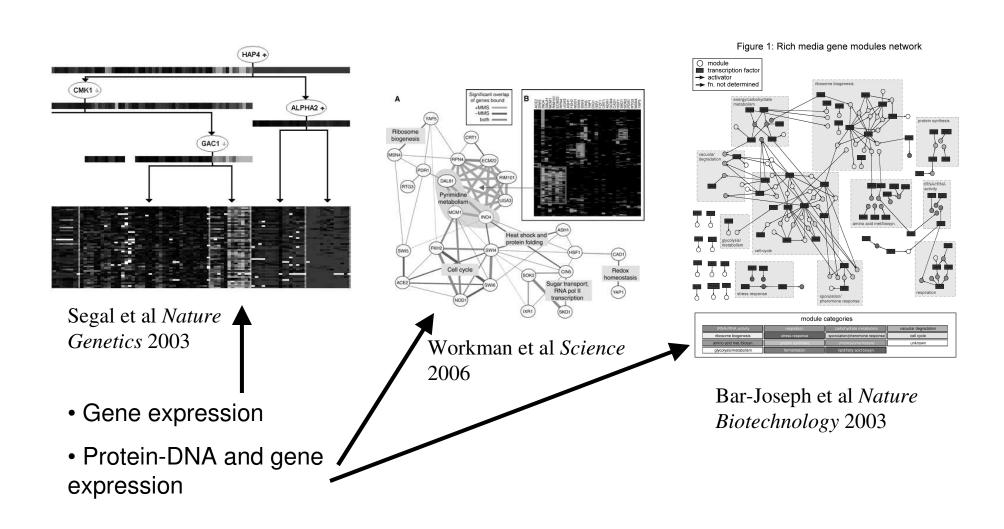
Protein Interaction

In order to fulfill their function, proteins interact with other proteins in a number of ways including:

- Regulation
- Pathways, for example A -> B -> C
- Post translational modifications
- Forming protein complexes

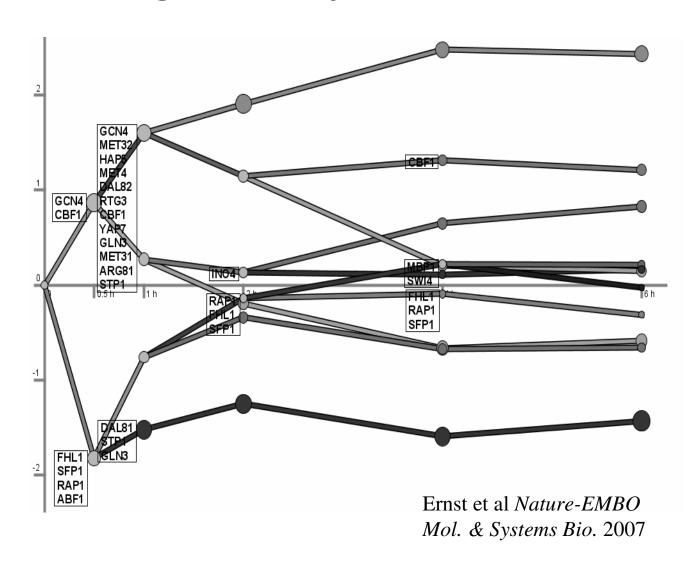
Putting it all together: Systems biology

High throughput data


- We now have many sources of data, each providing a different view on the activity in the cell
 - Sequence (genes)
 - DNA motifs
 - Gene expression
 - Protein interactions
 - Image data
 - Protein-DNA interaction
 - Etc.

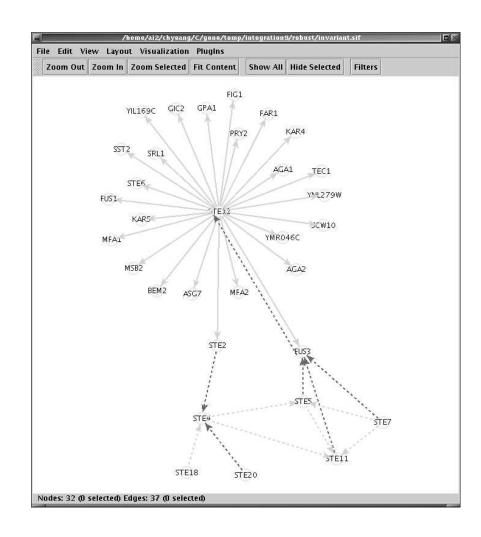
High throughput data

- We now have many sources of data, each providing a different view on the activity in the cell
 - Samianca (manas)


How to combine these different data types together to obtain a unified view of the activity in the cell is one of the focuses of this class

Reverse engineering of regulatory networks

Dynamic regulatory networks


Protein-DNA, motif and time series gene expression data

Physical networks

Protein-DNA, protein-protein and gene expression data

Yeang *et al*, Genome Bio. 2005

What you should remember

- Course structure:
 - Genomes (genetics)
 - Genes and regulatory regions (sequence analysis)
 - mRNA and high throughput methods (microarrays)
 - Systems biology