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Clustering expression data



Goal

Data organization (for further study)
Functional assignment Genes
Determine different patterns

Classification

Relations between experimental conditions Experiments

Subsets of genes related to subset of
experiments Both



Clustering metric

* A key issue Iin clustering is to determine the
similarity / distance metric.

o Often, such metric has a bigger impact on the
results than the actual clustering algorithm used

 When determining the metric we should take into
account our assumptions about the data and the
goals of the clustering algorithm.



Clustering algorithms

 We can divide clustering methods into roughly three types:

1. hierarchical agglomerative clustering
- For example, hierarchical clustering
2. Model based
- For example, k-means, Gaussian mixtures
3. Iterative partitioning (top down)
- For example, graph based algorithms



Hierarchical clustering

e Probably the most popular clustering algorithm in this area
« First presented in this context by Eisen in 1998

 Agglomerative (bottom-up)
A :
' N\ o Algorithm:
A 1. Initialize: each item a cluster

2. lterate:
e T s W o
Y o0 ©060 e select two most similar clusters
* merge them
dendmgmm 3. Halt: when there is only one cluster

left



Similarity criteria: Single Link

e cluster similarity = similarity of two most similar members

- Potentially
long and skinny
clusters




Example: single link
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Example: single link
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Example: single link
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Hierarchical: Complete Link

o cluster similarity = similarity of two least similar members

+ Tight clusters




Hierarchical: Average Link

e cluster similarity = average similarity of all pairs

the most widely
used similarity
measure

Robust against
noise




Similarity measure

e In most cases the correlation coefficient ((normalized dot product)
IS used

e The correlation coefficient is defined as:

cov(x,y) Z(Xl — Y, _,Uy)

< T d(x)std(y) 0,0,

« Advantages:

- Identifies relationships regardless of absolute unit changes
- A simple way around missing values
« Disadvantages

- Not a metric
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Cluster results
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Validation

clustered randoml random?2 random3




Model based clustering

In model based clustering methods we assume a generative model
by which the data was generated

Our goal is to recover the parameters of such model, and use these
to cluster the genes



Model based clustering

For simplicity we'll start with the following assumptions:

. clusters are exclusive (single gene, single cluster)
. we are searching for a fixed number of clusters (k)
. variation of profiles within a cluster can be modeled as a multi-

variate Gaussian

Clustering algorithm
1. initialize cluster models
2. iterate until convergence:
- assign genes to clusters

- estimate cluster models on the basis of the genes assigned to
them



Our model: Gaussian mixtures

We assume a generative model that works in the following way

In order to generate a new point, we first chose a cluster 1<i<k
according to p(i)

Next, we select the point using I's probability distribution model

We assume that the profiles (vectors x =[X,...,X,]) within each
cluster are normally distributed such that x~N(L,).

1 ~(x—44)" T (x—p4) 12

(Zﬂ)nIZ | Zi |1/2

P(X| 44,2;) =



Likelihood

Given our model, and a set of parameters for each of the clusters, we can
compute the joint likelihood of our data.

LD M) =T p()p(x 1 )

Our goal is to find a set of parameters that will maximize the above
likelihood



The easiest way Is to chose
a random gene as a center
for each of the clusters

Initialization is a key aspect
of this algorithm (and of
other EM type algorithms
we have discussed). It is
wise to re-run the algorithm
several times and chose
the highest likelihood result
as our clusters.

We will need to chose the
variance / covariance for
each cluster

Initialize




E step: Assigning profiles to
clusters

Simple way: assign each gene (profile x;) to the cluster that gives
the highest probability to it. In other words, gene | is assigned to
cluster i when

p(X| 4, 07) > p(x| pyo)U) #1

Better way: assign each gene partially to different clusters based on
the relative probabilities that the cluster models give to the profile

P(x|4,0)p(i)
2. P(X|y.0)

p(i |x) =

Each gene profile will consequently be associated with k
assignment probabilities



Re-computing the parameters

 We can re-estimate the Gaussian models on the basis of the partial
(or simple) assignments

« Each cluster i sees a vector of m (the number of genes) assignment
probabilities representing the degree to which profiles are assigned
to the cluster

Wi = P(I]Xy)

Wi = Pl

 To re-estimate the cluster models we simply find the weighted mean
and the covariance of the profiles, where the weighting is given by
the above assignment probabilities



Re-computing the parameters
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M step: Re-computing the
parameters

To re-estimate the cluster models we simply find the weighted mean
and the covariance of the profiles, where the weighting is given by
the above assignment probabilities

We also determine the cluster distribution by setting

2. P 1 44.07)
p() = <

ZZ P(X; | 4, Oy)

It can be shown that such a computation is the MLE for the class
parameters

The two steps (E and M) are repeated until the parameters no
longer change




Second (and final) iteration
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The importance of initializations




The importance of initializations:
Step 1




The importance of initializations:
Step 2




The importance of initializations:
Step 5

© %>;><><>><<><
® X W
>§<><
><><><><>< X
x
X
X
@ QO%)
<] & 9
og%go




The importance of initializations;

Convergence
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Number of clusters

How do we find the right
number of clusters?

The overall log-likelihood of
the profiles implied by the
cluster models goes up as we
add clusters

One way IS to use cross
validation

log-likelihood (per gene)
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Cross validation

LR:-176.276561 LR: -177. 452112
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Cross validation

LR:-171.571450

LR:-175.744144




model-score=L(x|0O) - % log(m)

Number of clusters (cont.)

Another possible solution:
Bayesian information criterion

[ee]

(BIC):
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BIC score (per gene)

The log-likelihood is evaluated on
the basis of the estimated cluster
models (means, covariances, and
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frequencies), d is the number of
independent parameters in the
model, and m is the number of
gene profiles

[
o

1 1
10 15 20
number of clusters



Top down: Graph based clustering

 Many top down clustering algorithms work by first constructing a
neighborhood graph and then trying to infer some sort of connected
components in that graph



Graph based clustering

 We need to clarify how to perform the following three steps:
1. construct the neighborhood graph
2. assign weights to the edges (similarity)
3. partition the nodes using the graph structure
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Clustering methods: Comparison

Bottom up Model based Top down
Running time naively, O(n3) fast (each could be slow
iteration is linear) | (matrix
transformation)
Assumptions requires a strong general (except
similarity / assumptions for graph
distance measure structure)
Input parameters | none k (number of either k or

clusters)

distance threshold

Clusters

subjective (only a
tree is returned)

exactly k clusters

depends on the
input format




Cluster validation

 We wish to determine whether the clusters are real
- Internal validation (stability, coherence)
- external validation (match to known categories)



Internal validation: Coherence

A simple method is to compare clustering algorithm based on the
coherence of their results

We compute the average inter-cluster similarity and the average
Intra-cluster similarity

Requires the definition of the similarity / distance metric



Internal validation: Stability

If the clusters capture real structure in the data they should be stable
to minor perturbation (e.g., subsampling) of the data.

To characterize stability we need a measure of similarity between
any two k-clusterings.

For any set of clusters C we define L(C) as the matrix of 0/1 labels
such that L(C); =1 if genes i and | belong to the same cluster and
zero otherwise.

We can compare any two k clusterings C and C' by comparing the
corresponding label matrices L(C) and L(C").



Internal validation

We can compare any two k clusterings C and C' by comparing
the corresponding label matrices L(C) and L(C'). For example,
we can define their similarity as

| L N (1)

where N(s,r) is the number of matrix elements (pairs of genes)
such that the label in one clustering is s (L(C);=s and r in the

other (L(C');r).

Note that this method is independent of the similarity metric
used



Validation by subsampling

C is the set of k clusters based on all the gene profiles

C' denotes the set of k clusters resulting from a randomly chosen
subset (80-90\%) of genes

We have high confidence in the original clustering if SIm(L(C),L(C"))
approaches 1 with high probability, where the comparison is done
over the genes common to both

Another way to do this ?



External validation

More common (why ?).

Suppose we have generated k clusters (sets of gene profiles)
C....,C,. How do we assess the significance of their relation to m
known (potentially overlapping) categories G,,...,G,,,?

Let's start by comparing a single cluster C with a single category
G;. The p-value for such a match is based on the hyper-geometric
distribution.

Board.

This is the probabillity that a randomly chosen |C,| elements out of
n would have | elements in common with G,



P-value (cont.)

If the observed overlap between the sets (cluster and category)
Is | elements (genes), then the p-value is

min(c,m)
p = prob(l =1) = ) prob(exactly - j — matches)

]=I

Since the categories G,,...,G,, typically overlap we cannot
assume that each cluster-category pair represents an
iIndependent comparison

In addition, we have to account for the multiple hypothesis we
are testing.

Solution ?



External validation: Example

P-value comparison




What you should know

Why is clustering useful
What are the different types of clustering algorithms

What are the assumptions we are making for each, and
what can we get from them

Cluster validation: Internal and external



