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Goal

• Data organization (for further study)
• Functional assignment
• Determine different patterns 

• Classification
• Relations between experimental conditions 

• Subsets of genes related to subset of 
experiments

Genes

Experiments

Both



Clustering metric

• A key issue in clustering is to determine the 
similarity / distance metric.

• Often, such metric has a bigger impact on the 
results than the actual clustering algorithm used

• When determining the metric we should take into 
account our assumptions about the data and the 
goals of the  clustering algorithm.



Clustering algorithms

• We can divide clustering methods into roughly three types: 

1. hierarchical agglomerative clustering 
- For example, hierarchical clustering 

2. Model based  
- For example, k-means, Gaussian mixtures

3. Iterative partitioning (top down)
- For example, graph based algorithms



Hierarchical clustering

• Probably the most popular clustering algorithm in this area
• First presented in this context by Eisen in 1998

• Agglomerative (bottom-up)

• Algorithm:
1. Initialize: each item a cluster
2. Iterate:

• select two most similar clusters
• merge them

3.   Halt: when there is only one cluster 
left

dendrogram



Similarity criteria: Single Link
• cluster similarity = similarity of two most similar members

- Potentially 
long and skinny 
clusters



Example: single link
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Example: single link

















045

07

0

5

4

)3,2,1(

54)3,2,1(

1

2
3

4

5



















0458

079

03

0

5

4

3

)2,1(

543)2,1(























04589

07910

036

02

0

5

4

3

2

1

54321

5}5,8min{},min{

7}7,9min{},min{

5,35),2,1(5),3,2,1(

4,34),2,1(4),3,2,1(

===

===

ddd

ddd



Example: single link
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Hierarchical: Complete Link
• cluster similarity = similarity of two least similar members

+ tight clusters



Hierarchical: Average Link
• cluster similarity = average similarity of all pairs

the most widely 
used similarity 
measure

Robust against 
noise



Similarity measure

• In most cases the correlation coefficient ((normalized dot product) 
is used

• The correlation coefficient is defined as:

• Advantages:
- Identifies relationships regardless of absolute unit changes
- A simple way around missing values

• Disadvantages
- Not a metric
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Cluster results

Combining several time series 
yeast datasets



Validation



Model based clustering 

• In model based clustering methods we assume a generative model 
by which the data was generated

• Our goal is to recover the parameters of such model, and use these 
to cluster the genes



Model based clustering

For simplicity we'll start with the following assumptions:
• clusters are exclusive (single gene, single cluster) 
• we are searching for a fixed number of clusters (k)
• variation of profiles within a cluster can be modeled as a multi-

variate Gaussian

Clustering algorithm
1. initialize cluster models
2. iterate until convergence: 

- assign genes to clusters
- estimate cluster models on the basis of the genes assigned to 
them 



Our model: Gaussian mixtures

• We assume a generative model that works in the following way
• In order to generate a new point, we first chose a cluster 1≤i≤k 

according to p(i)
• Next, we select the point using i’s probability distribution model
• We assume that the profiles (vectors x =[x1,…,xn]) within each 

cluster are normally distributed such that x~N(µ,∑).

2/)()(

2/12/

1

||)2(

1
),|( ii

T
i xx

i
nii exp

µµ

π
µ −Σ−− −

Σ
=Σ



Likelihood

• Given our model, and a set of parameters for each of the clusters, we can 
compute the joint likelihood of our data.

• Our goal is to find a set of parameters that will maximize the above 
likelihood
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Initialize

• The easiest way is to chose 
a random gene as a center 
for each of the clusters

• Initialization is a key aspect 
of this algorithm (and of 
other EM type algorithms 
we have discussed). It is 
wise to re-run the algorithm 
several times and chose 
the highest likelihood result 
as our clusters.

• We will need to chose the 
variance / covariance for 
each cluster



E step: Assigning profiles to 
clusters

• Simple way: assign each gene (profile xj) to the cluster that gives 
the highest probability to it. In other words, gene j is assigned to 
cluster i when

• Better way: assign each gene partially to different clusters based on 
the relative probabilities that the cluster models give to the profile

• Each gene profile will consequently be associated with k 
assignment probabilities
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Re-computing the parameters

• We can re-estimate the Gaussian models on the basis of the partial 
(or simple) assignments 

• Each cluster i sees a vector of m (the number of genes) assignment 
probabilities representing the degree to which profiles are assigned 
to the cluster

wi1 = P(i|x1)
…
...

wim = P(i|xm)

• To re-estimate the cluster models we simply find the weighted mean 
and the covariance of the profiles, where the weighting is given by 
the above assignment probabilities



Re-computing the parameters



M step: Re-computing the 
parameters

• To re-estimate the cluster models we simply find the weighted mean 
and the covariance of the profiles, where the weighting is given by 
the above assignment probabilities

• We also determine the cluster distribution by setting

• It can be shown that such a computation is the MLE for the class
parameters

• The two steps (E and M) are repeated until the parameters no 
longer change
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Second (and final) iteration



The importance of initializations



The importance of initializations: 
Step 1



The importance of initializations: 
Step 2



The importance of initializations: 
Step 5



The importance of initializations; 
Convergence
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Example of clusters for the 
cell cycle expression 
dataset



Number of clusters

• How do we find the right 
number of clusters? 

• The overall log-likelihood of 
the profiles implied by the 
cluster models goes up as we 
add clusters

• One way is to use cross 
validation
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Cross validation



Cross validation



Number of clusters (cont.)

• Another possible solution: 
Bayesian information criterion 
(BIC): 

• The log-likelihood is evaluated on 
the basis of the estimated cluster 
models (means, covariances, and 
frequencies), d is the number of 
independent parameters in the 
model, and m is the number of 
gene profiles 
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Top down: Graph based clustering

• Many top down clustering algorithms work by first constructing a
neighborhood graph and then trying to infer some sort of connected 
components in that graph



Graph based clustering

• We need to clarify how to perform the following three steps:
1. construct the neighborhood graph
2. assign weights to the edges (similarity)
3. partition the nodes using the graph structure



Example
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Clustering methods: Comparison

depends on the 
input format

exactly k clusterssubjective (only a 
tree is returned)

Clusters

either k or 
distance threshold

k (number of 
clusters)

noneInput parameters

general (except 
for graph 
structure)

strong 
assumptions

requires a 
similarity / 
distance measure

Assumptions

could be slow 
(matrix 
transformation)

fast (each 
iteration is linear)

naively, O(n3)Running time

Top downModel basedBottom up



Cluster validation

• We wish to determine whether the clusters are real  
- internal validation (stability, coherence)
- external validation (match to known categories)



Internal validation: Coherence

• A simple method is to compare clustering algorithm based on the 
coherence of their results

• We compute the average inter-cluster similarity and the average 
intra-cluster similarity

• Requires the definition of the similarity / distance metric



Internal validation: Stability

• If the clusters capture real structure in the data they should be stable 
to minor perturbation (e.g., subsampling) of the data. 

• To characterize stability we need a measure of similarity between 
any two k-clusterings. 

• For any set of clusters C we define L(C) as the matrix of 0/1 labels 
such that L(C)ij =1 if genes i and j belong to the same cluster and 
zero otherwise.

• We can compare any two k clusterings C and C' by comparing the 
corresponding label matrices L(C) and L(C'). 



Internal validation

• We can compare any two k clusterings C and C' by comparing 
the corresponding label matrices L(C) and L(C'). For example, 
we can define their similarity as

where N(s,r) is the number of matrix elements (pairs of genes) 
such that the label in one clustering is s (L(C)ij=s and r in the
other (L(C')ijr). 

• Note that this method is independent of the similarity metric 
used
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Validation by subsampling

• C is the set of k clusters based on all the gene profiles
• C' denotes the set of k clusters resulting from a randomly chosen 

subset (80-90\%) of genes 
• We have high confidence in the original clustering if Sim(L(C),L(C')) 

approaches 1 with high probability, where the comparison is done
over the genes common to both

• Another way to do this ? 



External validation

• More common (why ?).
• Suppose we have generated k clusters (sets of gene profiles) 

C1,…,Ck. How do we assess the significance of their relation to m 
known (potentially overlapping) categories G1,…,Gm?

• Let's start by comparing a single cluster C with a single category 
Gj. The p-value for such a match is based on the hyper-geometric 
distribution.

• Board.
• This is the probability that a randomly chosen |Ci| elements out of 

n would have l elements in common with Gj.



P-value (cont.)

• If the observed overlap between the sets (cluster and category) 
is l elements (genes), then the p-value is

• Since the categories G1,…,Gm typically overlap we cannot 
assume that each cluster-category pair represents an 
independent comparison

• In addition, we have to account for the multiple hypothesis we 
are testing.

• Solution ?
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External validation: Example

P-value comparison
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What you should know

• Why is clustering useful
• What are the different types of clustering algorithms
• What are the assumptions we are making for each, and 

what can we get from them
• Cluster validation: Internal and external


