Clustering expression data
Goal

- Data organization (for further study)
- Functional assignment
- Determine different patterns

- Classification
- Relations between experimental conditions

- Subsets of genes related to subset of experiments

Genes

Experiments

Both
Clustering metric

- A key issue in clustering is to determine the similarity / distance metric.
- Often, such metric has a bigger impact on the results than the actual clustering algorithm used.
- When determining the metric we should take into account our assumptions about the data and the goals of the clustering algorithm.
Clustering algorithms

- We can divide clustering methods into roughly three types:

1. hierarchical agglomerative clustering
 - For example, hierarchical clustering
2. Model based
 - For example, k-means, Gaussian mixtures
3. Iterative partitioning (top down)
 - For example, graph based algorithms
Hierarchical clustering

- Probably the most popular clustering algorithm in this area
- First presented in this context by Eisen in 1998

- Agglomerative (bottom-up)
- Algorithm:
 1. Initialize: each item a cluster
 2. Iterate:
 - select two most similar clusters
 - merge them
 3. Halt: when there is only one cluster left
Similarity criteria: Single Link

- cluster similarity = similarity of two most similar members

- Potentially long and skinny clusters
Example: single link

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 0 \\
2 & 2 & 0 \\
3 & 6 & 3 & 0 \\
4 & 10 & 9 & 7 & 0 \\
5 & 9 & 8 & 5 & 4 & 0
\end{bmatrix} \quad \rightarrow \quad \begin{bmatrix}
(1,2) & 3 & 4 & 5 \\
(1,2) & 0 \\
3 & 3 & 0 \\
4 & 9 & 7 & 0 \\
5 & 8 & 5 & 4 & 0
\end{bmatrix}
\]

\[
d_{(1,2),3} = \min\{d_{1,3}, d_{2,3}\} = \min\{6,3\} = 3
\]

\[
d_{(1,2),4} = \min\{d_{1,4}, d_{2,4}\} = \min\{10,9\} = 9
\]

\[
d_{(1,2),5} = \min\{d_{1,5}, d_{2,5}\} = \min\{9,8\} = 8
\]
Example: single link

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
2 & 0 & 2 & 4 & 2 \\
6 & 3 & 6 & 9 & 6 \\
10 & 9 & 7 & 10 & 10 \\
9 & 8 & 5 & 4 & 4
\end{bmatrix}
\]

\[
\begin{bmatrix}
(1,2) & 3 & 4 & 5 \\
(1,2) & 0 & 3 & 4 \\
(1,2) & 3 & 0 & 4 \\
(1,2) & 9 & 7 & 5 \\
(1,2) & 8 & 5 & 4
\end{bmatrix}
\]

\[
\begin{bmatrix}
(1,2,3) & 4 & 5 \\
(1,2,3) & 0 & 4 \\
(1,2,3) & 7 & 5 \\
(1,2,3) & 0 & 5
\end{bmatrix}
\]

\[
d_{(1,2,3),4} = \min\{d_{(1,2),4}, d_{3,4}\} = \min\{9, 7\} = 7
\]

\[
d_{(1,2,3),5} = \min\{d_{(1,2),5}, d_{3,5}\} = \min\{8, 5\} = 5
\]
Example: single link

\[d_{(1,2,3),(4,5)} = \min\{d_{(1,2,3),(4,4)}, d_{(1,2,3),(5,5)}\} = 5\]
Hierarchical: Complete Link

- cluster similarity = similarity of two least similar members

+ tight clusters
Hierarchical: Average Link

- cluster similarity = average similarity of all pairs

the most widely used similarity measure

Robust against noise
Similarity measure

- In most cases the correlation coefficient ((normalized dot product) is used.
- The correlation coefficient is defined as:

\[\rho_{x,y} = \frac{\text{cov}(x, y)}{\text{std}(x)\text{std}(y)} = \frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{\sigma_x \sigma_y} \]

- Advantages:
 - Identifies relationships regardless of absolute unit changes.
 - A simple way around missing values.
- Disadvantages:
 - Not a metric.
Cluster results

Combining several time series yeast datasets
Model based clustering

- In model based clustering methods we assume a generative model by which the data was generated.
- Our goal is to recover the parameters of such model, and use these to cluster the genes.
Model based clustering

For simplicity we'll start with the following assumptions:

- clusters are exclusive (single gene, single cluster)
- we are searching for a fixed number of clusters (k)
- variation of profiles within a cluster can be modeled as a multi-variate Gaussian

Clustering algorithm

1. initialize cluster models
2. iterate until convergence:
 - assign genes to clusters
 - estimate cluster models on the basis of the genes assigned to them
Our model: Gaussian mixtures

- We assume a generative model that works in the following way
- In order to generate a new point, we first chose a cluster \(1 \leq i \leq k\) according to \(p(i)\)
- Next, we select the point using \(i\)'s probability distribution model
- We assume that the profiles (vectors \(x = [x_1, \ldots, x_n]\)) within each cluster are normally distributed such that \(x \sim N(\mu, \Sigma)\).

\[
p(x \mid \mu_i, \Sigma_i) = \frac{1}{(2\pi)^{n/2} |\Sigma_i|^{1/2}} e^{-\frac{(x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i)}{2}}
\]
Likelihood

• Given our model, and a set of parameters for each of the clusters, we can compute the joint likelihood of our data.

\[L(D \mid M) = \prod_i \prod_j p(j)p(x_i \mid j) \]

• Our goal is to find a set of parameters that will maximize the above likelihood
Initialize

- The easiest way is to choose a random gene as a center for each of the clusters.
- Initialization is a key aspect of this algorithm (and of other EM type algorithms we have discussed). It is wise to re-run the algorithm several times and choose the highest likelihood result as our clusters.
- We will need to choose the variance / covariance for each cluster.
E step: Assigning profiles to clusters

- Simple way: assign each gene (profile x_j) to the cluster that gives the highest probability to it. In other words, gene j is assigned to cluster i when

$$p(x | \mu_i, \sigma_i) > p(x | \mu_j, \sigma_j) \forall j \neq i$$

- Better way: assign each gene partially to different clusters based on the relative probabilities that the cluster models give to the profile

$$p(i | x) = \frac{p(x | \mu_i, \sigma_i) p(i)}{\sum_j p(x | \mu_j, \sigma_j)}$$

- Each gene profile will consequently be associated with k assignment probabilities
Re-computing the parameters

- We can re-estimate the Gaussian models on the basis of the partial (or simple) assignments.
- Each cluster i sees a vector of m (the number of genes) assignment probabilities representing the degree to which profiles are assigned to the cluster:

$$w_{i1} = P(i|x_1)$$
$$\vdots$$
$$\vdots$$
$$w_{im} = P(i|x_m)$$

- To re-estimate the cluster models we simply find the weighted mean and the covariance of the profiles, where the weighting is given by the above assignment probabilities.
Re-computing the parameters
M step: Re-computing the parameters

- To re-estimate the cluster models we simply find the weighted mean and the covariance of the profiles, where the weighting is given by the above assignment probabilities.
- We also determine the cluster distribution by setting

\[
p(i) = \frac{\sum_j p(x_j | \mu_i, \sigma_i)}{\sum_k \sum_j p(x_j | \mu_k, \sigma_k)}
\]

- It can be shown that such a computation is the MLE for the class parameters.
- The two steps (E and M) are repeated until the parameters no longer change.
Second (and final) iteration
The importance of initializations
The importance of initializations:
Step 1
The importance of initializations: Step 2
The importance of initializations:
Step 5
The importance of initializations; Convergence
Example of clusters for the cell cycle expression dataset
Number of clusters

- How do we find the right number of clusters?
- The overall log-likelihood of the profiles implied by the cluster models goes up as we add clusters.
- One way is to use cross validation.
Cross validation
Cross validation
Another possible solution: Bayesian information criterion (BIC):

\[
\text{model \text{–} score} = L(x \mid \Theta) - \frac{d}{2} \log(m)
\]

The log-likelihood is evaluated on the basis of the estimated cluster models (means, covariances, and frequencies), \(d\) is the number of independent parameters in the model, and \(m\) is the number of gene profiles.
Top down: Graph based clustering

- Many top down clustering algorithms work by first constructing a neighborhood graph and then trying to infer some sort of connected components in that graph.
Graph based clustering

• We need to clarify how to perform the following three steps:
 1. construct the neighborhood graph
 2. assign weights to the edges (similarity)
 3. partition the nodes using the graph structure
Example
Clustering methods: Comparison

<table>
<thead>
<tr>
<th></th>
<th>Bottom up</th>
<th>Model based</th>
<th>Top down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running time</td>
<td>naively, $O(n^3)$</td>
<td>fast (each iteration is linear)</td>
<td>could be slow (matrix transformation)</td>
</tr>
<tr>
<td>Assumptions</td>
<td>requires a similarity / distance measure</td>
<td>strong assumptions</td>
<td>general (except for graph structure)</td>
</tr>
<tr>
<td>Input parameters</td>
<td>none</td>
<td>k (number of clusters)</td>
<td>either k or distance threshold</td>
</tr>
<tr>
<td>Clusters</td>
<td>subjective (only a tree is returned)</td>
<td>exactly k clusters</td>
<td>depends on the input format</td>
</tr>
</tbody>
</table>
Cluster validation

- We wish to determine whether the clusters are real
 - internal validation (stability, coherence)
 - external validation (match to known categories)
Internal validation: Coherence

- A simple method is to compare clustering algorithms based on the coherence of their results.
- We compute the average inter-cluster similarity and the average intra-cluster similarity.
- Requires the definition of the similarity / distance metric.
Internal validation: Stability

- If the clusters capture real structure in the data they should be stable to minor perturbation (e.g., subsampling) of the data.
- To characterize stability we need a measure of similarity between any two k-clusterings.
- For any set of clusters C we define $L(C)$ as the matrix of 0/1 labels such that $L(C)_{ij} = 1$ if genes i and j belong to the same cluster and zero otherwise.
- We can compare any two k clusterings C and C' by comparing the corresponding label matrices $L(C)$ and $L(C')$.
Internal validation

- We can compare any two k clusterings C and C' by comparing the corresponding label matrices $L(C)$ and $L(C')$. For example, we can define their similarity as

$$Sim(L(C), L(C')) = \frac{N(1,1)}{N(1,1) + N(1,0) + N(0,1)}$$

where $N(s,r)$ is the number of matrix elements (pairs of genes) such that the label in one clustering is s ($L(C)_{ij} = s$ and r in the other ($L(C')_{ij} = r$).

- Note that this method is independent of the similarity metric used.
Validation by subsampling

- C is the set of k clusters based on all the gene profiles
- C' denotes the set of k clusters resulting from a randomly chosen subset (80-90\%) of genes
- We have high confidence in the original clustering if Sim(L(C), L(C')) approaches 1 with high probability, where the comparison is done over the genes common to both
- Another way to do this?
External validation

• More common (why?).

• Suppose we have generated k clusters (sets of gene profiles) C_1,\ldots,C_k. How do we assess the significance of their relation to m known (potentially overlapping) categories G_1,\ldots,G_m?

• Let's start by comparing a single cluster C with a single category G_j. The p-value for such a match is based on the hyper-geometric distribution.

• Board.

• This is the probability that a randomly chosen $|C_i|$ elements out of n would have l elements in common with G_j.
P-value (cont.)

- If the observed overlap between the sets (cluster and category) is \(l \) elements (genes), then the p-value is

\[
p = \text{prob}(l \geq \hat{l}) = \sum_{j=l}^{\min(c,m)} \text{prob(exactly} - j - \text{matches)}
\]

- Since the categories \(G_1, \ldots, G_m \) typically overlap we cannot assume that each cluster-category pair represents an independent comparison
- In addition, we have to account for the multiple hypothesis we are testing.
- Solution ?
External validation: Example

P-value comparison

- Log Pval Kmeans
- Log Pval Profiles

Response to stimulus
transerase activity
cell death

Ratio
What you should know

• Why is clustering useful
• What are the different types of clustering algorithms
• What are the assumptions we are making for each, and what can we get from them
• Cluster validation: Internal and external