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Regulatory non coding RNAS

Two major types

- Micro RNA (miRNA)

- Silencing RNA (siRNA)

Both are post transcriptional regulators

Difference primarily in the way they regulate the mRNAs



MIRNA

Precursor miRNA
ULF-‘
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the regulated mMRNA
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» Follows a stem-loop structure

 Either binds to target mMRNA
resulting in cleavage orto 3’
translated region (UTR) to
prevent translation.
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Cytoplasm ' C. Dicer
1 T miRNA duplex

One strand incorporated
into RISC

RISC

Target
mRNA

mRNA cleavage Translation inhibition



History

First two miRNAs identified in early 90’s in c. elegans (a
small worm).

More recently they were found to be conserved in
multiple species.

It IS now believed that there are hundreds of mIRNAS In
higher organisms.

Why is it useful to regulate on the mRNA level?



ldentifying mIRNA

Given a complete genome we would like to identify the
set of mMIRNAS (just as we do with genes).

Problem: miRNAs are very short, and there are no clear
rules (except for the stem-loop structure) for their
sequence.

This is very different from genes, for which much more
structure information exists.

How can we tackle this problem?



Whole genome comparison



Comparing genomes

Recent advances in sequencing technologies are allowing
researchers to sequence entire genomes very quickly.

Lets assume that we know how to assemble a genome from the
sequenced pieces.

Given two genomes, X and Y, from closely related organisms, how
do we determine a global alignment for them?

Problems:

- Mutations

- Rearrangements

- Duplications (even a whole genome duplication)
- Etc.



Comparative genomics

Mouse and Human Genetic Similarities
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Anchors

« Key idea: Identify a set of anchors
* Determine relationships between anchors




Anchors

« Key idea: Identify a set of anchors
« Determine relationships between anchors
e Realign using the determined mapping
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Genes as anchors

Genes are natural candidates for anchors

There is an evolutionary pressure to keep the gene
sequence unchanged

There are algorithms to identify the set of genes in an
organism

Key problem: determining the set of orthologs genes:
- Duplications will lead to many to many relationships
- Mutations are still possible

- Paralogs will cause ambiguity



Solving the correspondence
problems (kellis et al 2003)

« Use a (weighted) bi-partite graph
 Nodes correspond to genes
« Edges correspond to similarity

 Goal —resolve graph to obtain pairwise relationships

and synteny blocks




Step 1: Undirected to directed

e Turn each edge to multiple edges
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Step 2: Eliminate edges

* For each node, keep its outgoing edges only if they are
at least 80% of the highest edge

e Use pairs to identify blocks 1 O
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Step 3: Best Unambiguous Subset

 Edges that remain in the graph after step 2 are further
pruned by removing all but the top outgoing edge(s) for
each node

 The graph is then partitioned into connected components
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Again, many to one
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relationships are resolved o
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Back to microRNAS

e Given a whole genome alignment, we can now search
for conserved segments, even if they are short.

* First step: identify conserved segments that fold to the
correct structure (how can we tell?).
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Scoring folds

e Conserved segments were folded using a RNA folding
software

e Folds that exhibited non symmetric internal loops were
panelized

« A final score was assigned to each fold
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Conservation rate

 The conservation of miRNAs in Drosophila (a fly) was studied using
training data (a set of known miRNAS).

* Results indicated that the miIRNAs where highly conserved, though the
rate of conservation varied depending on the location

» Six classes of mutations
were considered

» Three are present in real
MIRNASs and three are not

» Predicted sequences can
be searched to eliminate
those that do not agree with
the three good classes
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Putting It together

After filtering for conservation classes, 200 high scoring
candidate miIRNA were left.

These contained 18 of 24 training miIRNAs and 182
predicted

Most training data appeared in the top half
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Experimental validation

o 20 of 27 (74%) predicted miRNA that were conserved in
a third species were verified

e Only 4 out of 11 (36%) predicted miIRNA that were not
conserved in a third species were verified

e Authors claim that this is an upper value on the false
positive rate since

- Some mIRNAs may only be expressed in certain
conditions

- Some may be expressed at very low levels



Predicting targets for miIRNA

Given a set of mIRNA, the next question is to identify
their targets.

This is not a trivial task

The binding may either be on the translated rna or on the
3 UTR

Direct comparison (with a folding software) leads to

many false positives due to the short length of the
MIRNA

A better strategy is to again rely on sequence
conservation between organisms to identify these.

Still, largely open problem



What you should know

* Arevised look at the central dogma

 From pairwise sequence alignment ot whole genome
alignment

e Much better to first look at the data and then devise the
algorithm than the other way around



